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Abstract: Among all cancers in women, breast cancer has the highest incidence. The mortality of
breast cancer is highly associated with metastasis. Migration and malignant transformation of cancer
cells have been reported to be modulated by store-operated calcium (SOC) channels, which control
calcium signaling and cell proliferation pathways. Stromal interaction molecule 1 (STIM1) is a calcium
sensor in the endoplasmic reticulum, triggering the activation of store-operated calcium signaling.
However, the clinical relevance of STIM1 in breast cancer is still unclear. Here, we recruited 348
breast cancer patients and conducted a genetic association study to address this question. Four
tagging germline single nucleotide variants (SNVs) in STIM1 were selected and RNA sequencing
data of 525 breast cancer samples from The Cancer Genome Atlas (TCGA) database were evaluated.
The results show that rs2304891 and rs3750996 were correlated with clinical stage of breast cancer.
Expression quantitative trait loci (eQTL) analysis indicated that risk G allele of STIM1 contributed to
the higher expression of STIM1. In addition, we found an increased risk of rs2304891 G allele and
rs3750996 A allele in estrogen receptor (ER) positive and progesterone receptor (PR) positive patients.
In conclusion, our results suggest that germline SNV, rs2304891 and rs3750996 as well as STIM1
expression are important biomarkers for the prediction of clinical outcomes in breast cancer patients.
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1. Introduction

Breast cancer has the highest incidence in females around the world [1], and it is the fourth leading
cause of cancer deaths in Taiwan [2]. Currently, molecular histology is applied to characterize breast
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cancer subtypes according to the presence of estrogen receptor (ER), progesterone receptor (PR) and
human epidermal growth factor II (HER-2). Following radiotherapy and surgery, targeted therapies
including anti-hormone and anti-HER-2 antibodies can be administered to patients based on specified
cancer subtypes [3–5]. Primary breast tumor treatments can effectively delay disease progression and
prolong overall survival. However, the occurrence of tumor metastasis in distant organs compromises
treatment efficacy and constitutes the major cause of death among breast cancer patients [6].

Breast cancer is heterogeneous in terms of molecular aberrations. The oncogenesis originates from
single nucleotide variants (SNVs), chromosomal DNA copy number variations and manifests through
transcription and translation as gene/protein expression alternations [7]. Genetic variations not only
provide a plethora of sources of prognostic biomarkers but pave a way to identify potential therapeutics
in terms of precision medicine. For instance, poly ADP ribose polymerase (PARP) inhibitors are one of
the reasonable choices for breast cancer with deleterious germline BRCA1/2 mutations through synthetic
lethargy [8]. Additionally, previous studies have widely reported that calcium signaling is critical in
tumor metastasis [9]. As a secondary messenger, calcium modulates a wide variety of intracellular
responses including enzymatic binding and protein–protein interaction [10], vesicle transport [11],
immune response to pathogen [12], cell motility, and tumor metastasis [13]. Thus, the changes of calcium
concentration by calcium pumps and channels in different cellular compartments are essential in a
precise, time-dependent manner. Among all calcium channels on cell membranes, the store-operated
calcium (SOC) channel efficiently refills and maintains intracellular calcium concentrations in the
endoplasmic reticulum (ER) after calcium release into the cytosol. Stromal interaction molecule 1
(STIM1) of the ER was identified as an calcium sensor that regulates the activation of the SOC channel.
When the intracellular calcium concentration is low [14–16], STIM1 activates the SOC channel [17,18],
which in turn, triggers calcium influx [19]. SOC channel-mediated calcium signaling is essential
for tumor cell migration and invasion especially in breast cancer [13], melanoma [20], glioma [21],
and colorectal cancer (CRC) [22]. In addition, inhibition of the SOC channel was found to reduce cell
proliferation [23], cancer cell migration [24,25], and inflammatory reactions [26,27].

STIM1 overexpression was found to increase cyclooxygenase-2 (COX-2) gene expression and
prostaglandin E2 (PGE2) production, thereby promoting tumor development and cell migration in
CRC [22]. Although previous studies have revealed that STIM1 gene expression is related to breast
cancer progression [13,28], there is yet no evidence to indicate the role of STIM1 genetic variants and
cancer. Thus, the aim of the current study was to investigate the correlation between genetic variants
of STIM1 and clinical outcomes of breast cancer.

