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Abstract: Background: Breast cancer is a heterogeneous disease defined by molecular types and
subtypes. Advances in genomic research have enabled use of precision medicine in clinical man-
agement of breast cancer. A critical unmet medical need is distinguishing triple negative breast
cancer, the most aggressive and lethal form of breast cancer, from non-triple negative breast cancer.
Here we propose use of a machine learning (ML) approach for classification of triple negative breast
cancer and non-triple negative breast cancer patients using gene expression data. Methods: We
performed analysis of RNA-Sequence data from 110 triple negative and 992 non-triple negative
breast cancer tumor samples from The Cancer Genome Atlas to select the features (genes) used in the
development and validation of the classification models. We evaluated four different classification
models including Support Vector Machines, K-nearest neighbor, Naïve Bayes and Decision tree
using features selected at different threshold levels to train the models for classifying the two types
of breast cancer. For performance evaluation and validation, the proposed methods were applied
to independent gene expression datasets. Results: Among the four ML algorithms evaluated, the
Support Vector Machine algorithm was able to classify breast cancer more accurately into triple
negative and non-triple negative breast cancer and had less misclassification errors than the other
three algorithms evaluated. Conclusions: The prediction results show that ML algorithms are efficient
and can be used for classification of breast cancer into triple negative and non-triple negative breast
cancer types.

Keywords: gene expression; breast cancer; classification; machine learning

1. Introduction

Despite remarkable progress in screening and patient management, breast cancer
(BC) remains the second most diagnosed and the second leading cause of cancer deaths
among women in the United States [1,2]. According to the American Cancer Association,
there were 268,600 women newly diagnosed with BC in 2019, of which 41,760 died from
the disease [1,2]. BC is a highly heterogeneous disease encompassing multiple types and
many subtypes [3,4]. The majority of BCs respond to endocrine and targeted therapies, and
generally have good prognosis and survival rates [3,4]. However, a significant proportion
of BC are triple negative breast cancers (TNBC) [4,5]. TNBC is a specific subtype of BC
characterized by lack of expression of the three most targeted biomarkers in BC treatment:
estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor
receptor (HER-2) [2,6]. It accounts for 15% to 20% of all BCs diagnosed annually [4]. TNBC
tumors are characterized by a more aggressive clinical behavior, poor prognosis, higher
recurrence rates and poor survival rates [7–14]. Currently, there are no Food and Drug
Administration (FDA) approved targeted therapies for this dreadful disease. Cytotoxic
chemotherapy remains the main effective therapeutic modality, although some patients
develop resistance and many others who survive surfer many side effects [15]. The long-
term side effects of chemotherapy are well-known and include infertility, osteopenia and
osteoporosis, heart damage and in rare cases leukemia, as well as financial losses, all of
which can severely impact the quality of life for the survivors [15]. Thus, there is an urgent
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need for the development of accurate algorithms for identifying and distinguishing truly
TNBC tumors which could be prioritized for specialized treatment from non-TNBC tumors
that can be safely treated using endocrine or targeted therapeutics.

Traditionally, classification of breast cancer patients into those with TNBC and non-
TNB has been largely determined by immunohistochemical staining [16,17]. Discordance
in assessment of tumor biomarkers by histopathological assays has been reported [16].
Recently, Viale et al. compared immunohistochemical (IHC) versus molecular subtyp-
ing using molecular BluePrint and MammaPrint in a population of patients enrolled in
MINDACT [17]. These authors also compared outcome based on molecular subtyping
(MS) versus surrogate pathological subtyping (PS) as defined by the 2013 St. Gallen guide-
lines [18]. They discovered and concluded that molecular classification can help to identify
a larger group of patients with low risk of recurrence compared with the more contemporar-
ily used classification methodology including high-quality assessed Ki67 [16,17]. Moreover,
while traditional classification methods have been relatively effective, they lack the accu-
racy and specificity to identify those breast cancers that are truly TNBC from non-TNBC.
Therefore, novel approaches are needed to address this critical unmet need.

BC screening in the United States has been routinely performed with mammog-
raphy, digital breast tomosynthesis, ultrasound and magnetic resonance [19–21]. These
breast imaging modalities for BC screening have resulted in a new and growing field of
radiomics [19,20]. Radiomics analysis using contrast-enhanced spectral mammography
images in BC diagnosis has revealed that textural features could provide complementary
information about the characterization of breast lesions [20]. Radiomics has also been used
in BC classification and prediction [21]. However, molecular classification of BC into TNBC
and non-TNBC has received little attention. Given that TNBC tends to affect younger
premenopausal women who are not recommended for screening using mammography,
there is a need for the development of new classification algorithms.

