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Abstract: A challenging task in routine practice is finding the distinction between benign and malig-
nant paragangliomas and pheochromocytomas. The aim of this study is to conduct a comparative
analysis of angiogenesis by assessing intratumoral microvascular density (MVD) with immunohisto-
chemical (IHC) markers (CD31, CD34, CD105, ERG), and S100 immunoreactivity, Ki67 proliferative
index, succinate dehydrogenase B (SDHB) expressiveness, tumor size with one the most utilized
score Pheochromocytoma of Adrenal Gland Scales Score (PASS), using tissue microarray (TMA)
with 115 tumor samples, 61 benign (PASS < 4) and 54 potentially malignant (PASS ≥ 4). We found
no notable difference between intratumoral MVD and potentially malignant behavior. The group
of potentially malignant tumors is significantly larger in size, has lower intratumoral MVD, and a
decreased number of S100 labeled sustentacular cells. Both groups have low proliferative activity
(mean Ki67 is 1.02 and 1.22, respectively). Most tumors maintain SDHB expression, only 6 cases
(5.2%) showed a loss of expression (4 of them in PASS < 4 group and 2 in PASS ≥ 4). PASS score is
easily available for assessment and complemented with markers of biological behavior to complete
the risk stratification algorithm. Size is directly related to PASS score and malignancy. Intratumoral
MVD is extensively developed but it is not crucial in evaluating the malignant potential.

Keywords: angiogenesis; pheochomocytoma; paraganglioma; CD105; ERG; PASS; Ki67; S100; SDHB

1. Introduction

Paragangliomas are rare non-epithelial neuroendocrine tumors, but potentially life-
threatening. Several classifications and terms have been used for these tumors, depending
on the place of origin, like the term pheochromocytoma for ones that originate from the
medulla of the adrenal gland and paraganglioma for tumors arising in other anatomical
places of the autonomic nervous system [1]. Pheochromocytomas are according to the
new nomenclature intra-adrenal paragangliomas, and classic sympathetic tumors that
produce and release catecholamines: noradrenaline and/or adrenaline [1,2]. Other para-
gangliomas are extra-adrenal and they can be parasympathetic and sympathetic. Parasym-
pathetic paragangliomas are primarily located in the head and neck (so-called head and
neck paraganglioma-HNPGL) and do not release catecholamines, while sympathetic para-
gangliomas are located in the chest, abdomen, and pelvis, and release large amounts of
noradrenaline, so like pheochromocytomas, they are accompanied by symptoms such
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as hypertension, palpitations, sweating, headaches and diabetes mellitus [2]. These non-
epithelial neuroendocrine tumors can occur at any age, with prevalence in the fourth and
fifth decade, and they occur equally in men and women [3]. The only known causative
factor for paragangliomas is hereditary susceptibility, and for these tumors, genetic contri-
bution is the strongest [3–5].

Apart from the clinical symptoms that put at risk the patient, paragangliomas can
have a benign clinical course. Ideally, they can be localized, and surgery, as the primary
form of therapy, can be a successful and definitive form of therapy [6]. But in the case of
malignant behavior and with excessive release of catecholamines, there is no generally
effective therapy [7,8]. The prevalence of malignancy is 5% to 26% of cases [9]. It is extremely
difficult at the time of diagnosis to predict whether paraganglioma will have a malignant
or benign clinical course, especially since metastases can occur much later after the primary
tumor [10].

In the Classification of Tumors of Endocrine Organs of the World Health Organization
(WHO) from 2017, in the absence of clearly defined malignancy criteria, it is considered that
all pheochromocytomas and paragangliomas can potentially metastasize, and instead of
classifying them as benign and malignant, it is preferable to stratify the risk of metastasis in
these tumors [3]. These recommendations are retained in the latest WHO classification from
2022 [1]. Although it was challenging, a staging system for intra-adrenal and extra-adrenal
sympathetic paragangliomas was introduced in 2017 in the 8th Edition AJCC (the American
Joint Committee on Cancer) Cancer Staging Manual [3].

Numerous risk factors have been analyzed like localization, and it was observed that
10% of parasympathetic paragangliomas metastasize, up to 25% of pheochromocytoma
cases, and 40–70% of sympathetic paraganglioma cases [1,11–14].

Tumor size and weight showed some correlation with metastatic potential but not as
independent variables [11].