2. Materials and Methods

2.1. Study Cohorts

In the present study, we enrolled 348 breast cancer (BC) samples of Han Chinese (Taiwanese)
ancestry. The cases were confirmed by pathology in Cathay General Hospital (CGH), Taipei, Taiwan.
Malignant tissues and peripheral blood were obtained during surgery or biopsy. Immunohistochemistry
(IHC) was used to characterize pathological features of the breast cancer tissues, including the estrogen
receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER2)
status. Clinical stage was categorized as tumor-node-metastasis (TNM, classification of malignant
tumors) based on the American Joint Committee on Cancer 7th edition [29]. The study has been
approved by the institutional review board (IRB) of CGH, Taipei, Taiwan. All clinical specimens were
obtained with the consent of patients.

As for public resources, RNA sequencing (RNA-seq) data of breast invasive carcinoma (BRCA)
were downloaded from The Cancer Genome Atlas (TCGA) database [30] using the TCGAbiolinks
package [31] in R. The data consisted of 1222 samples, of which 1102 were primary solid tumors,
113 were solid normal tissue, and 7 were metastatic samples. We defined a square symmetric matrix
of Pearson correlation among all primary solid tumor samples, a correlation cutoff of 0.6 was set to
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identify possible outliers. To test the prognostic correlation of STIM1 expression, 525 tumor samples
with available overall survival (OS) data were used to conduct survival analysis.

2.2. Selection of Germline Tagging Single Nucleotide Variants (SNVs)

The tagging SNVs of STIM1 were selected with the criteria of: (1) Beijing Han Chinese (CHB)
ancestry; (2) a linkage disequilibrium threshold (LD) of >0.8 (by r2) to the nearby SNVs; (3) a minor
allele frequency (MAF) of ≥10% from HapMap project, and (4) located in exonic, 3′ untranslated
region (3′UTR), or 5′ untranslated region (5′UTR) of STIM1 gene. Four selected SNVs, including
rs2304891 (exon 8), rs1561876 (3′UTR), rs3750994(3′UTR), and rs3750996 (3′UTR) were selected
for genotyping. Genotype frequency of 4 SNVs was queried from the Taiwan Biobank (TWB;
https://taiwanview.twbiobank.org.tw/index; accessed on 29 October 2020) and Ensembl genome
database [32].

2.3. TaqMan Genotyping Assay

Genomic DNA was extracted from peripheral bloods with a Gentra Puregene® kit (Qiagen, Hilden,
Germany). After DNA isolation was completed, samples were analyzed for quality and quantity using
a NanoDrop spectrophotometer, and all samples were normalized to a concentration of 10 ng/µL for
genotyping analysis. Genotyping was carried out by a polymerase chain reaction (PCR) on an ABI
7500 instrument according to the manufacturer’s instructions (Applied Biosystems, Foster City, CA
94404 USA). TaqMan® Genotyping Assays (Applied Biosystems, Foster City, CA 94404 USA) were
applied in the PCR. The genotype of each patient was identified by StepOne software v2.3 (Applied
Biosystems, Foster City, CA 94404 USA).

2.4. Statistical Analysis

R studio (with R version 4.0.2) was used for all analysis in this study. For the SNV analysis,
association tests were conducted with SNPassoc package. The case-control sets and continuous data
were analyzed for allele frequency differences for the four STIM1 tagging SNVs using logistic regression
and linear regression, respectively. For the regression model, patients’ age was included as covariate.
A p-value of <0.05 was regarded as significant without multiple testing correction (MTC). Haplotype
analysis in early- and late-stage Taiwanese BC patients was completed by the haplo.stat package, with
an additive model. For the survival analysis, the Kaplan–Meier estimator (a non-parametric statistic
for estimating survival function of TCGA BRCA patients) and log-rank test (as implemented in survival
package) were used to depict the prognostic correlation of STIM1 expression.

