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Abstract: Cutaneous Leishmaniasis (CL) is a major global health problem requiring appropriate
diagnosis methods. Its diagnosis is challenging, particularly in resource-limited settings. The
integration of Artificial Intelligence (AI) into medical diagnostics has shown promising results in
various fields, including dermatology. In this systematic review, we aim to highlight the value of
using AI for CL diagnosis and the AI-based algorithms that are employed in this process, and to
identify gaps that need to be addressed. Our work highlights that only a limited number of studies
are related to using AI algorithms for CL diagnosis. Among these studies, seven gaps were identified
for future research. Addressing these considerations will pave the way for the development of robust
AI systems and encourage more research in CL detection by AI. This could contribute to improving
CL diagnosis and, ultimately, healthcare outcomes in CL-endemic regions.

Keywords: cutaneous leishmaniasis; artificial intelligence; diagnosis

1. Introduction

Leishmaniasis is one of the most neglected tropical diseases (NTDs) and is caused by
more than 20 species of Leishmania parasites transmitted through the bites of infected female
sandflies. This disease manifests in various forms, ranging from Cutaneous lesions to
visceral afflictions, that are potentially fatal if left untreated. Cutaneous Leishmaniasis (CL)
is endemic in more than 88 countries and is estimated to result in approximately two million
new cases annually [1]. Notably, in North Africa, Cutaneous Leishmaniasis is spreading
in several countries, with a significant incidence rate observed consistently between 2006
and 2021 [2]. The clinical symptoms of CL usually present as ulcers, nodules, or papules
that appear on exposed body parts [1]. The challenges in combating Leishmaniasis are
multifaceted, encompassing issues of timely diagnosis. Therefore, early identification and
diagnosis of CL are essential for selecting the appropriate therapy [3].

The diagnosis of CL is a multi-step process that begins with clinical examination of
the patient’s skin lesions. After this initial examination, laboratory diagnosis methods are
used, starting with the collection of samples from the skin lesions. Lesion samples are
obtained through various techniques, such as biopsies, scrapings, cytology brushes, swabs,
and lesion impressions on filter paper [4]. However, they are quite painful for the patient,
and are impossible to perform in the presence of a lesion on sensitive parts of the face.

One of the traditional techniques for diagnosing Leishmaniasis is Microscopy, which
involves examining smears of lesions stained with Giemsa, and this remains the gold
standard method for the diagnosis of Leishmaniasis [5]. It is widely used because of
its accessibility and cost-effectiveness. However, the sensitivity of this method can vary
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considerably depending on the skill of the examiner and the quality of the samples, leading
to a risk of false negatives in cases of low parasite loads [6].

Culture is another traditional method where skin samples are cultivated in specific
media, such as Novy–MacNeal–Nicolle (NNN) or Roswell Park Memorial Institute (RPMI)
media, to promote parasite growth [5]. When media are provided to grow the parasite,
if Leishmania parasites are identified in the culture, it confirms the positive diagnosis of CL.
However, this technique is weakened by being time-consuming, expensive, sensitive to
contamination, and requiring trained personnel [6].

Molecular techniques also offer greater sensitivity and specificity for diagnosing CL.
These include PCR [7] and its variants, such as PCR-RFLP [8], LAMP [4], and PCR-KDNA [9],
RT-PCR [5]. Some molecular techniques allow for not only the detection but also the charac-
terization of Leishmania species, which is crucial for therapy and Leishmaniasis control [4].

Additional diagnosis techniques such as MLMT [10], MLST [11], and NGS [12] offer
detailed genetic analysis of Leishmania species. Although highly accurate, these molecular
methods are more expensive and require specialized equipment and trained personnel,
making them harder to deploy in regions with limited resources [6].

Furthermore, a Rapid Diagnostic Test (RDT) [13] is used to detect Leishmania antigens
in patients. The limitations of RDTs include the risk of cross-reactivity with other diseases,
the inability to distinguish between active and past infections, and the need for a well-
equipped laboratory, which may not be available in all endemic areas [6] (Figure 1 describes
these methods in detail).

