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Abstract: This study aimed to identify baseline metabolic biomarkers for response to methotrexate
(MTX) therapy in rheumatoid arthritis (RA) using an untargeted method. In total, 82 baseline plasma
samples (41 insufficient responders and 41 sufficient responders to MTX) were selected from the
Treatment in the Rotterdam Early Arthritis Cohort (tREACH, trial number: ISRCTN26791028) based
on patients’ EULAR response at 3 months. Metabolites were assessed using high-performance
liquid chromatography-quadrupole time of flight mass spectrometry. Differences in metabolite
concentrations between insufficient and sufficient responders were assessed using partial least square
regression discriminant analysis (PLS-DA) and Welch’s t-test. The predictive performance of the most
significant findings was assessed in a receiver operating characteristic plot with area under the curve
(AUC), sensitivity and specificity. Finally, overrepresentation analysis was performed to assess if the
best discriminating metabolites were enriched in specific metabolic events. Baseline concentrations of
homocystine, taurine, adenosine triphosphate, guanosine diphosphate and uric acid were significantly
lower in plasma of insufficient responders versus sufficient responders, while glycolytic intermediates
1,3-/2,3-diphosphoglyceric acid, glycerol-3-phosphate and phosphoenolpyruvate were significantly
higher in insufficient responders. Homocystine, glycerol-3-phosphate and 1,3-/2,3-diphosphoglyceric
acid were independent predictors and together showed a high AUC of 0.81 (95% CI: 0.72–0.91)
for the prediction of insufficient response, with corresponding sensitivity of 0.78 and specificity
of 0.76. The Warburg effect, glycolysis and amino acid metabolism were identified as underlying
metabolic events playing a role in clinical response to MTX in early RA. New metabolites and
potential underlying metabolic events correlating with MTX response in early RA were identified,
which warrant validation in external cohorts.
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1. Introduction

Rheumatoid arthritis (RA) is a chronic autoimmune disease affecting joint linings, resulting in
pain and inflammation [1]. Methotrexate (MTX) is the first-line therapy in rheumatoid arthritis
(RA); however, treatment strategies still consist of trial and error [2]. MTX is an antifolate with
a long background in cancer chemotherapy acting as a potent inhibitor of folate metabolism
impacting numerous targets in one-carbon metabolism, nucleotide and amino acid biosynthesis [3].
The mechanism of MTX in RA is still not fully understood, which is why it is still unknown why
some patients respond better than others to MTX [4,5]. Response to MTX-based therapy can be
determined after 3 to 6 months according to changes in disease activity score 28 (DAS28) and
insufficient responders require step-up treatment with biologic disease modifying anti rheumatic drugs
(bDMARDs; e.g., TNF-alpha inhibitors, IL-6 inhibitors [6]) or targeted synthetic DMARDs (tsDMARDs,
e.g., Janus-kinase inhibitors [7,8]) as described in the EULAR recommendations for the management of
RA [2]. To enable quicker treatment adjustments, earlier identification of insufficient responders to
MTX will be of great clinical importance in personalized medicine.

Several studies investigated baseline biomarkers to predict clinical response to MTX at 3 and/or
6 months in a targeted way [9]. We have previously developed [10] and externally validated [11] a
baseline clinical prediction model for insufficient response to MTX. Apart from clinical predictors,
this prediction model includes biomarkers such as erythrocyte folate and adenosine triphosphate (ATP)
binding cassette (ABC) transporter polymorphisms. Applying an untargeted approach might reveal
new and overlooked biomarkers and provide new insights into the etiology of non-response to MTX.
Others have shown that RA patients have a different serum metabolite signature compared to healthy
controls [12–15]. Study results from a literature review showed that essential amino acids (citric acid,
isoleucine, methionine, valine) and non-essential amino acids (threonine, histidine and alanine) were
consistently lower in RA patients compared to healthy controls [16]. Additionally, differences in
metabolic profiles have been associated with different stages of disease [14,15] as well as in relation to
treatment response [17–20]. The aim of the current study was to identify potential baseline biomarkers
in treatment-naive patients for the prediction of insufficient response to MTX at 3 months in RA patients
using an untargeted approach.

2. Materials and Methods

2.1. Materials and Subjects

Baseline plasma samples of 82 early RA patients were selected from the treatment in the Rotterdam
early arthritis cohort (tREACH; ISRCTN registered trial, number: ISRCTN26791028) [21], based on
plasma availability and their European League Against Rheumatism (EULAR) response at 3 months,
including 41 insufficient responders and 41 sufficient responders. Insufficient response was defined
as: 3-month DAS28-ESR > 5.1 and improvement of DAS28-ESR ≤ 1.2. Sufficient response was
defined as: 3-month DAS28-ESR ≤ 3.2 and improvement in DAS28-ESR > 1.2 over the first 3 months.
All subjects received MTX (combination) therapy (see Table 1) and all accomplished the American
College Rheumatism (ACR)/EULAR 2010 classification criteria for rheumatoid arthritis (RA) [22].

After blood collection in ethylenediamine tetraacetic acid (EDTA) tubes, samples were immediately
placed on ice, followed by centrifugation for 10 min at 1700× g at a temperature of 4 ◦C. Plasma samples
were stored at −80 ◦C, as previously described [23]. This study was approved by the medical ethics
committee of Erasmus Medical Center (MEC-2006-252) and written informed consent was obtained for
included patients. All procedures performed were in accordance with the 1964 Helsinki Declaration
and its later amendments.
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Table 1. Characteristics of rheumatoid arthritis patients with insufficient response versus sufficient
response to MTX (combination) therapy.