Essential histological characteristics that could indicate malignant potential were
analyzed and included in the Pheochromocytoma of the Adrenal gland Scaled Score
(PASS) by Thompson, who made this scoring system [15]. Although its use remains
controversial it is a commonly used scoring system [16–18]. PASS scoring system includes
twelve histological characteristics: capsular invasion, vascular invasion, extension into the
periadrenal adipose tissue, presence of large nests or diffuse growth (in >10% of tumor
volume), central tumor or confluent necrosis, high cellularity, tumor cell spindling, cellular
monotony, increased mitotic figures (>3/10 high power field), atypical mitotic figures,
profound nuclear polymorphism, and nuclear hyperchromasia. The maximum score is
20. The cutoff value is 4, so when the sum is <4 it is considered that the tumor will have
a benign course, while a score ≥ 4, means that the tumor is likely histologically more
aggressive and potentially malignant.

Angiogenesis is substantial for tumor growth and metastases so it has been explored in
many studies, with different approaches including assessing microvascular density (MVD),
vascular patterns, and expression of angiogenic factors but with inconclusive results [19,20].

Ancillary use of many immunohistochemical markers showed some significance and
association with the malignant potential of these tumors, such as the proliferative index
Ki67, S100 to determine the number of sustentacular cells, and succinate dehydrogenase
B (SDHB) for screening patients with hereditary paraganglioma pheochromocytoma syn-
drome (loss of expression of SDHB may indicate malignant biological potential) [1,14,21].

The primary objective of our research is to further explore angiogenesis, determining
intratumoral MVD using IHC endothelial markers CD31, CD34, CD105, and nuclear en-
dothelial marker ERG (Erythroblast transformation-specific(ETS)- Related Gene) and then
look into how intratumoral MVD can contribute to risk stratification by comparing them
with histological characteristics using the PASS scoring system. Furthermore, the aim is to
make a comprehensive analysis of known markers like immunohistochemical expressions
of Ki67, S100, and SDHB, along with the tumor’s size and weight. The application of TNM
staging (The TNM Staging System includes the extent of the tumor (T), extent of spread
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to the lymph nodes (N), and presence of metastasis (M)), in a retrospective manner was
undertaken to ensure a comprehensive understanding of the clinical context and facilitate
future analyses [22].

2. Materials and Methods
2.1. Study Population

We retrospectively analyzed patients who underwent surgery, due to paraganglioma,
at the University Clinical Center of Serbia in Belgrade in the period from the end of
2008 to the beginning of 2018. In the study, we included all cases in which there was a
consensus on the diagnosis mentioned above, as two pathologists independently performed
examination (revision) of all selected cases. Among 110 consecutive patients who were
operated on because of tumors, five of them were operated on twice during this period
(four because of bilateral pheochromocytoma, and one had recurrence). In summary, we
gathered 115 paraffin-embedded tumor tissue samples from 110 consecutive patients.

2.2. Tissue Microarray Construction

To identify representative areas in the donor paraffin-embedded tissue block, we
utilized hematoxylin and eosin-stained (H&E) four-micron sections of each tumor. We
manually punched tissue cores from the selected areas and arranged them on a recipient
paraffin block. All the patients are represented with at least one representative core tissue
cylinder.

2.3. Immunohistochemistry

A tissue microarray was made on which immunohistochemical analysis was per-
formed [23]. There were a total of 107 intra-adrenal paragangliomas with 1 recurrent case
and 7 extra-adrenal paragangliomas. We cut 4 µm thick sections from the tissue microarray
paraffin blocks using a tissue microtome. These sections were then subjected to deparaf-
finization and antigen unmasking procedures before being labeled with primary antibodies
against CD31, CD105, CD34, ERG, SDHB, S-100, and Ki67. The list of used antibodies and
manufacturers is shown in Table 1.

Table 1. List of used antibodies and their manufacturers.

Antibody Dilution Source

CD31 1:100 BIO SB
CD34 1:200 NOVOCASTRA
CD105 1:100 Termo Fisher
ERG 1:100 ABCAM

SDHB 1:50 ABCAM
S-100 1:100 NOVOCASTRA
Ki67 1:200 DAKO

As a control for immunohistochemical staining, external tissue controls were used for
all the mentioned antibodies. Immunohistochemical staining was performed manually,
following the manufacturer’s instructions for each antibody separately [24]. Visualization of
the immunohistochemical reaction was performed using the streptavidin-biotin technique
(DAKO LSAB+ kit).