Figure 1. Diagnostic methods of Cutaneous Leishmaniasis [13]. Source: created using BioRender.com
accessed on 30 March 2024.

The choice between these different methods depends on the available equipment
and healthcare expertise. Inadequate resources or a lack of expert personnel can lead to
misdiagnosis. Therefore, there is a pressing need to develop economical, rapid, and easy
diagnostic tools for the CL diagnosis process, particularly in regions where the disease
is most prevalent and resources are scarce. Consequently, research from different fields,
namely, the Artificial Intelligence (AI) field, was conducted to solve these medical problems.

Since Alan Turing first questioned “Can machines think?” in his 1950 paper “Comput-
ing Machinery and Intelligence”, the field of AI has been driven by the ambition to replicate
human intelligence with machines. This ambition received further clarity and direction
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from John McCarthy in 1955, who articulated AI as “The science and engineering of making
intelligent machines, especially intelligent computer programs”. AI’s primary objective is
to empower computers to autonomously learn and address complex issues, employing an
array of theories and methodologies to emulate aspects of human intelligence. Machine
Learning (ML), a critical branch of AI, excels in analyzing extensive datasets, while Deep
Learning (DL), a key subset of ML, employs sophisticated algorithms to create models that
interpret high-level data abstractions. This has markedly advanced our capabilities in fields
such as speech and visual recognition [14].

The adoption of AI has catalysed revolutionary advances in innovation and efficiency,
with particularly transformative impacts in healthcare. AI’s foray into the medical domain
began in 1963, showcasing sustained and exponential growth, notably in the management
of infectious diseases [15]. AI technologies, including ML, DL, massive data analysis, and
predictive modelling, have radically transformed healthcare [16]. They offer innovative
solutions and improve on conventional approaches, a transformation strikingly illustrated
by research indicating that systems driven by neural networks can outperform experienced
dermatologists in diagnosing skin cancers [17]. Such achievements highlight the signif-
icant potential of AI to revolutionize medical diagnostics and treatment methodologies,
emphasising its role in advancing medical science and healthcare delivery. This raises the
question of how to identify LC based on an intelligent solution.

In this review article, we aim to highlight the value of using AI for CL diagnosis and
the AI-based algorithms that are employed in this process, and identify the gaps that need
to be filled so that researchers can create more advanced AI-based CL diagnosis tools.

2. Materials and Methods
2.1. Search Strategy

To identify studies focusing on the application of AI in the diagnosis of CL, we
followed a comprehensive approach:

• Literature Search: A systematic search was conducted across five electronic databases
including PubMed, Scopus, Web of Science, Science Direct, and Google Scholar.

• Search Terms: We utilized specific keywords related to the following:

– Artificial Intelligence: ‘artificial intelligence’, ‘AI’, ‘AI Algorithm’, ‘Deep Learn-
ing’, ‘DL’, ‘Machine Learning’, ‘ML’, ‘Transfer Learning’, ‘Computer Aided Diag-
nosis’, ‘Convolutional Neural Network’, and ‘CNN’.

– Cutaneous Leishmaniasis: ‘Cutaneous Leishmaniasis’, ‘CL’, and ’Mucocutaneous
leishmaniasis’.

– Diagnosis: ‘diagnostic’, ‘diagnosis’, ‘sensitivity’, and ‘specificity’.
– Combined Search Terms: various combinations of search terms were employed,

such as ‘Cutaneous leishmaniasis AND artificial intelligence’, ‘CL diagnosis AND
machine learning’, ‘CL diagnosis AND deep learning’, and others.

• Search Criteria: Studies published between 2019 and 2024 were considered. The search
was conducted in both English and French languages.