Insufficient
Responders

(DAS28-ESR > 3.2)
N = 41

Sufficient
Responders

(DAS28-ESR ≤ 3.2)
N = 41

p-Value

Baseline DAS28, mean ± SD 4.3 ± 1.3 5.6 ± 1.0 <0.001
Age, mean ± SD 50.0 ± 11.9 52.6 ± 16.9 0.41
Sex, Male, N (%) 8 (20) 15 (37) 0.14

BMI (kg/m2), mean ± SD 28.1 ± 5.4 24.3 ± 4.1 # <0.001
RF positive, N (%) 26 (63) 33 (80) 0.14

ACPA positive, N (%) 25 (61) 31 (76) 0.24

Treatment

MTX + SSZ + HCQ + corticosteroids i.m. 8 (20) 15 (37) 0.14
MTX + SSZ + HCQ + corticosteroids per os 11 (27) 15 (37) 0.48

MTX + corticosteroids per os 13 (32) 7 (17) 0.20
MTX 9 (22) 4 (10) 0.23

# BMI, N = 1 missing value, BMI = body mass index, MTX = methotrexate, SSZ = sulfasalazine,
HCQ = hydroxychloroquine, i.m. = intramuscular. RF = rheumatoid factor, ACPA = anti-citrullinated
protein antibody

2.2. Metabolomics Study

Metabolomics analysis was performed using a semi-quantitative analysis at the Core
Facility Metabolomics of the Amsterdam UMC as described previously [24]. In short, a mixture of
75 µL of the following internal standards in water was added to 25 µL plasma:
adenosine-15N5-monophosphate (100µM), adenosine-15N5-triphosphate (100µM), D4-alanine (100µM),
D7-arginine (100 µM), D3-aspartic acid (100 µM), D4-citric acid (100 µM), 13C1-citrulline
(100 µM), 13C6-fructose-1,6-diphosphate (100 µM), guanosine-15N5-monophosphate (100 µM),
guanosine-15N5-triphosphate (100 µM), 13C6-glucose (1 mM), 13C6-glucose-6-phosphate (100 µM),
D3-glutamic acid (100 µM), D5-glutamine (100 µM), 13C6-isoleucine (100 µM), D3-leucine (100 µM),
D4-lysine (100 µM), D3-methionine (100 µM), D6-ornithine (100 µM), D5-phenylalanine (100 µM),
D7-proline (100 µM), 13C3-pyruvate (100 µM), D3-serine (100 µM), D5-tryptophan (100 µM), D4-tyrosine
(100 µM), D8-valine (100 µM). Subsequently, 425 µL water, 500 µL methanol and 1 mL chloroform were
also added and the samples were mixed and centrifuged for 10 min at 14,000 rpm. The polar phase was
dried using a vacuum concentrator at 60 ◦C. Subsequently, dried samples were reconstituted in 100 µL
methanol/water (6/4; v/v). Then, 5 µL metabolic extract was injected onto a SeQuant 100 × 2.1 mm
ZIC-cHILIC column, 3 µm particle diameter (Merck, Darmstadt, Germany). The column temperature
was maintained at 30 ◦C and samples at 12 ◦C during analysis. An impact II quadrupole time of
flight (QTOF) (Bruker Daltoniks) mass spectrometer (MS) was used in the negative and/or positive
electrospray ionization mode where mass spectra of the metabolites were obtained by continuous
scanning from m/z 50 to m/z 1200 with a resolution of 50,000 full half-maximum width (FHMW).
Data were analyzed using Bruker TASQ software version 2.1.22.3. All reported metabolite intensities
were normalized to internal standards with comparable retention times and response in the MS.
Metabolite identification was based on a combination of accurate mass, (relative) retention times
and fragmentation spectra, compared to the analysis of a library of standards. Statistical analysis
and visualization of the acquired data were done in a R environment using the ggplot2, ropls and
mixOmics packages [25–27]. Identified metabolites were classified according to the Human Metabolome
Database [28].

2.3. Statistics

Mean and standard deviation (± SD) between baseline group characteristics were compared using
a two-sample t-test. Proportions in baseline characteristics were compared using a two-proportion test
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in R. To identify metabolites that could discriminate insufficient responders from sufficient responders,
we used partial least square regression discriminant analysis (PLS-DA). Variable Importance Projection
(VIP) scores were examined to select best discriminating variables, where a VIP score of ≥1 was
considered important [29]. Furthermore, to investigate differences in mean concentrations between
response groups at baseline, a Welch’s t test was performed and fold changes were calculated,
which were together visualized in a volcano plot. We corrected for multiple comparisons using
the Benjamini–Hochberg method. A multivariable model was built with metabolites that were
significantly different between insufficient and sufficient responders and had a VIP score >1. As highly
correlated variables could influence logistic regression, correlations between metabolites were first
assessed using Pearson’s correlation in a correlation matrix using the “corrplot” package in R. In the
same analysis, the relation between metabolites and inflammatory factors (erythrocyte sedimentation
rate [ESR] and C-reactive protein [CRP]) was assessed to examine whether the metabolites were a
surrogate for inflammation. Metabolites with a Pearson’s correlation coefficient of >0.6 were considered
strongly correlated. In case two metabolites were strongly correlated, only the metabolite with the
highest VIP score in relation to response was included in the model. From the model, a receiver
operating characteristic (ROC) curve with area under the curve (AUC) was produced. Sensitivity and
specificity were calculated using the “pROC” package in R. In addition, non-linear relationships
between metabolites and the outcome were examined in a random forest analysis, which is an ensemble
classification method. For the random forest analysis, a random seed was set to 415 to make the
analysis reproducible. Mean decrease in accuracy (how well the model performs) and decrease in Gini
score (how pure the nodes are at the end of the tree) were assessed to evaluate variable importance
upon removal of each variable. Hence, the larger the decrease in accuracy and Gini score, the more
important the variable.