2.4. Morphometry

For further analysis, the IHC stained slide preparations were photographed with a
digital camera Olympus DP70 (Olympus Corporation; Tokyo, Japan) through an upright
microscope (Olympus BX50, Olympus Corporation) at a magnification of 200× times,
creating images at 300 × 300 resolution, (photo dimensions 4080 × 3072 pixels). The digi-
talization of all slides was additionally executed with the Leica Aperio AT2 slide scanner
(Leica Biosystems, Nussloch GmbH, Nußloch, Germany) for analysis and documentation
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purposes. Virtual slides generated from Leica Aperio AT2 were morphometrically ana-
lyzed with a Leica AperioImageScope (version 12.4.6, Leica Biosystems, Nussloch GmbH,
Germany) and with FIJI-ImageJ2 software 2.3.1 [25].

All tissue samples are then divided into two categories according to the PASS score
(PASS < 4 and PASS ≥ 4).

We counted sustentacular cells labeled with S 100 antibody on a two-dimensional
section in a created network over the image. Cells whose positive nuclei are located in
cubes, and cell extensions and nuclei that cross the upper and right border, are included
and those that cross the left and lower border are excluded [26,27]. The average number
of sustentacular cells per 1 mm2 was calculated according to the measured tumor surface.
Proliferation index Ki67 was determined on each tissue cylinder by the percentage of
positive tumor nuclei which are counted using the Cell Counter option. We noticed granular
cytoplasmic staining in tumor cells as positive for SDHB, and the absence of staining in
tumor cells with positive endothelial cells, as negative and loss of immunohistochemical
SDHB expression.

2.5. Determination of Intratumoral MVD

We analyzed endothelial cytoplasmic and/or membrane markers of angiogenesis
CD31, CD34, and CD105 and counted blood vessels according to the authors Weidner and
Tanigawa, where each individual or group of endothelial cells that are clearly separated
from adjacent microvessels, tumor cells, or other connective tissue elements is counted
as a single blood microvessel. Vessel lumen, although often present, is not necessary to
define a structure as a microvessel. Every 40 µm of microvessel length was counted as a
new microvessel [28–30]. In addition to cytoplasmic/or membrane endothelial markers,
we also counted blood vessels using the nuclear marker ERG. In the photo of each cylinder,
using the Cell Counter option, we counted blood vessels and displayed intratumoral MVD
as an average number per 1 mm2.

2.6. Clinical Data

Measurements of blood pressure, catecholamines, and/or their metabolites in plasma
or urine, imaging data (radiology and nuclear medicine), genetic testing data, and macro-
scopic findings (tumor size and weight) were obtained from medical records, with the
approval of Ethical committees.

2.7. Statistical Analysis

We employed both parametric (t-test) and non-parametric (Chi-square test, Mann–
Whitney U test) difference tests, along with Spearman’s correlation analysis as a correlation
test. The selected significance level, which represents the probability of the first type of
error, is 0.05.

3. Results
3.1. Clinical and Macroscopic Findings

The research was conducted on 115 tumor tissues, 75 (65.2%) females, and 40 (34.8%)
males. All cases underwent preoperative radiological imaging with a CT (computed to-
mography) scan, in some it was supplemented with magnetic resonance imaging. Elevated
arterial pressure and/or paroxysmal pressure spikes were recorded in 91 (79.8%) patients.
Among the total of 109 patients (accounting for 94.8%), pertinent information regarding the
analysis of catecholamines and/or their metabolites in plasma or urine was available, and
of these, 93 patients (representing 85.3%) exhibited elevated values. Amongst the cohort
of 52 patients (constituting 45.2%), a supplementary diagnostic metaiodobenzylguanidine
(MIBG) scintigraphy was conducted, revealing an augmented accumulation in the tumor
region for 39 of the cases (equating to 75%). For 47 tissue samples (40.83%) information
about genetic testing was available. Seventeen were confirmed to have Multiple Endocrine
Neoplasia Type 2a (MEN2a), 10 patients had Von Hippel–Lindau Disease (VHL), and four
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patients had Von Recklinghausen Disease (also known as Neurofibromatosis Type 1). In this
group, only one patient was confirmed to have an SDHB mutation. At the time of diagnosis
and surgery, 64 (55.7%) were over 50 years old, and 51 (44.3%) were under 50 years old.
Clinicopathological data according to the PASS score, are shown in Table 2.