2.2. Study Selection

The initial search across five databases yielded 126 studies. However, after removing
duplicates and filtering by article type, title, and abstract, only seven studies were deemed
directly relevant to AI’s application in diagnosing CL. These studies were further examined
to provide a comprehensive analysis of the current state of AI in CL diagnosis. The selection
process was rigorously documented using the Preferred Reporting Items for Systematic
Reviews (PRISMA) flow diagram [18] (Figure 2), ensuring the transparency and replicability
of the study’s selection methodology. This meticulous approach underscores the scarcity
of research specifically focused on AI’s role in diagnosing CL, highlighting the need for
more targeted studies in this area. The inclusion and exclusion criteria were based on the
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relevance to AI’s application in CL diagnosis, the study’s methodological quality, and its
contribution to the field’s knowledge base.

Figure 2. PRISMA flow diagram [18].

2.3. Data Extraction

For each of the seven studies selected for in-depth analysis, a detailed extraction of
relevant information was carried out. This included the authors, publication date, study
location, types of AI models and algorithms used, study objective, characteristics of the
dataset (e.g., size, data type), and key results in terms of diagnostic performance indica-
tors such as accuracy, sensitivity, and specificity (see Table 1). This process allowed for
a structured comparison between studies, facilitating an understanding of the different
approaches and their effectiveness in diagnosing CL. The data extraction aimed to com-
prehensively synthesize the current evidence on the applications of AI in the diagnosis of
CL, identifying the strengths, limitations, and gaps in the existing research. By analyzing
these aspects, this review highlights the potential of AI to improve diagnostic accuracy and
efficiency, as well as highlights the challenges that need to be addressed in future studies
(discussed further in the next section).
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Table 1. Summary of studies using AI in CL diagnosis.

Study Country Dataset Size Type of Data AI Model Purpose of Model Accuracy Sensitivity Specificity

Bamorovat et al.,
2021 [19] Iran 172

Clinical and demographic
data from patients with

Anthroponotic CL (ACL).
In total, 72 unresponsive

and 100 responsive.

ML (MLP)

Classification of
patients with ACL

as either
responsive or

unresponsive to
treatment

87.8% 90.3% 86%

Arce-Lopera et al.,
2021 [20] Colombia 2022 Images of CL and other

dermatoses. DL (VGG19)

Classification by
CL and non-CL
lesions + Mobile

App

93% 80% 96%

Steyve et al.,
2022 [21] Cameroon 1054

A total of 262 images of
CL, 372 of leprosy, 420 of

Buruli ulcers.
ML (BHO-SVM)

Classification by
identifying skin

lesions
96% 92% 94%

Zare et al.,
2022 [22] Iran 300

Microscopic images:
150 positives and

150 negatives.
ML (Viola–Jones) L. parasite

detection IM:60% IP:70% IM:50% IP:71% IM:65% IP:52%

Noureldeen et al.,
2023 [23] Libya 160 Images taken by mobile

phone camera. DL (YOLOv5)
Detection and

classification of CL
lesions

70% 99% 98%

Leal et al.,
2023 [24] Brazil 2458

Images taken by mobile
phone camera. In total,
1787 of CL and 671 of

other dermatoses.

DL (AlexNet) Identification of
CL lesions 95.04% 93.81% 96.04%

Abdelmula et al.,
2024 [25] Turkey - Microscopic images.

DL (DenseNet201,
EfficientNetB0,
MobileNetv2,

ResNet101, and
Xception)

Amastigotes
detection

99.15%, 99.07%,
98.74%, 98.52%,

98.78%

99.53%, 99.03%,
98.65%, 98.49%,

98.43%

98.80%, 99.07%,
98.80%, 98.53%,

99.09%

IM: Infected Macrophages. IP: Individual Parasites.
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3. Results and Discussion

Recent strides in AI have had a transformative impact on the field of medicine, partic-
ularly with the utilization of Machine/Deep Learning (ML/DL) algorithms for enhanced
diagnosis capabilities, treatment planning, patient monitoring, and the personalization of
medical care [26,27]. Convolutional Neural Networks (CNNs), a type of DL, have proven
successful in classifying image data, notably in dermatology, radiology [28], and pathol-
ogy [29]. Studies leveraging DL models for dermatological diagnosis, such as those by
Han et al. [30], Choy et al. [31], Srinivasu et al. [32], Goceri [33], and AlSuwaidan [34],
underscore the potential of CNNs in achieving accurate diagnosis, even outperforming
dermatologists in certain scenarios.