3. Results

3.1. Basal Characteristic of the Breast Cancer Patients

A total of 348 breast cancer cases were recruited in this study (Table 1). All patients were female
with the mean age of 53.13 ± 11.17 years (range: 23–89 years). Among 295 BC patients with available ER
status, 78.31% (n = 131) were ER positive (ER+). Moreover, 64.29% (out of 294 samples with available
PR status) of BC patients were PR positive (PR+), and 66.55% (out of 293 samples with available HER2
status) of BC patients were HER2 positive (HER2+). Out of 283 BC samples with available clinical
stage data, 48.76% (n = 138) were recruited at stage I, 34.28% (n = 97) at stage II, and 16.96% (n = 48) at
stage III.

https://taiwanview.twbiobank.org.tw/index
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Table 1. Basal characteristics of Taiwanese breast cancer (BC) patients.

Characteristic Total No. = 348

Gender (female; no.) 348 (100)
Age (years old, mean ± sd (range)) 53.13 ± 11.17 (23–89)
ER a (no.)

Positive 231 (66.38)
Negative 64 (18.39)
n.a. 53 (15.23)

PR b (no.)
Positive 189 (54.31)
Negative 105 (30.17)
n.a. 54 (15.52)

HER2 c (no.)
Positive 195 (56.03)
Negative 98 (28.16)
n.a. 55 (15.80)

AJCC d/TNM e stage (no.)
1 138 (39.66)
2 97 (27.87)
3 48 (13.79)
n.a. 65 (18.68)

n.a., not available. a Estrogen receptor. b Progesterone receptor. c Human epidermal growth factor receptor 2. d

American Joint Committee on Cancer. e Tumor-node-metastasis. There were 295, 294 and 293 patients with ER, PR
and HER2 receptor information recorded, respectively.

3.2. Association of STIM1 Genetic Variants with BC Disease Staging

The overall study workflow is shown in Figure 1. Results from patient recruitment and TCGA
database will be analyzed. Four tagging SNVs (rs2304891, rs3750996, rs1561876 and rs3750994) were
selected for genetic association study (Figure 2 and Table 2). The relationship between BC and STIM1
polymorphisms was characterized. We classified TNM stage into early-stage (stage I and stage II)
and late-stage (stage III). For rs2304891, carriers with the A/G (odds ratio = 2.49) as well as the G/G
(odds ratio = 4.48) genotypes exhibited a higher risk in disease progression compared to patients with
the A/A genotype (p = 5.17 × 10−3; genotypic model). Statistical significance can also be found in the
dominant model (data not shown). Moreover, rs3750996 heterozygous A/G genotype was significantly
correlated with a slower progression compared to the A/A genotype (p = 5.50 × 10−4, odds ratio = 0.35;
genotypic model (Table 3). Importantly, statistical significance can still be found in the dominant and
recessive model (data not shown)).

Figure 1. An overview of the study design; 348 BC patients were recruited in this study, and genomic
DNA was extracted from peripheral blood samples. Four tagging single nucleotide variants (SNVs)
were selected for genotyping and further examined for germline association of the stromal interaction
molecule 1 (STIM1) gene. RNA-seq data and clinical data of BC were downloaded from The Cancer
Genome Atlas (TCGA) database to conduct survival analysis.
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Figure 2. Graphical overview of the human STIM1 gene and 4 tagging SNVs in this study.

Table 2. Genotype frequencies of STIM1 germline variants in different ethnic populations.

Population Genotypic Frequency a

dbSNV ID Genotype Chr:Pos b AFR AMR EUR SAS EAS TWB Our
Cohort

rs2304891
G/G 11:4103524 0.020 0.236 0.336 0.225 0.210 0.199 0.183
A/G 0.156 0.496 0.463 0.503 0.464 0.481 0.477
A/A 0.825 0.268 0.201 0.272 0.325 0.320 0.340

rs3750996
G/G 11:4113200 0 0 0 0.010 0.060 0.050 0.081
A/G 0 0.003 0 0.147 0.315 0.339 0.325
A/A 1 0.997 1 0.843 0.625 0.611 0.594

rs1561876
G/G 11:4113395 0.498 0.061 0.012 0.004 0.067 0.079 0.059
A/G 0.415 0.326 0.209 0.182 0.331 0.381 0.422
A/A 0.088 0.614 0.779 0.814 0.601 0.540 0.519