Table 2. Clinicopathological data in groups PASS < 4 and PASS ≥ 4.

Feature PASS < 4 PASS ≥ 4 p e

Total number (%) a (m, f) b 61 (53%) (17 m, 44 f) 54 (47%) (23 m, 31 f)
Age at resection mean/range 48.4 (22–78) 48.8 (19–73) 0.864

Site of tumor 0.118
Intraadrenal total/percentages 55 (47.83%) 52 (45.22%)
extraadrenal total/percentages 6 (5.22%) 2 (1.74%)

Tumor weight in grams mean/range 31.7 (3–159) 89.7 (2–361) 0.001
Tumor size in mm mean/range 44 (4–110) 61 (20–130) 0.001

Catecholamines/metabolites 0.673
elevated total/percentages 47 (40.87%) 46 (40%)
normal total/percentages 9 (7.83%) 7 (6.08%)

unknown data total/percentages 5 (4.35%) 1 (0.87%)
Blood pressure/spikes

elevated total/percentages 47 (40.87%) 44 (38.26%) 0.676
normal total/percentages 13 (11.3%) 10 (8.7%)

unknown data total/percentages 1 (0.87%)
MIBG scintigraphy 1.000

increased accumulation 24 (20.87%) 16 (13.91%)
normal distribution 8 (6.96%) 4 (3.49%)

unknown data 29 (25.22%) 34 (29.56%)
Genetic testing 0.843

mutation present 16 (13.91%) 16 (13.91%)
mutation excluded 8 (6.96%) 8 (6.09%)

unknown data 37 (32.17%) 31 (26.96%)
TNM 0.001

T1 tumor < 5 cm c 37 13
T2 tumor ≥ 5 cm d 22 24

T3 tumor of any size with invasion 2 16
a percentages, b male; female, c without invasion into surrounding tissues, d without invasion or sympathetic PG
of any size, e p value, p < 0.05 considered significant.

In 60 (52.2%) cases, tumors were ≥50 mm, and in 55 (47.8%) cases, they were <50 mm.
The mass of the tumor was greater than 60 g in 34 (29.6%) cases and less than 60 g in
81 (70.4%) cases. Comparing tumor size (in mm) and PASS values our research has shown
that there is a significant association (p < 0.001) with medium strong correlation (r = 0.431).

3.2. Microscopic and Immunohistochemical Findings

Intratumoral MVD was examined as previously described for the endothelial nuclear
marker (ERG) and for endothelial cytoplasmic markers (CD34, CD105, CD31) and compared
with group PASS < 4 benign and PASS ≥ 4 malignant (Figure 1 and Table 3). Staining
for each endogenous marker is shown in Figure 2. No significant statistical difference
in average intratumoral MVD in group PASS < 4 benign and PASS ≥ 4 malignant was
found, (ERG p = 0.071, CD34 p = 0.077, CD105 p = 0.088, and CD31 p = 0.337). Average
intratumoral MVD was lower in the malignant group, for all four antibodies. Comparing
average intratumoral MVD and PASS score, there was no correlation between average
intratumoral MVD and potential malignant behavior (ERG p = 0.590, CD34 p = 0.213,
CD105 p = 0.139, and CD31 p = 0.849). Intratumoral MVD, labeled with ERG, also has
no considerable correlation with tumor size (mm) and tumor weight (g), p = 0.752 and
p = 0.786, respectively.
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Figure 1. Box plot shows the number of blood vessels per mm2 (marked with antibodies CD31,
CD105, ERG, and CD34) in relation to the PASS score (PASS < 4 and PASS ≥ 4), with some values
labeled with * and ◦, that deviated extremely * and less extreme ◦ from the maximum.

Table 3. Examined IHC markers comparing with PASS score.