To obtain a better understanding of which metabolic pathways were enriched between insufficient
and sufficient responders to MTX, an overrepresentation analysis (ORA) was performed using the online
“Metabolite Set Enrichment Analysis” (MSEA) tool as integrated in the MetaboAnalyst software 4.0 [30].
Compound names of metabolites with a VIP score >1 produced by the PLS-DA analysis were used
as input. Small molecule pathway database (SMPDB) was selected as reference library containing 99
metabolite sets based on normal human metabolic pathways. A hypergeometric test was performed to
evaluate if combinations of differentially expressed metabolites were represented more than expected
by chance, providing a one-tailed p-value. p-values were adjusted for multiple testing using the
Holm–Bonferroni method and false discovery rate (FDR) according to the Benjamini–Hochberg method.

3. Results

3.1. Baseline Comparisons

Mean baseline DAS28 was lower in RA patients with insufficient response to MTX therapy
(4.3 ± 1.3) compared to RA patients with sufficient response to therapy (5.6 ± 1.0, p < 0.001; Table 1),
while BMI was higher in the insufficient responder group (p < 0.001; Table 1). Other characteristics such
as age, sex, rheumatoid factor (RF) positivity, anti-citrullinated protein antibody (ACPA) positivity and
medication were similar between both groups.

3.2. Metabolite Analysis

Metabolites were examined as a potential biomarker for response to MTX. A list of the
50 most important variables was created according to their VIP scores from to the PLS-DA
analysis (Supplementary Figure S1) and p-values acquired from Welch’s t-test, which is presented
in Supplementary Table S1. Moreover, 1,3-diphosphoglyceric acid (DPG)/2,3-DPG and homocystine
had the largest VIP scores (2.439 and 1.927, respectively) and were most significantly different
between insufficient responders and sufficient responders (p = 0.001 and p = 0.004, respectively;
Table S1). Homocystine, taurine, adenosine triphosphate (ATP), guanosine diphosphate (GDP)
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and uric acid concentrations were significantly lower in insufficient responders versus sufficient
responders, while 1,3-diphosphoglyceric acid (1,3-DPG) and 2,3-diphosphoglyceric acid (2,3-DPG),
glycerol-3-phosphate and phosphoenolpyruvate (PEP) were significantly higher in insufficient
responders versus sufficient responders (Table S1 and Figure 1).
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Figure 1. Volcano plot of significantly different metabolites in insufficient responders (DAS28-ESR > 3.2)
and sufficient responders (DAS28-ESR ≤ 3.2).

From the significantly different metabolites, GDP had the largest log2 fold change (1.647) as
depicted in a volcano plot (Figure 1). No significant differences were observed after correction for
multiple testing.

It should be noted that, in this study, we aimed to find a new biomarker for response and
not another surrogate marker for inflammation, such as the erythrocyte-sedimentation rate (ESR)
or C-reactive protein (CRP). To examine whether the most promising candidate metabolites were
independent of inflammation, we examined their correlation with ESR and CRP (Figure 2).

All correlations with ESR and CRP were weak (Pearson’s correlation coefficient r < 0.33),
indicating that these metabolites do not reflect inflammation. The most significant metabolites were
analyzed together in a multivariable logistic regression model to assess their performance as biomarkers
in predicting insufficient response to MTX, including: homocystine, PEP, glycerol-3-phosphate,
1,3-DPG/2,3-DPG, uric acid and taurine. ATP and GDP concentrations were also significantly different
between response groups; however, these were highly correlated with taurine (Figure 2). Of this
model, a receiver-operating characteristic (ROC) plot was constructed with an area under the curve
(AUC) of 0.82 (95% CI: 0.73–0.91). From all predictors in the model, only homocystine (p = 0.007)
and glycerol-3-phosphate (p = 0.020) were significant independent predictors, while 1,3-/2,3-DPG was
borderline significant (p = 0.080), for which reason we reduced the model to these three predictors.
Using the combination of these predictors, a new ROC curve was constructed with an AUC of 0.81
(95% CI: 0.72–0.91; Figure 3) and corresponding sensitivity of 0.78 and specificity of 0.76.
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Figure 2. Correlation matrix between significantly different metabolites at baseline and inflammatory
factors. Included metabolites shown were significantly different in relation to response at 3 months
according to results of a Welch’s t-test. The color indicates the strength of the correlation: dark red
indicates a strong negative correlation and dark blue a strong positive correlation. The Pearson’s
correlation coefficient is printed in the squares. Erythrocyte-sedimentation rate (ESR) and C-reactive
protein (CRP) were added as a proxy for inflammation.
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Figure 3. Receiver operating characteristic (ROC) curve (black solid line) of prediction of insufficient
response (DAS28-ESR > 3.2) including significantly different metabolites in relation to response at
3 months. Predictors included in the model were: baseline homocystine, glycerol-3-phosphate and
1,3-diphosphoglyceric acid/2,3-diphosphoglyceric acid. The grey dotted line represents “the line of no
discrimination”.
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3.3. Random Forest Analysis

Additionally, non-linear relationships between metabolites and response were tested using a
random forest analysis. Variable importance was determined according to the decrease in accuracy
and Gini score upon removal of variables from the models tested. The most significant variables again
were homocystine and 1,3-DPG/2,3-DPG (Figure 4).
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3.4. Enrichment Analysis