Focusing on dermatology, AI has made significant strides in the early detection and
diagnosis of skin diseases, including skin cancer [35]. Advanced AI systems analyze
dermatological images with high precision, identifying subtle patterns that may elude even
experienced dermatologists. By integrating AI with teledermatology platforms, there has
been an improvement in efficient patient management, follow-up, and tailored treatment
plans, marking a new era in dermatological care. For example, the Skin NTDs App was
launched by the World Health Organization (WHO) [36], which is designed to assist
healthcare professionals in diagnosing and managing skin-related NTDs. The app typically
provides information on symptoms, treatment options, and other relevant details to help in
the identification and proper care of such conditions. It is part of a broader effort to utilize
technology in improving healthcare deliverxy for diseases that receive less attention and
resources globally.

Furthermore, the diagnosis of CL using AI also exemplifies how technology addresses
persistent challenges in differential diagnosis. CL often clinically resembles other skin
conditions, such as chromomycosis, blastomycosis, cutaneous tuberculosis, squamous
cell carcinoma (SCC), basal cell carcinoma (BCC), erysipelas, herpes zoster, cutaneous
lymphoma, tertiary syphilis, leprosy, paracoccidioidomycosis, malignant neoplasms, lupus,
and granulomatous rosacea, which complicates accurate diagnosis. Artificial Intelligence
systems, especially those using Deep Learning techniques, have shown promising results
in distinguishing skin lesions for these CL-like conditions by learning from diverse datasets
that include a wide range of skin lesions [24,37].

For example, Hajiarbab et al. [38] used MobileNetV2 with deep transfer learning
over 33,126 lesion images; they demonstrated the effectiveness of DL in classifying skin
lesion types, including BCC and SCC, showing an improved diagnostic accuracy of 94.42%.
Baweja et al. [39] developed an optimal AXI-CNN architecture (called LeprosyNet) for the
early diagnosis of leprosy using image-based analysis, which is enhanced by explainable AI
techniques such as Activation Layer Visualization, Occlusion Sensitivity, and Grad-CAM
to provide transparency in feature selection. The results demonstrated that LeprosyNet
significantly outperformed established architectures like AlexNet and ResNet, achieving a
remarkable accuracy of 98%, as evidenced by evaluation metrics including an ROC curve
and a confusion matrix. Han et al. [40] evaluated the performance of CNNs in diagnosing
skin neoplasms. Utilizing a comprehensive dataset of clinical images, the study compared
the algorithm’s diagnostic capabilities against those of experienced dermatologists in
both real-world and experimental settings. The results indicated that the DL algorithm
performed nearly on par with dermatologists, achieving an area under the curve (AUC) of
86% for identifying malignancy using unprocessed clinical photographs.

These successes highlight the capability of AI to enhance diagnostic accuracy in
complex dermatological cases. By learning from vast arrays of clinical data, AI systems can
identify subtle distinctions between similar-looking conditions, providing crucial support
in the accurate diagnosis and treatment of diseases like Cutaneous Leishmaniasis.

Our results revealed that the current research on the use of IA algorithms for the
diagnosis of CL is limited, with only seven studies available. Table 1 presents a summary
of the studies that were analyzed as part of this research. Bamorovat et al. [19] presented
a Machine Learning-based approach to identify unresponsive cases of ACL caused by L.



Diagnostics 2024, 14, 963 7 of 12

tropica. The study used a sample size of 172 patients. Different classifier models, such as
MLP, SVM, KNN, LVQ, and multipass LVQ, were evaluated. The MLP classifier showed
promising results with an accuracy of 87.8%, a sensitivity of 90.3%, and a specificity of
86%. The duration of the skin lesion was the most influential feature, while gender was
the least. This study highlights the potential of AI in disease prognosis and treatment
selection, particularly in ACL, and points to the importance of feature selection in ML
model performance.