Recently, the application of machine learning (ML) to molecular classification of
tumors has come into sharper focus [22–24]. ML methods have been applied to breast
cancer survival prediction [22], for diagnostic ultrasound of TNBC [23] and breast cancer
outcome prediction with tumor tissue images [24]. However, to date, ML has not been
applied to classification of patients with TNBC and non-TNBC using RNA-sequence (gene
expression) data. The objective of this study was to investigate the potential for application
of ML to classification of BC into TNBC and non-TNBC using RNA-Sequence data derived
from the two patient populations. Our working hypothesis was that genomic alterations in
patients diagnosed with TNBC tumors and non-TNBC tumors could lead to measurable
changes enabling classification of the two patient groups. We addressed this hypothesis by
evaluating the performance of four ML algorithms using publicly available data on TNBC
and non-TNBC from The Cancer Genome Atlas (TCGA) [25].

2. Materials and Methods

The overall design and execution strategy used in this study is presented in Figure 1.
Below we provide a detailed description of the sources of gene expression variation data
along with clinical data used in this investigation, as well as the data processing and
analysis strategies used.

2.1. Source of Gene Expression Data

We used publicly available RNA-Seq data on TNBC and non-TNBC from The Cancer
Genome Atlas (TCGA) [25]. Gene expression data and clinical information were down-
loaded from the Genomics Data Commons (GDC) using the data transfer tool [26]. The
data set included 1222 samples and 60,485 probes. Using the sample barcodes, we linked
the gene expression data with molecular data and ascertained the samples as either TNBC
or non-TNBC. Samples without clinical phenotyping or labels were excluded from the
data sets and were not included in downstream analysis. We performed quality control
(QC) and noise reduction on the original gene expression data matrix to remove rows with
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insufficient information or missing data. Due to the large difference in gene expression
values, in order to facilitate later modeling and rapid training convergence, we normalized
the expression profile data. The QCed data set was normalized using the LIMMA [27] and
edgeR Bioconductor package implemented in R [27]. The probe IDs were matched with
gene symbols using the Ensemble database. In our analyses, we used counts per million
reads (CPM) and log-CPM. CPM and log-CPM values were calculated using a counts
matrix alone and have been successfully used in RNA-Seq data processing [28]. After data
processing and QC, the final data set used in downstream analysis consisted of 934 tumor
samples distributed as 116 TNBC and 818 non-TNBC samples, and 57,179 probes. The
probes were matched with gene symbols using the Ensemble database [29].
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Figure 1. Project design, data processing and analysis workflow for classification of triple negative
breast cancers (TNBC) and non-TNBC using machine learning method. GDC denotes the genomics
data commons; DEG denotes differentially expressed genes.

2.2. Differential Gene Expression Analysis and Feature Selection

The classification approach proposed in this article is a binary classification model.
However, because of the large number of genes (herein called features) involved, which was
much larger than the number of samples, the correlation between features was relatively
complex, and the dependence between correlations was affected. This presented challenges
in the application of ML. For example, with high dimensionality of the data, it takes a long
time to analyze the data, train the model and identify the best classifiers. Therefore, as
a first step, we addressed the data dimensionality problem to overcome the influence of
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unfavorable factors and improve the accuracy of feature selection. To address this need,
we used various statistical methods.

Using a quality controlled normalized data set, we performed supervised analysis
comparing gene expression levels between TNBC and non-TNBC samples to discover a
set of significantly differentially expressed genes between TNBC and non-TNBC. For this
differential expression analysis, we used the LIMMA package implemented in R [27]. We
used the false discovery rate (FDR) procedure to correct for multiple hypothesis testing [30].
In addition, we calculated the log2 Fold Change (Log2 FC), defined as the median of gene
expressed minus the gene expression value for each gene. Genes were ranked on FDR
adjusted p-values and Log2 FC. Significantly (p < 0.05) differentially expressed genes were
identified and selected. For feature selection, we used significantly differentially expressed
genes between the two types of breast cancer as the features. These features were selected
at different threshold levels.

