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Abstract: Genotype, particularly Ras status, greatly affects prognosis and treatment of liver metastasis
in colon cancer patients. This pilot aimed to apply word frequency analysis and a naive Bayes classifier
on radiology reports to extract distinguishing imaging descriptors of wild-type colon cancer patients
and those with v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations. In this
institutional-review-board-approved study, we compiled a SNaPshot mutation analysis dataset from
457 colon adenocarcinoma patients. From this cohort of patients, we analyzed radiology reports of
299 patients (> 32,000 reports) who either were wild-type (147 patients) or had a KRAS (152 patients)
mutation. Our algorithm determined word frequency within the wild-type and mutant radiology
reports and used a naive Bayes classifier to determine the probability of a given word belonging
to either group. The classifier determined that words with a greater than 50% chance of being in
the KRAS mutation group and which had the highest absolute probability difference compared to
the wild-type group included: “several”, “innumerable”, “confluent”, and “numerous” (p < 0.01).
In contrast, words with a greater than 50% chance of being in the wild type group and with the
highest absolute probability difference included: “few”, “discrete”, and “[no] recurrent” (p = 0.03).
Words used in radiology reports, which have direct implications on disease course, tumor burden,
and therapy, appear with differing frequency in patients with KRAS mutations versus wild-type colon
adenocarcinoma. Moreover, likely characteristic imaging traits of mutant tumors make probabilistic
word analysis useful in identifying unique characteristics and disease course, with applications
ranging from radiology and pathology reports to clinical notes.

Keywords: naïve Bayesian classification; radiogenomics; RAS mutation; machine learning; natural
language processing

1. Introduction

Radio-genomics (RG), which correlates cancer imaging findings and genetic alterations, is an
emerging science with important implications for cancer treatment [1,2]. An alternative to direct
image-outcome analysis, RG allows identification of reasons for these associations and enables access
to much larger genomic databases compared to smaller imaging datasets for predicting outcomes [3].
RG provides a method for extracting more information from standard imaging results, and once
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a high level of accuracy can be achieved, could help avoid or reduce the use of more specialized and
costly genetic profiling [4]. Predictive keywords derived from imaging reports and based upon the
radio-phenotype can potentially diagnose genetic variants of a cancer, thereby expediting and focusing
cancer treatments in the era of gene-based therapeutics. Previous applications of RG include breast
cancer, liver cancer, and glioblastoma [2–5].

Historically, the determination of imaging differences of different cancer variants has been based
upon manual review of images from large cohorts of patients [5–7]. In this research, we explore the
possibility of using natural language processing of radiology reports in patients with colon cancer
and a naïve Bayes classification algorithm to determine which predictive key terms from the imaging
reports are likely for a given genetic variant of colon cancer.

Particularly, this research applied the Bayesian classifier to colorectal cancer (CRC), as it ranks
second in cancer-related deaths in the U.S. and genotype greatly affects patient prognosis [8].
Since glandular cells play a key role in mucus secretion in the colon, a majority of CRC patients
suffer from epithelial adenocarcinoma, which affects glandular cells from the gradual accumulation of
genetic mutations and epigenetic alterations [9,10].

Key genetic alterations in CRC patients with prognostic value involve a mutant v-Ki-ras2 Kirsten
rat sarcoma viral oncogene homolog (KRAS), the most common RAS mutation, which between 30%
and 50% of CRC patients express [11,12]. KRAS is a proto-oncogene downstream from the epidermal
growth factor receptor (EGFR) that has predicted poorer outcomes, since KRAS mutations create
resistance to anti-EGFR antibodies [11–13]. Thus, identifying the genotype of CRC patients, particularly
KRAS mutants, has become increasingly important for prognosis and treatment strategies [14].

Since identification of the genotype of patients is at its core a classification problem, classification
via machine learning, a process by which computers can extract patterns in data and make decisions
based upon this new knowledge, is a well-suited solution [15,16]. Naïve Bayes classifiers are simple
but flexible probabilistic classifiers that can be trained via machine learning [16]. They have a wide
range of applications including spam filtering, self-driving cars, social media analysis, and financial
modeling [17]. For example, in spam-filtering, a naïve Bayes classifier computes the probability of
a test input (email) being class S (spam) based upon (given) the presence of W (predictor word).
Mathematically, the spam classification algorithm is expressed as

P(SW) =
(P(WS) × P(S))

(P(WS) × P(S) + P(WH) × P(H)
(1)

where P(S|W) is the probability that a message is spam knowing a specific word is present, P(S) is the
probability that any given message is spam, P(W|S) is the probability of the word appearing in all
spam messages, P(H) is the probability that any given message is not spam (is “ham”), and P(W|H) is
the probability that the word appears in ham messages.