Antibody PASS < 4 PASS ≥ 4 p b

CD31 mean/SD a 274.31/206.41 242.41/204.15 0.336
CD105 mean/SD a 132.31/149.85 83.81/82.86 0.088
ERG mean/SD a 358.87/321.36 234.46/179.92 0.071
CD34 mean/SD a 429.28/324.73 319.50/226.88 0.077
S100 mean/SD a 243.11/242.73 158.61/187.27 0.062
Ki67 mean/SD a 1.02/0.93 1.22/1.47 0.598

SDHB
positive/negative 57/4 52/2 0.683

a SD Standard deviation. b p value, p < 0.05 considered significant.
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Figure 2. Intratumoral MVD immunostaining of blood vessels, in case of PASS < 4, labeled with ERG
(A), CD31 (C), CD 105 (E), CD 34 (G), and PASS ≥ 4 labeled with ERG (B), CD31 (D), CD105 (F), and
CD34 (H). Some blood vessels are indicated by the arrows. Magnification 200×, scale bar of 200 µm.

Sustentacular cells were labeled with S100 antibody and shown in Figure 3. In our
study, we counted the total number of sustentacular cells and expressed it as an average
number per mm2 of tumor tissue surface (Figure 4). The average number of sustentacular
cells per mm2 is 203.43, and we found no statistically notable correlation (p = 0.080). In the
potentially benign (61 cases) group, the average number of sustentacular cells is 243, and in
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the potentially malignant (54 cases) group, that number was lower, 158.61. The number of
sustentacular cells is decreased in the group of PASS ≥ 4 tumors but without a statistically
meaningful difference (p = 0.062) (Table 3).
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The proliferative index Ki67 was determined as described and the values shown in
relation to PASS (PASS < 4 and PASS ≥ 4) (Figure 5). In our study, the PASS ≥ 4 group, the
potentially malignant had a mean Ki67 of 1.22% and the potentially benign group (PASS < 4)
had a mean Ki67 of 1.02%, with no statistically significant difference in these two groups
(p = 0.598) (Table 3). Examining the relationship between values of Ki67 and PASS scores no
significant correlation was found (p = 0.114). Detailed analysis by different values of Ki67
showed among 54 cases in PASS ≥ 4 group, 10 (18.5%) had a Ki67 value of ≥1%, 6 (11.1%)
had a Ki67 value of ≥2% and 4 (7.4%) had a Ki67 value of >3%. The remaining 34 (62.96%)
cases in group PASS ≥ 4 had a Ki67 value < 1%. Among the 61 cases in the PASS < 4 group,
39 (69.9%) had a Ki67 value of <1%, and 53 (86.9%) had a Ki67 value of <2%. However,
7 (11.5%) cases had a Ki67 value of ≥2%, 14 (22.9%) had a Ki67 value of ≥1%, and 1 case
had a Ki67 value of >3% (1.64%) with the same conclusion, changing the cutoff value of
Ki67 does not change differences in these two groups (PASS < 4 and PASS ≥ 4).

Diagnostics 2024, 14, x FOR PEER REVIEW 8 of 14 
 

 

< 4 group, 39 (69.9%) had a Ki67 value of <1%, and 53 (86.9%) had a Ki67 value of <2%. 
However, 7 (11.5%) cases had a Ki67 value of ≥2%, 14 (22.9%) had a Ki67 value of ≥1%, 
and 1 case had a Ki67 value of >3% (1.64%) with the same conclusion, changing the cutoff 
value of Ki67 does not change differences in these two groups (PASS < 4 and PASS ≥ 4). 

 
Figure 5. Box plot showing values of Ki67 in groups PASS < 4 and PASS ≥ 4, with labeled values 
which deviated extremely * and less extreme ᵒ from the maximum. 

We examined the SDHB immunohistochemical expression, in tumor cells, some cases 
were shown in Figures 6 and 7. In our study 109 cases (94.8%) were positive and 6 cases 
(5.2%), lost immunoreactivity. In the PASS < 4 group 4 cases (6.6%) were SDHB negative 
and 57 cases (93.4%) were SDHB positive, while in PASS ≥ 4 group 2 cases (3.7%) were 
negative and 52 (96.3%) were positive. There was no notable difference in losing SDHB 
immunoreactivity among group PASS < 4 and PASS ≥ 4 (p = 0.683) (Table 3). 

 
Figure 6. IHC SDHB lost expression in cases with PASS score 1 (A), PASS score 4 (B), and PASS score 
8 (C). Some endothelial cells showing expressiveness are indicated by the arrows. Magnification 
200×, scale bar 200 µm. 