2.3. Modeling Prediction and Performance Evaluation

As noted above, the research content of this paper was based on a binary classification
model with application to pattern recognition classification problem [31]. Under this approach
90% of the data set was randomly selected as the training set and the remaining 10% as the
test set. There are many methods for performing classification tasks [32], including Logistic
Regression, Nearest Neighbor, Naïve Bayes, Support Vector Machine, Decision Tree Algorithm
and Random Forests Classification [32]. In this investigation, we evaluated four methods for
performance, including, Support Vector Machines (SVM), K-nearest neighbor (kNN), Naïve
Bayes (NGB) and Decision tree (DT).

The basic model for Support Vector Machine is to find the best separation hyperplane
in the feature space to maximize the interval between positive and negative samples on the
training set. SVM is a supervised learning algorithm used to solve two classification problems.
The K-nearest neighbor classification algorithm is a theoretically mature method and one of
the simplest machine learning algorithms. The idea of this method is in the feature space, if
most of the k nearest (i.e., the nearest neighbors in the feature space) samples near a given
sample belong to a certain category, that sample also belongs to this category. Naïve Bayes is
a generative model of supervised learning. It is simple to implement, has no iteration, and
has high learning efficiency. It will perform well in a large sample size. However, because
the assumption is too strong (assuming that the feature conditions are independent), it is not
applicable in scenarios where the feature conditions of the input vector are related. Decision
Tree is based on the known probability of occurrence of various situations by constructing a
decision tree to obtain the probability that the expected value of the net present value is greater
than or equal to zero, evaluate project risk, and determine its feasibility. DT is a graphical
method of intuitive use for probability analysis.

The methods were evaluated for performance to identify the best performing algo-
rithm, which was further evaluated. For each method, we repeated the modeling process
10 times and used a confusion matrix (CM) [33] to display the classification results. Due
to the small data sets used, we performed a 10-fold cross-validation evaluation of the
classification performance of the methods we tested to validate their performance. We also
computed accuracy, sensitivity and specificity and used them as performance measures for
comparing the four classification algorithms employed.

For evaluation and comparison of the classification and misclassification performance
of the four ML algorithms, we used 4 different scenarios in which any sample could end
up or fall into: (a) true positive (TP) which means the sample was predicted as TNBC and
was the correct prediction; (b) true negative (TN) which means the sample was predicted
as non-TNBC and this was the correct prediction; (c) false positive (FP) which means the
sample was predicted as TNBC, but was non-TNBC, and (d) false negative (FN) which
means the sample was predicted as non-TNBC, but was TNBC. Using this information,
we evaluated the classification results of the model by calculating the overall accuracy,
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sensitivity, specificity, precision, and F1 Score indicators. These performance measures or
indicators were defined and computed as follows:

Accuracy = (TP + TN)/(TP + FP + FN + TN).
Recall = TP/(TP + FN)
Specificity = TN/(TN + FP)
Precision = TP/(TP + FP)
F1 Score = 2 * (Recall * Precision)/(Recall + Precision)

To further validate the methods, the classification results were also compared with clas-
sic feature selection methods such as SVM-RFE [34], ARCO [35], Relief [36] and mRMR [37].
The SVM-REF relies on constructing feature ranking coefficients based on the weight vector
generated by SVM during training. Under this approach, a feature with the smallest rank-
ing coefficient in each iteration is removed, until finally obtaining a descending ranking of
all feature attributes. Area under the Receiver Operating Characteristic Curve (AUC) has
been commonly used by the machine learning community in feature selection. The Relief
algorithm is a feature weighting algorithm, which assigns different weights to features
according to the correlation of each feature and category, and features whose weight are
less than a certain threshold are removed. The mRMR algorithm was used to ensure the
maximum correlation while removing redundant features, which is equivalent to obtaining
a set of “purest” feature subsets. This is particularly useful when the features are very dif-
ferent. For implementation of classification models using ML algorithms and performance
measurements, we used the Waikato Environment for Knowledge Analysis (WEKA) [38],
an open source implemented in the Java-based framework.