Finally, to examine whether certain cellular processes were overrepresented in insufficient
versus sufficient responders, we performed an overrepresentation analysis (ORA). Metabolites
with a VIP score >1 (Table S1) were included in the analysis. The most significantly enriched
metabolic events were related to cellular respiration: Warburg effect (FDRpadjust = 5.59 × 10−5),
gluconeogenesis (FDRpadjust = 1.38 × 10−4), glycolysis (FDRpadjust = 5.69 × 10−4), lactose synthesis
(FDRpadjust = 8.22 × 10−4), pentose phosphate pathway (FDRpadjust = 8.22 × 10−4), urea cycle
(FDRpadjust = 8.22 × 10−4) and to amino acid metabolism (Figure 5 and Supplementary Table S2).
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Figure 5. Results of overrepresentation analysis (ORA) between insufficient and sufficient responders
to MTX. Summary of overrepresentation analysis results at baseline in relation to response to MTX at
3 months. The X-axis shows the fold enrichment between response groups and the color indicates the
significance level, where red is most significant. p-values < 0.05 were considered significant. For details
on the number of metabolites per pathway, see Supplementary Table S2.

4. Discussion

In this study, we examined metabolite profiles prior to treatment initiation in early RA
patients to identify potential biomarkers for response to MTX. At baseline, significantly different
concentrations were observed between insufficient responders and sufficient responders in eight
metabolites. Homocystine, taurine, ATP, GDP and uric acid concentrations were significantly lower in
insufficient responders, while glycolytic intermediates 1,3-DPG/2,3-DPG, glycerol-3-phosphate and
phosphoenolpyruvate (PEP) were significantly higher in sufficient responders. The most promising
biomarkers, homocystine, glycerol-3-phosphate and 1,3-DPG/2,3-DPG, together constructed a ROC
with high AUC of 0.81 (95% CI: 0.72–0.91) and sensitivity of 78% and specificity of 76%. Furthermore,
overrepresentation analysis indicated that metabolic processes related to cellular respiration and amino
acid metabolism at baseline were potentially associated with treatment response, which might be
interesting pathways to further explore in MTX-based therapies for RA.
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In this study, lower baseline plasma levels of uric acid and taurine were related to insufficient
response to MTX. Uric acid concentrations should be interpreted with caution in this study, as the
analytical variation for this metabolite exceeded 25%. Uric acid was also previously quantified in
226 patients receiving MTX in the tREACH dataset, measured using a routine chemistry method on
a Roche Cobas 8000 system (Roche, Almere, Netherlands) [10]. In this set, uric acid was borderline
insignificant in a crude logistic regression model (OR = 0.04, 95% CI: 0.00–1.66, p = 0.09) and when
adjusted for baseline DAS28 (OR = 0.02, 95% CI: 0.00–1.16, p = 0.06). Although not significant, the effect
sizes pointed in the same direction as findings in the current study, suggesting that uric acid might play
a role in response to MTX. This result is also in agreement with a study by Wang et al., who assessed
38 early RA patients on MTX monotherapy (13 insufficient responders versus 25 sufficient responders)
at baseline and at 24 weeks [31].

The same trend was observed for taurine in the present study and the one by Wang et al. [31].
Interestingly, for taurine, the opposite was observed in serum samples of established RA patients,
where taurine levels were lower in sufficient responders prior to TNFα inhibitor initiation after
insufficient response to DMARD therapy [20]. Although these studies support taurine as a potential
biomarker to choose between therapies, it has to be considered that the latter study was performed in a
group of established RA patients from whom it was not clear what the effect of previous DMARD
use was on the metabolite concentrations. In the same study [20], glycerol-3-phosphate was lower in
sufficient responders at the start of TNFα inhibitor initiation, which is consistent with our findings
that glycerol-3-phosphate was higher in insufficient responders at the start of MTX combination
therapy, suggesting that insufficient responders to MTX with low glycerol-3-phosphate may be
insufficient responders to TNFα inhibitors as well. Sasaki and colleagues [19] also observed higher
glycerol-3-phosphate levels in the plasma of RA patients versus non RA controls; however, they did
not observe differences in relation to response to MTX and/or corticosteroid therapy. This may be
due to the small group sizes of patients receiving MTX (n = 27 sufficient responders versus n = 12
insufficient responders). Plasma amino acid metabolites that were previously described in relation
to DAS28 by Smolenska et al. [17], such as threonine, tryptophan (positive correlation) and histidine
and phenylalanine (negative correlation), could also separate insufficient and sufficient responders in
our study (Figure 4). However, we did note that the Gini score was largely unaltered upon removal
of threonine, tryptophan, histidine and phenylalanine compared to other metabolites in the variable
importance plots (e.g., homocystine and 1,3-DPG; Figure 4). This means that threonine, tryptophan,
histidine and phenylalanine were less important in discriminating insufficient responders compared to
metabolites ranked higher in the variable importance plots. However, the intercorrelation between
metabolites can influence their contribution to the model and their ranking in Figure 4. This may, for
instance, apply to taurine, which seems to have only minor importance in the random forest analysis
but was significantly different between response groups at baseline (0.021) and had a VIP score of
(1.607; Table S1). However, taurine is highly correlated to GDP and ATP (Figure 2); hence, the inclusion
of GDP and ATP in the model in the random forest analysis made taurine redundant in this case
(Figure 4).

From the most successful, 1,3-DPG/2,3-DPG has not been previously described in relation to
response to MTX treatment. Homocystine consists of two homocysteine molecules connected by a
disulfide bond [32]. Previous studies showed that homocysteine concentrations increase upon MTX
treatment in RA, while concentrations are reduced again by supplementation with folic acid [33,34],
which is prescribed to RA patients to avoid adverse events. Total homocysteine is quantified as
a mixture of all bound and unbound homocysteine molecules, including homocystine, which is
first reduced to free homocysteine components. Higher total homocysteine levels could therefore
be influenced by higher homocystine levels. Total homocysteine was also previously quantified
in the plasma samples of 285 individuals from the tREACH study [23]; however, no relation was
observed between homocysteine and response to MTX. Moreover, homocystine from the current
metabolomic study and previously observed total homocysteine levels in the same individuals did not
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correlate (R = 0.03, p = 0.77). The precise role of homocystine in relation to response to MTX warrants
further investigation.