 

Figure 5. Box plot showing values of Ki67 in groups PASS < 4 and PASS ≥ 4, with labeled values
which deviated extremely * and less extreme ◦ from the maximum.



Diagnostics 2024, 14, 849 8 of 14

We examined the SDHB immunohistochemical expression, in tumor cells, some cases
were shown in Figures 6 and 7. In our study 109 cases (94.8%) were positive and 6 cases
(5.2%), lost immunoreactivity. In the PASS < 4 group 4 cases (6.6%) were SDHB negative
and 57 cases (93.4%) were SDHB positive, while in PASS ≥ 4 group 2 cases (3.7%) were
negative and 52 (96.3%) were positive. There was no notable difference in losing SDHB
immunoreactivity among group PASS < 4 and PASS ≥ 4 (p = 0.683) (Table 3).
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Some patients underwent genetic testing, so data were available for 47 tissue samples
(40.87%), with 32 (27.83%) of them having a confirmed mutation, data are summarized in
Table 4.

Table 4. Results of genetic testing, age of patients, and PASS score values.

Syndrome Number (m, f) x Age Mean/Range PASS Mean/Range

VHL 10 (6 m, 4 f) 37.7 (19–55) 4.2 (1–12)
MEN2a 17 (6 m; 11 f) 42.6 (22–64) 3.1 (1–8)

NF1 4 (1 m; 3 f) 44.3 (34–53) 6.3 (4–9)
SDHB 1 (1 f) 51 9

Without mutation 15 (3 m; 11 f) 45 (29–64) 5.1 (1–10)
Not available 68 (24 m; 44 f) 52.5 (23–78) 3.7 (1–10)

x m, male; f, female.

The mean number of ERG-labeled blood vessels in the group of patients with a con-
firmed mutation was 277.15, whereas in the group without the mutation, it was 266.65. Our
analysis showed that the difference in intratumoral MVD was not statistically significant
between these two groups (p = 0.583).
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4. Discussion