3. Results
3.1. Result of Differential Expression and Feature Selection

The objective of this investigation was to identify a set of significantly (p < 0.05)
differentially expressed genes that could distinguish TNBC from non-TNBC, and could
be used as features for developing algorithms for classification of the two types of BC.
We hypothesized that genomic alterations in women diagnosed with TNBC and those
diagnosed with non-TNBC could lead to measurable changes distinguishing the two types
of BC. To address this hypothesis, we performed whole transcriptome analysis comparing
gene expression levels between TNBC and non-TNBC. The genes were ranked based
on estimates of p-values and logFC. Only significantly (p < 0.05) differentially expressed
genes with a high logFC identified after correcting for multiple hypothesis testing were
selected and used as features in model development and validation. Note that all the
estimates of the p-values were adjusted for multiple hypothesis testing using the false
discovery rate procedure [30]. The analysis produced a signature of 5502 significantly
(p < 0.05, |logFC| > 1) differentially expressed genes distinguishing patients with TNBC
from non-TNBC. A summary of the results showing the top 30 most highly significantly
differentially expressed genes along with estimates of p-value and logFC are presented in
Table 1. A complete list of all the 5502 significantly (p < 0.05, |logFC| > 1) differentially
expressed genes is presented in Supplementary Table S1.

Table 1. Top 30 significantly differentially expressed genes distinguishing TNBC from non-TNBC.

Gene Name Chromosome Log2 Fold Change (logFC) Adjust p-Value

ESR1 6q25.1-q25.2 −8.966061547 1.02 × 10−35

MLPH 2q37.3 −6.231155611 1.02 × 10−35

FSIP1 15q14 −6.785688629 2.04 × 10−35

C5AR2 19q13.32 −4.919151624 3.08 × 10−35

GATA3 10p14 −5.490221514 4.68 × 10−35

TBC1D9 4q31.21 −4.720190121 8.82 × 10−35

CT62 15q23 −8.112412605 9.86 × 10−35
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Table 1. Cont.

Gene Name Chromosome Log2 Fold Change (logFC) Adjust p-Value

TFF1 21q22.3 −13.06903719 2.16 × 10−34

PRR15 7p14.3 −6.25260355 2.16 × 10−34

CA12 15q22.2 −6.168504259 2.16 × 10−34

AGR3 7p21.1 −11.46873847 2.38 × 10−34

SRARP 1p36.13 −12.26807072 7.31 × 10−34

AGR2 7p21.1 −8.8234708 1.32 × 10−33

BCAS1 20q13.2 −6.465140066 1.34 × 10−33

LINC00504 4p15.33 −7.846987181 2.13 × 10−33

THSD4 15q23 −5.0752667 2.13 × 10−33

CCDC170 6q25.1 −5.019657927 2.13 × 10−33

RHOB 2p24.1 −2.828470443 2.13 × 10−33

FOXA1 14q21.1 −8.268856317 2.78 × 10−33

ZNF552 19q13.43 −3.813954916 2.78 × 10−33

SLC16A6 17q24.2 −4.45954505 2.99 × 10−33

CFAP61 20p11.23 −3.680660547 4.88 × 10−33

GTF2IP7 7q11.23 −6.49829058 4.98 × 10−33

NEK5 13q14.3 −3.666310207 5.90 × 10−33

TTC6 14q21.1 −7.69269993 1.00 × 10−32

HID1 17q25.1 −3.069655358 1.00 × 10−32

ANXA9 1q21.3 −3.748683928 1.45 × 10−32

AK8 9q34.13 −3.134793023 1.45 × 10−32

FAM198B-AS1 4q32.1 −4.757293943 1.63 × 10−32

NAT1 8p22 −6.278947772 3.24 × 10−32

3.2. Result of Classification

The objective of this investigation was to develop a classification algorithm based
on ML that could accurately identify genes distinguishing truly TNBC from non-TNBC.
The rationale was that molecular based classification using ML algorithms could provide
a framework to accurately identify women at high risk of developing TNBC that could
be prioritized for specialized treatment. To address this need, we evaluated the perfor-
mance of four classification algorithms using the 5502 significantly differentially expressed
genes identified from differential gene expression analysis using different threshold levels
(p-values). The evaluated classifiers included the kNNs, NGB, DT and SVM. Each of these
classifiers was modeled 10 times. Each algorithm was evaluated for accuracy, sensitiv-
ity/recall and specificty, computed as averages of the number of times each was modeled.
The results showing accuracy, recall and specificity for the four classification algorithms
computed as averages are shown in Table 2.

Table 2. Performance of classification model for 5502 signature genes.

Accuracy Recall Specificity

K-nearest neighbor (kNN) 87% 76% 88%
Naïve Bayes(NGB) 85% 68% 87%
Decision trees (DT) 87% 54% 91%

Support Vector Machines (SVM) 90% 87% 90%

Among the four classification algorithms evaluated, SVM had the best performance
with an accuracy of 90%, a recall of 87% and a specificty of 90%, followed by KNN, with an
accuracy of 87%, a recall of 76 and specificty of 88%. Although NGB and DT were relatively
accurate, they performed badly on recall. The variability in the evaluation parameters
can be partially explained by the large numbers of features used and the unbalanced
study design.