Moreover, Arce-Lopera et al. [20] integrated VGG19 (DL model) into a mobile appli-
cation, with a dataset of 2022 images. The model achieved a notable 93% accuracy with
a sensitivity of 80% and a specificity of 96%. This approach is distinct from other studies
in the field, highlighting the innovative use of mobile technology combined with the DL
model to enhance accessibility and efficiency in the diagnosis of tropical diseases.

In addition, Steyve et al. [21] presented an optimized approach for diagnosing three
NTDs, including CL, by automatically identifying skin lesions in their early phase. The study
worked on a dataset of 1054 images, including 262 images of CL. The model developed
achieved a global classification accuracy of 96%, a 94% specificity, and a sensitivity of 92%
of the images under different conditions and a processing time that was lower than that of
other algorithms.

Zare et al. [22] developed an Artificial Intelligence-based algorithm for the automatic
diagnosis of Leishmaniasis using 300 microscopic images. The Viola–Jones algorithm
was employed for L. parasite detection, utilizing three procedures: feature extraction,
integral image creation, and classification. Notably, the system exhibited a specificity
of 52%, a sensitivity of 71%, and an accuracy of 70% in identifying individual parasites.
Moreover, in discerning infected macrophages, the system displayed an accuracy, sensitivity,
and specificity of 60%, 50%, and 65%, respectively.

Furthermore, Noureldeen et al. [23] demonstrated a novel approach using the YOLOv5
model to detect and classify CL infections. The methodology involved training the model
with 160 images of CL, collected via mobile phone cameras. The model achieved an
average accuracy of 70%, with impressive sensitivity and specificity rates of 99% and 98%,
respectively. These results demonstrate the potential of AI in medical diagnosis, particularly
in areas with limited resources. However, further research is needed to enhance the model’s
accuracy and applicability in diverse clinical settings.

In the most recent studies, Leal et al. [24] trained and tested AlexNet, a DL algorithm,
to differentiate CL from 26 other skin diseases using a dataset of 2458 images. The algorithm
achieved an impressive average accuracy of 95.04%, indicating excellent performance in
recognizing images of CL lesions.

Additionally, a study by Abdelmula et al. [25] assessed the performance of several
pre-trained DL models, including EfficientNetB0, DenseNet201, ResNet101, MobileNetv2,
and Xception, specifically for diagnosing CL through microscopic images of skin smears
from affected individuals. Among these, the best performance was achieved with the
DenseNet201 model, which demonstrated a high accuracy of 99.15%, a sensitivity of
99.53%, a sensitivity of 99.53%, and a specificity of 98.80%, underlining its superior efficacy
in detecting the amastigotes.

Moreover, each algorithm used in all those studies selected has unique strengths. MLP
(Multilayer Perceptron) excels in classification by learning through layers, while YOLOv5
(You Only Look Once) offers real-time object detection with high efficiency. AlexNet, a Con-
volutional Neural Network (CNN), advances image recognition with its depth. VGG19,
another CNN, is known for its complexity and accuracy in image tasks. The BHO-SVM
(Black Hole Optimization Support Vector Machine) optimizes feature selection for improved
accuracy. Lastly, the Viola–Jones algorithm is celebrated for its rapid object detection, espe-
cially in real-time applications, showcasing the diverse strengths of each algorithm in its
domain. The DenseNet-201 model, known for its highly connected convolutional networks,
enables maximum information flow between network levels, making it highly effective for
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complex image classification tasks. It enables this by exploiting the characteristics of all
previous layers and using fewer parameters.

Our analysis revealed that the DenseNet201 CNN model demonstrated the highest
accuracy. Consequently, the architecture of this model is detailed in Figure 3 to facilitate
future research on the AI-driven diagnosis of CL.

Figure 3. DenseNet201 CNN model architecture.