The primary difficulty particularly with these non-epithelial neuroendocrine tumors is
that there are no established standards for determining their malignancy, and patients must
undergo long-term monitoring and face uncertainty since metastases can develop even
many years after the initial tumor [10,31,32]. The primary objective during histological
examination following surgery is to accurately diagnose a malignant tumor that has not
yet spread to other parts of the body. Numerous studies have been conducted, and efforts
are being made to develop an algorithmic model based on known factors that indicate
malignancy. In many studies, the PASS score is a reliable prognostic factor, even though
the evaluation of certain histological parameters such as hyperchromasia, nuclear pleo-
morphism, and cellularity are subjective. Tumors with a PASS score less than 4 did not
develop metastases, indicating that only patients with a PASS score of 4 or higher would
require follow-up, including annual radiological imaging and biochemical measurements
of metanephrines [18]. In recent assessments of the PASS, as well as other scoring systems
that have been introduced since its development, the WHO Classification of Endocrine
Tumors recognizes that while these systems have their advantages and disadvantages, their
use should not be discouraged in further research, but instead should be optimized in
conjunction with molecular analyses [1]. Considering this, we employed the PASS score
as a suitable standard for our diagnostic algorithm. In our study, we categorized our
cases based on the value of the PASS score and analyzed additional prognostic factors. In
numerous studies, angiogenesis has been recognized as a critical factor for the proliferation
of tumors and the development of metastases [19]. Given the highly vascular nature of
paragangliomas as a solid tumor, there has been interest in assessing the significance of
angiogenesis in its pathogenesis, and investigations were prompted. Gao X. et al. inves-
tigated CD31 as an angiogenic marker, by counting the number of CD31 positive vessels
within the highest expressed tumor area (MVD), and the number was significantly higher
in pheochromocytomas with PASS < 4 than in those with PASS ≥ 4. Gao X. et al. also
detected that intratumoral hemorrhage was significantly higher in pheochromocytomas
with PASS ≥ 4 than PASS < 4, which could also result in relatively low CD31 status in
histologically low-grade tumors [16]. H. Ohji et al. counted CD34 labeled blood vessels
(MVD) and found no statistical association between the MVD and malignancy, while Q.
Liu et al., who assessed MVD by staining endothelial cells with antibody to factor VIII/von
Willebrand factor antigen, found a highly significant difference between the groups of
benign and malignant [20,21]. In the former study, the cases were divided into benign and
malignant according to the presence of metastatic disease, and in the latter group, besides
the presence of metastasis, tumors with evidence of capsular or vascular invasion were
included, which are histological criteria included in PASS scoring scale. Q. Lui also noticed
that areas of highest vascularization were usually along the periphery of the tumor [20].
M. Bialas et al. studied angiogenesis status in pheochromocytomas, including MVD and
vascular architecture, after immunostaining endothelial cells with antibodies CD31 and
CD105 [33]. Vascular architecture patterns were highly heterogeneous within pheochro-
mocytomas, both benign and malignant. The MVD in the central areas of the tumor was
higher than in the subcapsular areas. Secondary changes in tumors, like hemorrhage
and cystic degeneration, influenced the counting of MVD and assessing vascular architec-
ture [33]. Favier et al. used immunostaining for CD34 and α-actin smooth muscle cells to
define vascular architecture, and they reported differences, noticing two different patterns,
mainly benign pheochromocytomas having more regular patterns, with short and straight
vascular segments, while malignant presented with an irregular pattern, longer vascular
segments, of irregular length [34]. The density of vascular segments was lower in irregular
patterns, but blood vessel counting was not considered appropriate for these tumors [34].
L. Oudiijk et al. found that the mean sensitivity and specificity of vascular architecture
as a predictor of potential malignant behavior of paragangliomas was 59,7% and 72,9%,
with a significant agreement between the observers [35]. To assess tumor angiogenesis and
to minimize the potential influence of marker choice on our results we chose to evaluate
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intratumoral MVD using several IHC markers at the same time. By making TMA we tried
to select areas of the tumor with a high density of blood vessels without hemorrhages and
cystic degeneration. While most studies, as was mentioned, have utilized CD31 and CD34,
which are pan-endothelial cell markers that react with both proliferating and pre-existing
vessels in tumors, CD105 (endoglin) is an endothelial antibody that primarily binds to
activated endothelial cells in angiogenesis. Thus, it may be a more specific marker for
tumor angiogenesis, as indicated by prior research [36–39]. In addition to the established
antibodies used to measure intratumoral MVD, we examined ERG, a transcription factor
belonging to the ETS family that is expressed by endothelial cells involved in angiogen-
esis. This approach has not been previously explored, to the best of our knowledge, on
paragangliomas [40]. All four antibodies used for intratumoral MVD indicated that these
were well-vascularized tumors. There was no statistically significant difference in intra-
tumoral MVD with regard to PASS potentially malignant behavior. However, all four
endothelial antibodies showed lower intratumoral MVD in the group of malignant tumors,
suggesting that cells may be able to overcome hypoxia. Hypoxia has been mentioned
as essential for angiogenesis in paragangliomas and due to the pseudohypoxia signaling
pathway, they are well-known for increased angiogenesis [41,42]. Although neoplastic