As noted above, the large number of features (5502 genes) can affect the performance
of the classification algorithms. Therefore, to determine the optimal performance of each
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algorithm, we performed addition tests on the algorithms using smaller numbers of genes
selected using different threshold levels. Under this approach the 5502 genes were ranked
on FDR adjusted p-values. We selected the top 200, 150, 100 and 50 genes for use in the
performance evaluation of each model using the same parameters as above, accuracy, recall
and specificity. For each set of genes, we tested the performance of all four algorithms. The
results of this investigation are presented in Figure 2 with plots showing the performance
of each model under a specified number of genes plotted as a function of sample size. In
the figure the x-axis accuracy shows the sample size and y-axis shows the accuracy.
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The results show that the performance of each algorithm as function of sample size
was relatively consistent. The performance of all classification algorithms increased with
increasing sample size (Figure 2). No single classification technique proved to be signifi-
cantly superior to all others in the experiments we performed (Figure 2). This can partially
be explained by the small samples used in the investigation and the unbalanced design
of the study project. In general, the plot showed that the SVM algorithm was better than
the other three algorithms at higher sample sizes, i.e., greater than 50 (Figure 2). The DT
algorithms performed worse than the others.

3.3. Performance Evalaution of SVM

Following evaluation of all the four algorithms and the discovery that SVM had the
best performance, we decided to test this algorithm using different numbers to determine
its robustness. We evaluated this algorithm using varying numbers of significant genes as
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determine by p-value and FDR. That is from 1 to 5502 genes. The tests were performed
using the same parameters as those above using these smaller feature sets.

Figure 3 shows results of performance for each number of genes and for overall signif-
icant genes. The top and bottom of the box are the 75th and 25th percentiles, respectively.
The top and bottom bar are the maximum and minimum value. The circles are the outliers.
Figure 3 shows that performance variance was larger when the number of genes was less.

The results showing details of model performance using the training and test sets are
shown in Table 3 which displays the most significant results from these experiments. As
shown in Figure 3 and Table 3, the best classification performance was achieved using the
top 256 genes as features. In general, the smaller sets of genes achieved slightly better scores
compared to using all features/genes, though the improvement was not highly significant.
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Table 3. SVM classifier trained on SVM genes obtained with the DE method.

Number of
Genes

Training Set Test Set

Accuracy Precision Recall Specify F1 Score Accuracy Precision Recall Specify F1 Score

All (5502) 0.90 0.51 0.87 0.90 0.65 0.82 0.33 0.67 0.80 0.44
4096 0.90 0.52 0.88 0.91 0.65 0.85 0.37 0.58 0.71 0.45
2048 0.92 0.56 0.86 0.92 0.68 0.84 0.38 0.75 0.83 0.50
1024 0.91 0.53 0.87 0.91 0.66 0.86 0.41 0.75 0.81 0.53
512 0.90 0.51 0.88 0.90 0.65 0.83 0.33 0.58 0.74 0.42
256 0.91 0.53 0.89 0.91 0.67 0.85 0.38 0.67 0.76 0.48
128 0.89 0.49 0.87 0.90 0.63 0.82 0.35 0.75 0.85 0.47
64 0.87 0.44 0.78 0.88 0.56 0.76 0.26 0.67 0.85 0.37
32 0.78 0.27 0.64 0.80 0.38 0.71 0.19 0.50 0.81 0.27
16 0.74 0.22 0.63 0.75 0.33 0.69 0.21 0.67 0.89 0.31

Accuracy = (TP + TN)/(TP + FP + FN + TN). Precision = TP/(TP + FP). Recall = TP/(TP + FN). F1 Score = 2 * (Recall * Precision)/(Recall + Precision).
Specificity = TN/(TN + FP).
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3.4. Comparative Evaluation and Validation of SVM Results

To further validate the developed algorithms, we compared the classification results
from this investigation with classic feature selection methods such as SVM-RFE (SVM-
Recursive Feature Elimination) [34], ARCO ((Area Under the Curve (AUC) and Rank
Correlation coefficient Optimization) [35], Relief [36] and mRMR (minimal redundancy-
maximal-relevance) [37] using our data. The mRMR method recorded the highest clas-
sification when the number of features/genes was 32, which recorded an accuracy of
83%. The ARCO method achieved the highest classification accuracy (82%) with 64 feature
genes. The SVM-RFE method produced the highest classification accuracy (73%) with 128
feature genes, whereas the Relief method recorded the highest classification accuracy (70)
with 16 feature genes. As evidenced, the classification accuracy of the above methods
was lower than the classification of BC into TNBC and non-TNBC models developed and
implemented in this investigation.