Under normal physiological circumstances, phosphorylated metabolites are usually maintained
intracellularly. There could be several reasons that phosphorylated metabolites were identified in
plasma samples analyzed in this study. Inflammatory/oxidative stress conditions related to the
pathogenesis of RA have been reported to trigger the extracellular release of lactate, ATP, ADP and
AMP [14]. These extracellular adenine nucleotides represent a potential pro-inflammatory metabolite
during the early stages of RA [35]. However, ectophosphatases CD73 and CD39 on immune-competent
cells, or alkaline phosphatase, can convert extracellular ATP, ADP and AMP into adenosine, which acts
as an anti-inflammatory regulator via interaction with adenosine receptors on leukocytes [36,37].
Accordingly, low CD39 expression on regulatory T-cells has been identified as a biomarker for MTX
resistance in RA [38,39].

Furthermore, parallel changes in glycerol-3-phosphate, 2,3-DPG and PEP in good and poor
responders point to alterations in glycolysis at the level of the regulatory enzyme pyruvate kinase
(PK). In fact, RBC enzymopathies due to PK deficiency are characterized by increased levels of
glycerol-3-phosphate, 2,3-DGP and PEP (and low ATP/GTP) [40,41] whereas enzymopathies due to
hyperactive PK activity feature marked downregulation of the three glycolytic intermediates (but high
ATP/GTP) [42].

To better understand the biological relevance of our findings, an overrepresentation analysis was
performed, of which the results should be considered as exploratory given that solely metabolites
with VIP > 1 were included and not all metabolites were significantly different at baseline. From
this perspective, results from the overrepresentation analysis showed that differences in baseline
metabolites in relation to MTX response were primarily involved in the Warburg effect and
glycolysis. These findings are consistent with recent studies in the field of “immunometabolism”,
describing alternate metabolic signatures during the activation of immune cells and autoimmune
pathogenesis [15,43]. Especially the Warburg effect, describing a shift towards inefficient energy
production through aerobic glycolysis, and well recognized for its impact on drug response in
cancer cells [44], has been extensively described in RA patients, as well as the upregulation
of glycolysis [45–49]. As these processes have been associated with a proinflammatory state,
targeting the Warburg effect or glycolysis has been suggested as a potential RA therapy [50–53].
However, these processes have, to date, not been linked to the response to existing therapies in RA.
The results of our study suggest that there may be a subgroup within early RA patients prior to
treatment in which the Warburg effect and enhanced glycolysis could play a role in relation to response
to MTX combination therapy. Moreover, MTX is a metabolite inhibitor itself, with primary targets in the
folate/one-carbon metabolism pathway (e.g., dihydrofolate reductase (DHFR), thymidylate synthase
(TYMS) and 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase
(ATIC)), which have many downstream effects, varying per immune cell type. For instance, as reviewed
by Cronstein and Aune [5], MTX indirectly inhibits NF-κB activity in T-cells through the induction of
long intergenic non-coding RNA p21 (lncRNA-p21). Interestingly, lncRNA-p21 also promotes HIF1-α
upregulation under hypoxic circumstances, which regulates the Warburg effect [54]. This might be an
interesting link between response to MTX and the Warburg effect that deserves further investigation.

Strengths of this study were that it consisted of two equal groups with extremes in responses to
MTX, which allowed us to identify the largest differences between response groups. Secondly, we used
an untargeted approach, which led to new insights into possible metabolic biomarkers and pathways
involved in the response to MTX. Furthermore, the study was performed on blood plasma samples,
which are easily accessible for routine biomarker purposes. Limitations to this study were that it was
performed using a semi-quantitative assay, meaning that metabolite concentrations cannot be directly
compared with measurements by other methods and in other studies, but only between response
groups in the same study. Moreover, our sample size was limited; thus, validation using other methods
is warranted. Finally, correlations between top findings and BMI were low (Pearson’s r < 0.3), and due
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to the low number of patients per group, we did not take into consideration other factors such as
comorbidity, food intake and lifestyle factors, such as smoking, which may have influenced metabolic
profiles [55].

For future studies, it would also be interesting to examine metabolite samples longitudinally.
As a predictor for response, baseline samples are most suitable, as treatment adjustments can be made
from the start of treatment initiation when appropriate. However, to obtain a better understanding
of MTX’s mechanism(s) of action and, in particular, its effect on metabolic processes, it would be
interesting to follow metabolites longitudinally before and after MTX in relation to treatment response.
This approach may reveal certain biomarkers that could possibly also serve as early markers for
response during the first few months of treatment. A decrease in uric acid, for instance, has been
observed in good responders to MTX in RA patients [56]. This, together with our results demonstrating
that lower uric acid levels in insufficient responders were observed at baseline, could indicate that
MTX acts better when certain pathways are upregulated prior to treatment. Nevertheless, both results
first require validation.