angiogenesis allows tumor spread, it does not imply that these well-vascularized tumors
will metastasize. Additional knowledge is needed to understand the crucial features that
drive the metastasis of paraganglioma and the role of angiogenesis in this process. In
light of the high replicative potential observed in many malignant tumors, several studies
have focused on the proliferative Ki67 index [43–46]. However, it has been found that this
index has low sensitivity when it comes to intra-adrenal and extra-adrenal paraganglioma
despite its high specificity. Paragangliomas are slow-growing tumors, and most show very
low Ki-67 labeling [18]. Proliferative index Ki67 has high specificity which implies poor
sensitivity, with only 50% of malignant tumors having a score greater than 2–3%, so the
cut-off value for malignancy is low [18,47]. Our study confirmed the low sensitivity of
Ki67 in this context. Nevertheless, Ki67 is an immunohistochemical marker that should be
measured, as high Ki67 values may warrant attention for other prognostic factors, such
as genetic predisposition and careful consideration of significant histologic predictors of
malignancy, such as tumor necrosis [18]. Paragangliomas consist of chief cells that are
visible on H&E staining, as well as sustentacular cells, that often necessitate a specific
immunohistochemical antibody. While their precise role in metastasis development is not
yet clear, several studies, including our own, have demonstrated a decrease in the number
of sustentacular cells in malignant tumors [31,43,48,49]. In some cases in our study, these
cells were entirely absent. These tumors have the strongest genetic contribution with nearly
40% of them associated with mutations in one of the known susceptibility genes, includ-
ing NF1 (neurofibromatosis type 1), VHL, RET (rearranged during transfection), EPAS1
(endothelial PAS domain containing protein 1), EGLN1 (egl-9 family hypoxia inducible
factor 1), SDHA (succinate dehydrogenase complex subunit A), SDHB, SDHC (succinate
dehydrogenase complex subunit C), SDHD (succinate dehydrogenase complex subunit D),
SDHAF2 (succinate dehydrogenase complex assembly factor 2), FH (fumarate hydratase),
TMEM127 (transmembrane protein 127), MAX (Myc associated factor X), MDH2 (malate
dehydrogenase 2), GOT2 (glutamic-oxaloacetic transaminase 2), SLC25A11 (solute carrier
family 25 member 11), DLST (dihydrolipoamide S-succinyltransferase), H3F3A (H3.3 his-
tone A), DNMT3A (deoxyribonucleic acid methyltransferase 3 alpha), MET (MNNG HOS
transforming gene), MERTK (mer-tyrosine kinase), and KIF1B (kinesin family member
1B). There are different types of mutations including germline only, germline and somatic,
somatic and somatic mosaicism [3–5,50]. Germline mutations involving genes coding for
succinate dehydrogenases (SDHx) are the most common genetic cause of paraganglioma,
occurring in up to 25% of cases [51,52]. They are followed by genes VHL (4–10%), RET
(1–5%), and NF1 (1–5%) [53]. Testing for the germline SDHB mutation in patients with para-
ganglioma is recommended by Clinical Practice Guidelines [6,54]. Immunohistochemically
SDHB negative staining in tumors carries a high risk for the presence of SDHx mutations,
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whether in SDHB, SDHC, SDHD, or SDHA [14]. Loss of SDHB immunoreactivity in tumor
cells with SDHx mutations is reported with 100% sensitivity and 84% specificity, with
a positive predictive value of 92% and a negative predictive value of 100% [14,55]. In
our study, the majority of cases retained immunopositivity to SDHB, and only one had a
confirmed mutation. Since genetic testing was not available in all cases, and unfortunately
still is not routinely conducted, immunohistochemistry helped to potentially rule out an
SDHx mutation. It was found that the malignant paragangliomas were larger than the
benign ones with a median tumor size of 61 mm and 44 mm, respectively. However, the
precise cutoff value that could precisely predict malignant behavior is not established.
Since they are all potentially malignant, a staging system is introduced, with size of 5
cm as cut-off value for T1 and T2 [22]. Tumor size and weight are routinely reported,
which makes them available for risk stratification, but they are not considered independent
parameters. Invasive features, like an invasion of periadrenal fatty tissue despite being
more common in malignant tumors, were not significantly correlated regarding potential
malignant behavior in some studies, but it is a criterion for T3 [15,18,22]. The prognosis of
malignant paragangliomas remains poor with overall 5-year survival less than 50% [56].
Management of malignant tumors includes surgery, radiation therapy, or chemotherapy
and several targeted therapies have been investigated, but currently, there are no curative
therapy options [57].

Limitations: In our study, we had a large number of consecutive cases, but the ma-
jority were adrenal tumors and a small number were extra-adrenal tumors which are
usually have the SDHB mutation [14,58]. Some investigations indicated that extra-adrenal
paragangliomas also have a higher and more heterogeneous proliferative index Ki67 than
intra-adrenal [59–62]. Genetic testing was not performed on all patients, so the angiogenesis
was not correlated with the tumor’s background completely.

5. Conclusions

In the end, it seems that it all comes down to genetics and molecular testing, which is
not surprising when these tumors have so strong genetic contributions, but it is discour-
aging because routine genetic testing in all health centers is not yet available. Eventually,
genetic testing will complete our knowledge and clarify some doubts, but in everyday
practice, it is possible to assess stratification risk with greater accuracy using accessible data
like tumor size, histological parameters (included in PASS score), and additional immuno-
histochemical markers (proliferative index Ki67, S100, and SDHB). Precise assessment of
intratumoral MVD on scanned images, with immunohistochemical labeled blood vessels
may help in understanding tumor biology and add precision to risk assessment.
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