rs3750994
G/G 11:4113470 0 0.012 0.002 0 0.052 0.054 0.031
T/G 0.015 0.205 0.056 0.055 0.282 0.323 0.350
T/T 0.985 0.784 0.942 0.945 0.667 0.623 0.619

a Data were collected from Taiwan Biobank (TWB) and Ensembl genome browser (release 94). TWB, Taiwan Biobank;
AFR, Africa; AMR, America; EAS, East Asia; EUR, Europe; SAS, South Asia. b Based on genomic coordination hg37.

Table 3. Association analysis between germline genetic polymorphisms of STIM1 and TNM stage in
breast cancer patients.

dbSNV ID Genotype Late Stage a

N (%)
Early Stage b

N (%)
Genotype Model

OR (95% C.I.) c p Value

rs2304891 G/G 15 (31.9) 37 (16.4) 4.48
(1.73~11.62) 5.17 × 10−3 *

A/G 24 (51.1) 104 (46.2) 2.49 (1.06~5.86)
A/A 8 (17.0) 84 (37.3) Reference

rs3750996 G/G 0 (0) 19 (8.3) 0 5.50 × 10−4 **
A/G 8 (17.0) 75 (32.9) 0.35 (0.15~0.79)
A/A 39 (83.0) 134 (58.8) Reference

rs1561876 G/G 1 (2.3) 16 (7.3) 0.42 (0.05~3.40) 0.2631
A/G 24 (54.5) 94 (42.9) 1.47 (0.76~2.87)
A/A 19 (43.2) 109 (49.8) Reference

rs3750994 G/G 2 (4.4) 10 (4.4) 1.24 (0.25~6.15) 0.9488
T/G 17 (37.8) 81 (35.8) 1.08 (0.55~2.12)
T/T 26 (57.8) 135 (59.7) Reference

The p value was adjusted for age. * p value < 0.05 and ** p value < 0.005 are shown in bold. a Late-stage included
stage III. b Early-stage included stages I and II. c Odds ratio (OR) and 95% confidence intervals (C.I.).
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In addition, we found an increased risk of rs2304891 G allele (p = 9.18 × 10−4, odds ratio = 9.86;
genotypic model) and rs3750996 A allele (p = 3.16 × 10−3, odds ratio = 0.28; genotypic model) in
ER+ patients (Table 4). We also discovered a statistical significance of rs2304891 under the dominant
model and rs3750996 under the dominant and recessive model (data not shown). In other words,
ER+ patients who carrying a risk allele of rs2304891 or rs3750996 who happen to be ER+ are more
likely to develop late-stage BC than others. Similar patterns can also be observed in PR+ patients
(Supplementary Table S1). For the rs2304891 SNV, PR+ patients bearing the G allele had a significantly
increased risk of disease progression compared to A allele carriers (odds ratio = 6.02 for A/G, and odds
ratio = 10.51 for G/G; genotypic model). For the rs3750996 SNV, A is the risk allele that PR+ A/G
carriers exhibited significantly lower risk than PR+ A/A carriers (odds ratio = 0.23 for A/G; genotypic
model). Furthermore, the rs3750996 A/A genotype was also associated with an increased risk of
disease progression in HER2+ BC patients (p = 0.0315, odds ratio = 0.38 for A/G; genotypic model;
Supplementary Table S2).

Table 4. Association analysis between germline genetic polymorphisms of STIM1 and TNM stage in
estrogen receptor (ER) positive breast cancer patients.

dbSNV ID Genotype Late Stage a

N (%)
Early Stage b

N (%)
Genotype Model

OR (95% C.I.) c p Value

rs2304891 G/G 11 (33.3) 20 (14.4) 9.86
(2.47~39.39) 9.18 × 10−4 **

A/G 19 (57.6) 67 (48.2) 4.97
(1.39~17.75)