Much like how a naïve Bayesian algorithm can classify an email as spam or not-spam, the
algorithm can also classify a radiology report as belonging to a genetic variant or wild-type of a given
cancer. Particular words, potentially those associated with imaging characteristics written up in
the report, have different probabilities of occurring in free-text radiology reports of genetic variants
versus wild-type cohorts. The difference in the probabilities between the different report cohorts is the
feature which naïve Bayes uses to ultimately calculate the probability that a certain report comes from
a certain cohort.

This pilot study applied word frequency analysis and a naive Bayes classifier on free-text radiology
reports to extract distinguishing imaging descriptors of wild-type colon cancer patients and those with
KRAS mutations.
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2. Materials and Methods

2.1. Patient Acquisition and Parsing Radiological Reports

In this institutional-review-board-approved study (2010P000510, 13 April 2010; MGH IRB),
SNaPshot mutation analysis identified the genotype of 457 colon adenocarcinoma patients [14].
Of these, our study focused on 299 with a clear genetic SNaPshot of either KRAS or wild-type,
of which approximately half had wild-type and half had KRAS mutations.

With the labeled data, the program then filtered the dataset and removed reports with no clinical
significance (e.g., billing documents) to isolate only relevant reports. With the relevant, labeled reports
in the processing pipeline, we tokenized the text within these reports into individual words, stemmed
words to eliminate variability of conjugations, and used a simple negative word proximity check to tag
words with a negative context if applicable, as in previous studies [18,19]. Finally, the program iterated
through the reports, adding new words it encountered to the database and incrementing respective
counts for repeats.

2.2. Naïve Bayesian Classification

Once the program provided the output of the distinct words and the number of appearances of
each word in reports of KRAS and wild-type patients respectively, the Bayesian classifier, using the
equation described above, computed the probability a report including that particular word comes
from a patient with a KRAS or wild-type genotype. This probability value is a measure of the word’s
presence in the report as a predictor of a CRC patient’s genotype.

2.3. Statistical Analysis

With the frequency and probability values for each word in KRAS and wild-type reports, we
noted the words with the highest absolute difference in frequency and probability between KRAS and
wild-type. Finally, for the key words which were associated with either KRAS or wild-type, a Wilcox
signed rank test evaluated the presence of all of the words as a predictor of genotype.

3. Results

This pilot study analyzed a total of 299 patients, who either were the wild-type (147 patients) or
had a KRAS (152 patients) mutation. For this population, we acquired 18,046 reports from electronic
health records. The KRAS mutation group included 9017 reports, and the wild-type group included
9029 reports. Breaking up the reports into word and phrase tokens created 1,317,919 distinct terms for
KRAS patients and 1,336,114 distinct terms for wild-type patients (Figure 1).

By dividing the number of KRAS or wild-type reports the words appeared in by the total number
of KRAS or wild-type reports, we obtained the frequencies of the words in KRAS and wild-type
reports. “Metastas (es)” had the highest frequency in both types of reports and the lowest percent
difference between the reports of 19%. The phrase “[no] discrete”, which appeared in higher frequency
in wild-type reports, had the highest percent difference between the two types of reports at 72%.
“Hypoattenuat(ing)” and “innumerable” had the highest percent difference in frequencies for KRAS
predictive terms at 51%.

Next, the Bayesian probability of a KRAS or wild-type patient’s radiology report including
the term is computed. Words with a greater than 50% chance (range 55–63%) of being in the
KRAS mutation group and which had the highest absolute probability difference compared to the
wild-type group included: “numerous”, “several”, “innumerable”, “confluent”, “metastas (es)”, and
“hypoattenuat(ing)”. Conversely, words with a greater than 50% chance (range 60–66%) of being in the
wild type group and with the highest absolute probability difference included: “[no] abnormal”, “[no]
recurrent”, “few”, and “[no] discrete”.
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Figure 1. Flowchart of patient selection and data mining. The process of identifying relevant patients
and reports to generate KRAS and wild-type terms is shown. KRAS patients, reports, and terms are
shown in grey, while wild-type patients, reports, and terms are shown in white.

A scatterplot of the probability of each genotype given the presence of a word in the report
demonstrates two clear classifications of these key words (Figure 2). The phrase “no discrete” had the
highest percent difference between the probability of predicting a wild-type versus KRAS genotype.
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The probabilities represent the chance that a report arises from a KRAS or wild-type patient given the
term is present. The terms are clustered into KRAS predictors and wild-type predictors.