Up to now, many other baseline variables have been assessed in relation to MTX response without much
success, as previously reviewed [5,9,57,58]. Ideally, biomarkers should be combined in prediction models,
including clinical, laboratory and lifestyle parameters [11,59,60]. Conceivably, metabolomic biomarkers
for MTX response could be used as standalone or in addition to such a prediction model to identify
insufficient responders prior to treatment and enabling prescription of step-up treatment from the start.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-4426/10/4/271/s1,
Table S1: List of most important metabolites in discriminating insufficient responders from sufficient responders,
Figure S1: PLS-DA analysis of baseline metabolites and insufficient and sufficient responders to MTX, determined at
3 months, Table S2: Results of overrepresentation analysis at baseline in relation to response to MTX at 3 months
in early RA patients.
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23. De Rotte, M.; De Jong, P.; Pluijm, S.; Bulatović-Ćalasan, M.; Barendregt, P.; van Zeben, D.; van der Lubbe, P.
Association of low baseline levels of erythrocyte folate with treatment nonresponse at three months in
rheumatoid arthritis patients receiving methotrexate. Arthritis Rheum. 2013, 65, 2803–2813. [CrossRef]

24. Molenaars, M.; Janssens, G.E.; Williams, E.G.; Jongejan, A.; Lan, J.; Rabot, S.; Joly, F.; Moerland, P.D.;
Schomakers, B.V.; Lezzerini, M.; et al. A Conserved Mito-Cytosolic Translational Balance Links Two
Longevity Pathways. Cell Metab. 2020, 31, 549–563.e7. [CrossRef]

http://dx.doi.org/10.2147/JIR.S219586
http://dx.doi.org/10.1016/j.intimp.2020.106731
http://dx.doi.org/10.1016/j.jbspin.2019.04.002
http://dx.doi.org/10.1371/journal.pone.0208534
http://dx.doi.org/10.1007/s40744-020-00230-7
http://www.ncbi.nlm.nih.gov/pubmed/32926395
http://dx.doi.org/10.1016/j.jpba.2016.02.004
http://dx.doi.org/10.1007/s10067-018-4021-6
http://dx.doi.org/10.1038/nrrheum.2017.49
http://dx.doi.org/10.1080/25785826.2018.1531186
http://dx.doi.org/10.1016/j.jbspin.2020.05.005
http://dx.doi.org/10.3109/1354750X.2015.1130746
http://www.ncbi.nlm.nih.gov/pubmed/26811910
http://dx.doi.org/10.1186/s13075-018-1729-2
http://dx.doi.org/10.1371/journal.pone.0219400
http://dx.doi.org/10.1093/rheumatology/kez199
http://dx.doi.org/10.1186/1471-2474-10-71
http://www.ncbi.nlm.nih.gov/pubmed/19538718
http://dx.doi.org/10.1002/art.27584
http://www.ncbi.nlm.nih.gov/pubmed/20872595
http://dx.doi.org/10.1002/art.38113
http://dx.doi.org/10.1016/j.cmet.2020.01.011


J. Pers. Med. 2020, 10, 271 13 of 14

25. Rohart, F.; Gautier, B.; Singh, A.; Lê Cao, K.-A. mixOmics: An R package for ‘omics feature selection and
multiple data integration. PLoS Comput. Biol. 2017, 13, e1005752. [CrossRef]

26. Wickham, H. Programming with ggplot2. In ggplot2; Springer: Cham, Switzerland, 2016; pp. 241–253.
27. Thévenot, E.A.; Roux, A.; Xu, Y.; Ezan, E.; Junot, C. Analysis of the Human Adult Urinary Metabolome

Variations with Age, Body Mass Index, and Gender by Implementing a Comprehensive Workflow for
Univariate and OPLS Statistical Analyses. J. Proteome Res. 2015, 14, 3322–3335. [CrossRef]

28. HMDB Human Metabolome Database. Available online: https://hmdb.ca/ (accessed on 9 December 2020).
29. Chong, I.G.; Jun, C.H. Performance of some variable selection methods when multicollinearity is present.

Chemom. Intell. Lab. Syst. 2005, 78, 103–112. [CrossRef]
30. Chong, J.; Wishart, D.S.; Xia, J. Using MetaboAnalyst 4.0 for Comprehensive and Integrative Metabolomics

Data Analysis. Curr. Protoc. Bioinf. 2019, 68. [CrossRef]
31. Wang, Z.; Chen, Z.; Yang, S.; Wang, Y.; Yu, L.; Zhang, B.; Rao, Z.; Gao, J.; Tu, S. 1H NMR-based metabolomic

analysis for identifying serum biomarkers to evaluate methotrexate treatment in patients with early
rheumatoid arthritis. Exp. Ther. Med. 2012, 4, 165–171. [CrossRef]

32. Sengupta, S.; Wehbe, C.; Majors, A.K.; Ketterer, M.E.; DiBello, P.M.; Jacobsen, D.W. Relative Roles of Albumin
and Ceruloplasmin in the Formation of Homocystine, Homocysteine-Cysteine-mixed Disulfide, and Cystine
in Circulation. J. Biol. Chem. 2001, 276, 46896–46904. [CrossRef] [PubMed]

33. Van Ede, A.E.; Laan, R.F.J.M.; Blom, H.J.; Boers, G.H.J.; Haagsma, C.J.; Thomas, C.M.G.; De Boo, T.M.;
Van De Putte, L.B.A. Homocysteine and folate status in methotrexate-treated patients with rheumatoid
arthritis. Rheumatology 2002, 41, 658–665. [CrossRef] [PubMed]

34. Shu, J.; Sun, X.; Li, J.; Li, F.; Tang, J.; Shi, L. Serum homocysteine levels and their association with clinical
characteristics of inflammatory arthritis. Clin. Rheumatol. 2020. [CrossRef] [PubMed]

35. Killeen, M.E.; Ferris, L.; Kupetsky, E.A.; Falo, L.; Mathers, A.R. Signaling through Purinergic Receptors for
ATP Induces Human Cutaneous Innate and Adaptive Th17 Responses: Implications in the Pathogenesis of
Psoriasis. J. Immunol. 2013, 190, 4324–4336. [CrossRef]