A/A 3 (9.1) 52 (37.4) Reference
rs3750996 G/G 0 (0) 10 (7.0) 0 3.16 × 10−3 **

A/G 5 (15.2) 51 (35.7) 0.28 (0.10~0.78)
A/A 28 (84.8) 82 (57.3) Reference

rs1561876 G/G 0 (0) 11 (8.1) 0 0.0909
A/G 16 (53.3) 59 (43.7) 1.26 (0.56~2.80)
A/A 14 (46.7) 65 (48.1) Reference

rs3750994 G/G 1 (3.2) 5 (3.5) 0.87 (0.09~8.04) 0.9897
T/G 11 (35.5) 52 (36.4) 0.97 (0.42~2.20)
T/T 19 (61.3) 86 (60.1) Reference

The p value was adjusted for age. ** p value < 0.005 are shown in bold. a Late-stage included stage III. b Early-stage
included stages I and II. c Odds ratio (OR) and 95% confidence intervals (C.I.).

3.3. Association of STIM1 Haplotypes with Disease Staging in BC Patient

In order to have a comprehensive understanding of the most important haplotype of STIM1, an LD
map was generated, using all four SNVs that are in high LD (D’ > 0.8; Figure 3). A haplotype analysis
was then performed (Table 5). Patients with haplotypes of rs2304891/rs3750996/rs1561876/rs3750994
G/A/A/T have a higher risk of developing late-stage BC (p = 0.0028, odds ratio = 3.84).

Table 5. Haplotype analysis of STIM1 in early and late-stage breast cancer patients.

Haplotype a Frequency
OR (95% C.I.) d p Value e

rs2304891/rs3750996/rs1561876/rs3750994 Late Stage b Early Stage c

G/A/A/T 0.548 0.367 3.84 (1.63~9.03) 0.0028 *
A/A/G/G 0.222 0.201 2.84 (1.11~7.28) 0.6631
A/A/G/T 0.065 0.066 2.74 (0.74~10.09) 0.9261
A/A/A/T 0.050 0.097 1.49 (0.41~5.37) 0.2104
A/G/A/T 0.088 0.230 Reference Reference

* p value < 0.05 is shown in bold. a Haplotypes with a frequency of <1% were excluded. b Late-stage included stage
III. c Early-stage included stages I and II. d Odds ratio (OR) and 95% confidence intervals (C.I.). e p values were
calculated using an additive model.
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Figure 3. Linkage disequilibrium (LD) plots showing (A) D’ and (B) r2 of 4 SNVs of STIM1 in breast
cancer patients.

3.4. Correlation between STIM1 Expression and the Survival of Breast Cancer Patients

We further investigated whether STIM1 gene expression was correlated with morbidity in BC
patients. By leveraging TCGA RNA sequencing data of BC samples, STIM1 expression was divided
into the high expression group and low expression group by higher (n = 208) and lower (n = 317)
quartile. According to the grouping, a Kaplan–Meier estimator was applied, and log-rank test was
further conducted for survival analysis. Though no significant association was identified, a modest
trend was observed that STIM1 overexpression is associated with poorer survival (Figure 4).

Figure 4. Survival analysis of high- and low-STIM1 expression group of breast cancer patients in TCGA.

3.5. eQTL Analysis of rs2304891 Confirmed the Correlations between Genotypes and Tissue-Specific Gene
Expression Levels

To investigate the association between gene expression profiles and the genetic variants of STIM1,
we queried the GTEx portal [33], which includes a variety of tissue expression quantitative trait loci
(eQTLs). The results indicated that rs2304891 was significantly associated with the expression of the
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STIM1 gene in the left heart ventricle and tibial nerve tissues (Supplementary Table S3), with a higher
expression level in GG genotype compared to AA genotype (Supplementary Figure S1).

4. Discussion

In this study, we investigated the association between clinical relevance of breast cancer and
genetic variants of STIM1. Results revealed that two variants (rs2304891 and rs3750996) are associated
with the disease stage. We further identified the correlation between STIM1 gene expression and
clinical outcomes of breast cancer by using the TCGA database. A trend was observed between higher
STIM1 expression and poorer survival. Regarding the haplotype analysis, patients with the G/A/A/T
(p = 0.0028, odds ratio: 3.84) genotypes tended to be in the later-stage cancers. Furthermore, eQTL
analysis of rs2304891 confirmed that the risk GG genotypes was associated with the higher expression
of STIM1 although rs2304891 is a synonymous substitution. rs3750996 is located in the 3′UTR; however,
no previous reports have indicated the effects of this SNV in STIM1 gene expression. In miRBase,
mutated rs3750996 was reported to change the binding affinity of microRNA223 (miR223) [34], but
whether the microRNA223 influences STIM1 gene expression still requires more investigations.