By grouping these words into predictive key words for KRAS mutants and wild-type genotypes,
a Wilcox signed rank test determined the predictive capability of the groups. The p-value (p = 0.005)
associated with the combination of KRAS predictors suggests that a patient whose report includes
all of these words has less than a 1% chance of not having a KRAS mutation. Conversely, the p-value
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(p = 0.03) of the key words appearing in wild-type radiology reports suggests that the patient has less
than a 5% chance of not having a wild-type genotype (Figure 3).Diagnostics 2017, 7, 50  5 of 7 
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4. Discussion

The purpose of this study was to use a naïve Bayesian classifier to identify predictive keywords
from imaging characteristics written up in radiology reports. Reliably identifying the genotype
from reports from the medical imaging already performed has the potential to eliminate extraneous
genotype tests and direct genotype work-ups.

After parsing the free-text radiological reports and associating them with the appropriate
genotype, the program calculated the frequency for each distinct word in reports of a KRAS or
wild-type genotype patient. From these frequencies, the Bayesian classifier computed the probability
of a patient having a genotype based upon the presence of a predictor key word in their reports.

The key words associated with a higher probability of arising from a report of a KRAS patient
(p < 0.01) clearly indicated more aggressive adenocarcinoma, with words like “numerous”, “several”,
“innumerable”, “confluent”, “metastas(es)”, and “hypoattenuat(ing)”. Conversely, the key phrases,
such as “no recurrence”, “no abnormal”, “few”, “no discrete”, associated with the wild-type genotype
indicated less aggressive presentations. Such results corroborate studies associating KRAS mutations
with cancer that presents more aggressively and associate the genotype with poorer prognosis [15,17–19].

The application of radiogenomics to colon adenocarcinoma has great clinical significance due to
the effect of genotype on treatment options. Since KRAS is downstream from EGFR, KRAS mutations
result in resistance to EGFR antibodies. The certainty of the prediction of the genotype of patients in
this study can provide clinicians with an important link between imaging and genotype to guide their
treatments without having to perform genome sequencing.

While these results identify specific, clinically relevant key words, this pilot study does have
limitations. First, the Bayesian classifier only identified these predictor key words from the training
set, but we have not yet implemented a method for determining the likelihood that a given report
belongs to either a KRAS or wildtype patient based on the words within the report. Such predictive
capabilities are a promising future direction, but would require larger training data sets.



Diagnostics 2017, 7, 50 6 of 7

Moreover, the study took the approach of analyzing radiological reports rather than the images
themselves and therefore is limited by the variability in which the same findings can be expressed in
a radiology report. Another limitation of using text from reports is that, while this study analyzed
reports from one institution, radiologists from different backgrounds or regions may use different
descriptors for the same imaging features. Both standardizing feature extraction from imaging and
then performing this analysis and applying the algorithms and key terms extracted from one patient
cohort to another distinct one are promising future directions that could potentially lead to more robust
results than could be obtained in our pilot study.

For colon cancer, surgical resection is the most common treatment [20], so pathology reports also
contain clinically relevant search terms that can distinguish KRAS mutants and wild-type genotypes.
The combination of pathological and radiological reports is a future direction to potentially increase
accuracy of RAS status predictions. Finally, this probabilistic approach to analyzing text in order to
extract predictive features has the potential to be applied to a variety of data sources from clinical and
hospital notes to radiology and pathology notes for a variety of diseases.

This pilot study successfully parsed free-text radiological reports and applied a naïve Bayesian
classifier to find predictive key words to identify genotypes. This process can be applied to a variety
of other diseases other than colon adenocarcinoma. Despite its limitations, it represents a unique
approach to doing an initial highly automated review of radiology reports and extracting the associated
imaging features which correlate to genotypic variations.

5. Conclusions

The purpose of this pilot study was to analyze the frequency of words and use a naïve Bayesian
classifier to identify imaging predictors of genotype from radiology reports. The classification
algorithm determined that the words that occurred with a higher frequency in KRAS reports, and
thus were predictors of the KRAS mutation, were associated with more aggressive imaging features.
In contrast, wild-type key words suggested a less aggressive radiophenotype for colon adenocarcinoma
patients. For colon adenocarcinoma, extracting genotype from imaging data is extremely promising,
as the presence of a KRAS mutation greatly alters the treatment plan for patients. The certainty of the
prediction of the genotype of patients in this study can provide clinicians an important link between
imaging and genotype to guide their treatments without having to perform genome sequencing.

More generally, these results demonstrate that characteristic imaging traits exist which can reveal
the genetic mutations of all cancerous tumors. Probabilistic analysis of radiological reports, or even
other clinical notes, has the potential to identify disease course associated with mutated oncogenes
and presents a quicker, cheaper alternative to genome sequencing.
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