36. da Silva, J.L.G.; Passos, D.F.; Bernardes, V.M.; Leal, D.B.R. ATP and adenosine: Role in the immunopathogenesis
of rheumatoid arthritis. Immunol. Lett. 2019, 214, 55–64. [CrossRef]

37. Chandrupatla, D.M.S.H.; Molthoff, C.F.M.; Ritsema, W.I.G.R.; Vos, R.; Elshof, E.; Matsuyama, T.; Low, P.S.;
Musters, R.J.P.; Hammond, A.; Windhorst, A.D.; et al. Prophylactic and therapeutic activity of alkaline
phosphatase in arthritic rats: Single-agent effects of alkaline phosphatase and synergistic effects in combination
with methotrexate. Transl. Res. 2018, 199, 24–38. [CrossRef]

38. Peres, R.S.; Liew, F.Y.; Talbot, J.; Carregaro, V.; Oliveira, R.D.; Almeida, S.L.; França, R.F.O.; Donate, P.B.;
Pinto, L.G.; Ferreira, F.I.S.; et al. Low expression of CD39 on regulatory T cells as a biomarker for resistance
to methotrexate therapy in rheumatoid arthritis. Proc. Natl. Acad. Sci. USA 2015, 112, 2509–2514. [CrossRef]

39. Gupta, V.; Katiyar, S.; Singh, A.; Misra, R.; Aggarwal, A. CD39 positive regulatory T cell frequency as a
biomarker of treatment response to methotrexate in rheumatoid arthritis. Int. J. Rheum. Dis. 2018, 21,
1548–1556. [CrossRef]

40. Lakomek, M.; Neubauer, B.; Lühe, A.V.D.; Hoch, G.; Schröter, W.; Winkler, H. Erythrocyte pyruvate kinase
deficiency: Relations of residual enzyme activity, altered regulation of defective enzymes and concentrations
of high-energy phosphates with the severity of clinical manifestation. Eur. J. Haematol. 1992, 49, 82–92.
[CrossRef]

41. Al-Samkari, H.; van Beers, E.J.; Kuo, K.H.M.; Barcellini, W.; Bianchi, P.; Glenthøj, A.B.; Mañú-Pereira, M.;
van Wijk, R.; Glader, B.; Grace, R.F. The variable manifestations of disease in pyruvate kinase deficiency and
their management. Haematologica 2020, 105. [CrossRef]

42. Staal, G.E.J.; Jansen, G.; Roos, D. Pyruvate kinase and the “high ATP syndrome”. J. Clin. Investig. 1984, 74,
231–235. [CrossRef]

43. Weyand, C.M.; Goronzy, J.J. Immunometabolism in the development of rheumatoid arthritis. Immunol. Rev.
2020, 294, 177–187. [CrossRef] [PubMed]

44. Zaal, E.A.; Berkers, C.R. The influence of metabolism on drug response in cancer. Front. Oncol. 2018, 8, 500.
[CrossRef] [PubMed]

45. Palsson-Mcdermott, E.M.; O’Neill, L.A.J. The Warburg effect then and now: From cancer to inflammatory
diseases. BioEssays 2013, 35, 965–973. [CrossRef]

http://dx.doi.org/10.1371/journal.pcbi.1005752
http://dx.doi.org/10.1021/acs.jproteome.5b00354
https://hmdb.ca/
http://dx.doi.org/10.1016/j.chemolab.2004.12.011
http://dx.doi.org/10.1002/cpbi.86
http://dx.doi.org/10.3892/etm.2012.567
http://dx.doi.org/10.1074/jbc.M108451200
http://www.ncbi.nlm.nih.gov/pubmed/11592966
http://dx.doi.org/10.1093/rheumatology/41.6.658
http://www.ncbi.nlm.nih.gov/pubmed/12048292
http://dx.doi.org/10.1007/s10067-020-05093-5
http://www.ncbi.nlm.nih.gov/pubmed/32377996
http://dx.doi.org/10.4049/jimmunol.1202045
http://dx.doi.org/10.1016/j.imlet.2019.08.009
http://dx.doi.org/10.1016/j.trsl.2018.04.001
http://dx.doi.org/10.1073/pnas.1424792112
http://dx.doi.org/10.1111/1756-185X.13333
http://dx.doi.org/10.1111/j.1600-0609.1992.tb00036.x
http://dx.doi.org/10.3324/haematol.2019.240846
http://dx.doi.org/10.1172/JCI111406
http://dx.doi.org/10.1111/imr.12838
http://www.ncbi.nlm.nih.gov/pubmed/31984519
http://dx.doi.org/10.3389/fonc.2018.00500
http://www.ncbi.nlm.nih.gov/pubmed/30456204
http://dx.doi.org/10.1002/bies.201300084


J. Pers. Med. 2020, 10, 271 14 of 14

46. Heiden, M.G.V.; Cantley, L.C.; Thompson, C.B. Understanding the warburg effect: The metabolic requirements
of cell proliferation. Science (80-) 2009, 324, 1029–1033. [CrossRef] [PubMed]

47. Garcia-Carbonell, R.; Divakaruni, A.S.; Lodi, A.; Vicente-Suarez, I.; Saha, A.; Cheroutre, H.; Boss, G.R.;
Tiziani, S.; Murphy, A.N.; Guma, M. Critical Role of Glucose Metabolism in Rheumatoid Arthritis
Fibroblast-like Synoviocytes. Arthritis Rheumatol. 2016, 68, 1614–1626. [CrossRef] [PubMed]