Several studies have reported the association between genetic polymorphisms in store-operated
calcium signaling and human diseases [35–38]. For example, STIM1 polymorphisms have been
shown to associate with the inflammatory index (erythrocyte sedimentation rate and C-reactive
protein) in ankylosing spondylitis patients. Recently, STIM1 mutation was reported to influence T
cell functions, which may increase the risk of hypertensive renal disease [39]. In addition to STIM1,
genetic variants in another key component of store-operated calcium channel, Orai1, are critical for
complex diseases, especially for inflammatory diseases. Based on the genetic association study, For
example, Orai1 polymorphisms have been shown to associate with the susceptibility for recurrence of
calcium nephrolithiasis, Kawasaki disease and atopic dermatitis [36,37,40]. Here, our study revealed
different findings. Genetic variants of STIM1 associated with the development of breast cancer might
be connected through the alteration of STIM1 expression. Although a trend of correlation between
STIM1 expression and cancer survival was observed, the results did not reach statistical significance.
STIM-mediated calcium signaling involves the immune regulation as well as cancer cell migration.
Whether the roles of STIM1 in the cancer microenvironment are tended to immune pathways or simply
control cell cycle/cell growth is an important question to address in the future.

While our study illustrates the associations between STIM1 genetic variants and clinical stage, we
also found that patients with the risk alleles of rs2304891 or rs3750996 have a higher risk of late-stage
breast cancer especially in ER+ or PR+ tumors. Since breast cancer is likely affected by hormones, cancer
cells that express estrogen or progesterone receptors might increase the tumor growth. Tamoxifen
is an FDA-approved selective ER modulator (SERM) that acts as an anti-estrogen in breast cells.
Previous studies have shown that ER positive breast tumors generally have a better prognosis than ER
negative tumors; however, patients actually display varying levels of responsiveness to therapy [41].
One explanation is inflammation [42]. Baumgarten et al. indicated that co-expression of estrogen and
NF-kB-mediated inflammatory pathways can enhance chemoresistance [43]. The interaction between
ER expression and NF-κB signaling could trigger breast cancer cells to an aggressive phenotype.
In addition, store-operated calcium dependent regulation for NF-kB activation has been studied
extensively. In cancer cells, the major calcium influx pathway is through store-operated calcium
channels, which are composed by STIM1 and Orai1 [13,20,23]. Thus, the combination therapy against
both NFkB-mediated inflammation and estrogen expression might be an effective therapy for ER
positive patients. Additionally, markers of rs2304891 or rs3750996 would be very helpful to screen the
higher risk ER+ breast cancer patients.

In conclusion, we found that rs3750996 and rs2304891 were associated with the progression of
breast cancer. In addition, functional prediction by eQTL analysis further confirmed the effects of
risk allele in gene expression. Indeed, overexpression of STIM1 has been shown to promote cancer
progression [22]. Downregulation of STIM1 expression by miR-223 resulted in the inhibition of breast
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cancer invasion [44]. In light of the fact that STIM1 has been reported to link to cellular migration of
cancer cells, our results further indicate a clinical role of STIM1 variants in the risk of breast cancer.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-4426/10/4/287/s1.
Table S1: Association analysis between genetic polymorphisms of STIM1 and TNM stage in progesterone receptor
(PR) positive breast cancer patients, Table S2: Association analysis between genetic polymorphisms of STIM1
and TNM stage in human epidermal growth factor receptor 2 (HER2) positive breast cancer patients, Table S3:
Expression quantitative trait locus (eQTL) analysis of STIM1 SNVs, Figure S1: STIM1 gene expression among
different genotypes of rs2304891 in (A) nerve-tibial tissue and (B) heart-left ventricle tissue.
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