4. Discussion

We evaluated the performance of four ML-based classification algorithms: kNNs,
NGB, DT and SVM for classification of breast cancer into TNBC and non-TNBC using
gene expression data. The investigation revealed that ML algorithms could classify BC into
TNBC and non-TNBC. SVM algorithm was the most accurate among the four algorithms.
This is consistent with previous reoprts [39]. Nindrea et al. compared SVM to artificial
neural network (ANN), decision tree (DT), Naïve Bayes (NB) and K-Nearest Neighbor
(KNN) in a meta-analysis of classification algorithms in BC and found that SVM was
superior to the other three algorithms [39]. BC classification using imaging data has also
been reported [40].

The main difference and novel aspect of our investigation is that it is the first study to
report application of ML to classification of BC into TNBC and non-TNBC using RNA-seq
data. The clinical significance of this investigation is that ML algorithms could be used
not only to improve diagnostic accuracy, but also for identifying women at high risk of
developing TNBC which could be prioritized for treatment.

As noted earlier in this report, breast cancer is a highly heterogeneous disease. Thus,
one of the major challenges is building accurate and computationally efficient algorithms
for classifying patients to guide therapeutic decision making at the point of care. Our in-
vestigation shows that among ML-based classification algorithms, SVM out performed the
other algorithms and provides the best framewrok for BC classification. This is consistent
with previous reports [41–44]. The clinical significance is that, in addition to classification
of BC into TNBC and non-TNBC as demonstrated in this investigation, SVM could also be
used for efficient risk, diagnosis and outcome predictions where it has been reported to
be superior to other algorithms [41–44]. Althouh we did not investigate use of ML and in
particular SVM algorithm for risk, diagnosis and outcome prediction in this investigation,
several studies have reported such application in BC and have also shown its superiority
to other algorithms [41–44], which is consistent with our investigation.

Traditional classification of TNBC and non-TNBC involves use of immunohstochemical
staining conducted by hispothologists. In addition, imaging has been used extensively in
BC classification [19,40] and radiomics is increasingly being used as a diagnostic tool [20,21].
While there is no doubt that BC clasification using histopathology, imaging and radiomics
has been relatively effective, ML algorithms proposed in this investigation provides a novel
framework for accurate classification of BC tumors into TNBC and non-TNBC and could
complement imaging modalities. More importantly, ML algorithms could help reduce the
possible human errors that can occurr because of fatigued or inexperienced experts when
medical data is to be examined in shorter time and in more detail. Moreover, given the
aggressivenees and lethality of TNBC, accurate identifification of patients with this lethal
disease in the early stages may lead to early interventions and improved outcomes.

Our investigation revealed that ML algorithms offer the potential for classifying BC
into TNBC and non-TNBC. However, limitations of the study must be acknowledged. First
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the data size was relatively small and the design was unbalanced with TNBC samples
being significantly fewer than non-TNBC. This has the practical consequence of reducing
the statistical power of models and also introducing sampling errors in feature selections
from differentiall expression analysis. Second, although our ML evaluated and compared
the performance of four algorithms, there are many other algorithms that we did not
evaluate. However, not withstanding this weakness, evaluation of other algorithms has
shown that SVM is superior in BC classification [41–44]. Lastly, but not least, both TNBC
and non-TNBC consist of multiple subtypes of BC and the proposed ML algorithms did not
address that problem, as such an undertaking was beyond the scope of this investigation
given the small samples sizes and lack of information for ascertaining subtypes.

5. Conclusions

The investigation revealed that ML algorithms can accurately classify BC into the two
primary types, TNBC and non-TNBC. The investigation confirmed that the SVM algorithm
is able to calculately classify BC into TNBC and non-TNBC more accurately, and with more
sensitivity, specificity and lower misclassification errors than other ML algorithms. Further
research is recommended to investigate the power of ML algorithms in classifications
of subtypes of TNBC and non-TNBC, to identify the best classification features and to
integrate radiomics with genomics data. These are subjects of our future investigations.

6. Patents

No patents resulted from the work reported in this manuscript.
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