48. Rezaei, R.; Tahmasebi, S.; Atashzar, M.R.; Amani, D. Glycolysis and Autoimmune Diseases: A Growing
Relationship. Biochem. Suppl. Ser. A Membr. Cell Biol. 2020, 14, 91–106. [CrossRef]

49. Blits, M.; Jansen, G.; Assaraf, Y.G.; Van De Wiel, M.A.; Lems, W.F.; Nurmohamed, M.T.; Van Schaardenburg, D.;
Voskuyl, A.E.; Wolbink, G.J.; Vosslamber, S.; et al. Methotrexate normalizes up-regulated folate pathway
genes in rheumatoid arthritis. Arthritis Rheum. 2013, 65, 2791–2802. [CrossRef] [PubMed]

50. Kornberg, M.D. The immunologic Warburg effect: Evidence and therapeutic opportunities in autoimmunity.
Wiley Interdiscip. Rev. Syst. Biol. Med. 2020, e1486. [CrossRef]

51. Pålsson-McDermott, E.M.; O’Neill, L.A.J. Targeting immunometabolism as an anti-inflammatory strategy.
Cell Res. 2020, 30, 300–314. [CrossRef]

52. Piranavan, P.; Bhamra, M.; Perl, A. Metabolic Targets for Treatment of Autoimmune Diseases.
Immunometabolism 2020, 2, e200012. [CrossRef]

53. Rhoads, J.P.; Major, A.S.; Rathmell, J.C. Fine tuning of immunometabolism for the treatment of rheumatic
diseases. Nat. Rev. Rheumatol. 2017, 13, 313–320. [CrossRef] [PubMed]

54. Spurlock, C.F.; Tossberg, J.T.; Matlock, B.K.; Olsen, N.J.; Aune, T.M. Methotrexate inhibits NF-κB activity
via long intergenic (noncoding) RNA-p21 induction. Arthritis Rheumatol. 2014, 66, 2947–2957. [CrossRef]
[PubMed]

55. Coras, R.; Murillo-Saich, J.; Guma, M. Circulating Pro- and Anti-Inflammatory Metabolites and Its Potential
Role in Rheumatoid Arthritis Pathogenesis. Cells 2020, 9, 827. [CrossRef]

56. Lee, J.J.; Bykerk, V.P.; Dresser, G.K.; Boire, G.; Haraoui, B.; Hitchon, C.; Thorne, C.; Tin, D.; Jamal, S.;
Keystone, E.C.; et al. Reduction in serum uric acid may be related to methotrexate efficacy in early
rheumatoid arthritis: Data from the Canadian Early Arthritis Cohort (CATCH). Clin. Med. Insights Arthritis
Musculoskelet. Disord. 2016, 9, 37–43. [CrossRef] [PubMed]

57. Ling, S.; Bluett, J.; Barton, A. Prediction of response to methotrexate in rheumatoid arthritis. Expert Rev.
Clin. Immunol. 2018, 14, 419–429. [CrossRef] [PubMed]

58. Szostak, B.; Machaj, F.; Rosik, J.; Pawlik, A. Using pharmacogenetics to predict methotrexate response in
rheumatoid arthritis patients. Expert Opin. Drug Metab. Toxicol. 2020, 16, 617–626. [CrossRef] [PubMed]

59. Sergeant, J.C.; Hyrich, K.L.; Anderson, J.; Kopec-Harding, K.; Hope, H.F.; Symmons, D.P.M.M.; Barton, A.;
Verstappen, S.M.M.M. Prediction of primary non-response to methotrexate therapy using demographic,
clinical and psychosocial variables: Results from the UK Rheumatoid Arthritis Medication Study (RAMS).
Arthritis Res. Ther. 2018, 20, 147. [CrossRef]

60. Eektimmerman, F.; Allaart, C.F.; Hazes, J.M.; Den Broeder, A.A.; Fransen, J.; Swen, J.J.; Guchelaar, H.-J.J.
Validation of a clinical pharmacogenetic model to predict methotrexate nonresponse in rheumatoid arthritis
patients. Pharmacogenomics 2019, 20, 85–93. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1126/science.1160809
http://www.ncbi.nlm.nih.gov/pubmed/19460998
http://dx.doi.org/10.1002/art.39608
http://www.ncbi.nlm.nih.gov/pubmed/26815411
http://dx.doi.org/10.1134/S1990747820020154
http://dx.doi.org/10.1002/art.38094
http://www.ncbi.nlm.nih.gov/pubmed/23897011
http://dx.doi.org/10.1002/wsbm.1486
http://dx.doi.org/10.1038/s41422-020-0291-z
http://dx.doi.org/10.20900/immunometab20200012
http://dx.doi.org/10.1038/nrrheum.2017.54
http://www.ncbi.nlm.nih.gov/pubmed/28381829
http://dx.doi.org/10.1002/art.38805
http://www.ncbi.nlm.nih.gov/pubmed/25077978
http://dx.doi.org/10.3390/cells9040827
http://dx.doi.org/10.4137/CMAMD.S38092
http://www.ncbi.nlm.nih.gov/pubmed/27081318
http://dx.doi.org/10.1080/1744666X.2018.1465409
http://www.ncbi.nlm.nih.gov/pubmed/29667454
http://dx.doi.org/10.1080/17425255.2020.1777279
http://www.ncbi.nlm.nih.gov/pubmed/32500745
http://dx.doi.org/10.1186/s13075-018-1645-5
http://dx.doi.org/10.2217/pgs-2018-0144
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Materials and Subjects 
	Metabolomics Study 
	Statistics 

	Results 
	Baseline Comparisons 
	Metabolite Analysis 
	Random Forest Analysis 
	Enrichment Analysis 

	Discussion 
	References