The workflow of this architecture commences with acquiring images of skin lesions,
which are standardized to a resolution of 224 × 224 pixels. To bolster the model’s gener-
alization capabilities and mitigate overfitting, a data augmentation strategy is employed.
This approach enriches the dataset by creating transformed versions of the original im-
ages, enhancing the robustness of the model. The DenseNet201 model is structured by
connecting the input layer to a pre-trained framework, followed by the integration of a
global average pooling layer. This is succeeded by two dense layers, which are activated
using the rectified linear unit (ReLU) function, and a dropout layer with a dropout rate of
0.2 to prevent overfitting. The architecture culminates with a binary classification output,
which determines the presence of Leishmaniasis. This is achieved through a dense layer
employing softmax activation, effectively translating the neural network’s findings into a
format that can be clinically interpreted [41].

Overall, we identified seven gaps from all the selected studies to provide a compre-
hensive overview of the key considerations that need to be taken into account in future
research aimed at developing AI-assisted CL diagnosis methods.

These gaps, summarized in Figure 4, include the following: (i) It is necessary for the
developed AI system to train on a large dataset to ensure robust training to recognize
the complex nature of skin lesion images and different disease manifestations. (ii) It is
crucial to improve the image quality, accounting for factors such as zoom, focus, lighting,
and the presence of hair, as these elements significantly impact diagnostic accuracy. (iii) AI
systems should grapple with the complex challenges associated with differential diagnosis,
particularly given CL’s resemblance to various skin conditions, requiring a nuanced and
precise classification. (iv) Selecting the ideal algorithm for detecting and classifying CL
with Deep Learning involves prioritizing accuracy and performance metrics, choosing
suitable model architectures such as CNNs, and ensuring data efficiency through tech-
niques like transfer learning. The algorithm should be computationally efficient in training
and inferring, especially if it needs to be deployed in settings with limited computational
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resources. This includes considerations of model size, inference time, and energy consump-
tion. Additionally, it must adhere to regulatory and ethical standards, ensuring patient
privacy and data protection. (v) For a performant Deep Learning model for classifying
and detecting CL, the accuracy, specificity, and sensitivity should be as high as possible.
Ideally, the accuracy should be close to 100% to ensure the model correctly identifies both
positive and negative cases. Sensitivity (the ability to correctly identify positive cases)
should also be near 100% to minimize false negatives, ensuring that most infected cases are
detected. Similarly, specificity (the ability to correctly identify negative cases) should be
high to reduce false positives, avoiding unnecessary treatment for uninfected individuals.
Achieving high performance in these metrics ensures the model is reliable and effective in
clinical settings. (vi) Technical considerations which the development of AI systems should
prioritize include economic efficiency, rapid functionality, and a user-friendly design, espe-
cially in regions where CL is prevalent and resources are limited. (vii) The model should
be easily accessible to end-users, which might include considerations for deployment in
mobile or cloud-based environments. Scalability is important for handling varying volumes
of data without a significant loss of performance (see Figure 4).

Addressing these gaps and challenges will pave the way for the development of robust,
reliable, accurate, and effective AI systems in the field of CL disease diagnosis, ultimately
helping to improve health outcomes.

Figure 4. Gaps in application of AI in CL diagnosis.

4. Conclusions

In conclusion, this systematic review sheds light on the transformative potential of
AI in the diagnosis of CL, which is considered the most neglected of neglected diseases.
As an important global health issue with challenges in timely and accurate diagnosis,
the integration of AI, including ML, DL, and other advanced algorithms, emerges as a
promising solution to revolutionize diagnosis methodologies.
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By providing an overview of the current state of research on the application of AI
in the diagnosis of CL and identifying the key considerations that need to be taken into
account in developing new diagnosis methods, this study serves as a pivotal initial stride.
Its findings can guide and propel future research endeavors, fostering the development of
intelligent diagnostic tools for CL.

Moreover, the convergence of AI and research into Leishmaniasis represents an im-
portant area of focus, opening avenues for innovative solutions to combat not only CL but
also other NTDs. The synthesis of AI technologies and infectious disease management
presents an optimistic trajectory towards overcoming diagnosis challenges and advancing
the broader landscape of global health.
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RDT Rapid Diagnostic Test.
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