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Abstract: Autism Spectrum Disorder (ASD) is associated with many variations in metabolism, but
the ex-act correlates of these metabolic disturbances with behavior and development and their links
to other core metabolic disruptions are understudied. In this study, large-scale targeted LC-MS/MS
metabolomic analysis was conducted on fasting morning plasma samples from 57 children with ASD
(29 with neurodevelopmental regression, NDR) and 37 healthy controls of similar age and gender.
Linear model determined the metabolic signatures of ASD with and without NDR, measures of
behavior and neurodevelopment, as well as markers of oxidative stress, inflammation, redox, methy-
lation, and mitochondrial metabolism. MetaboAnalyst ver 5.0 (the Wishart Research Group at the
University of Alberta, Edmonton, Canada) identified the pathways associated with altered metabolic
signatures. Differences in histidine and glutathione metabolism as well as aromatic amino acid (AAA)
biosynthesis differentiated ASD from controls. NDR was associated with disruption in nicotinamide
and energy metabolism. Sleep and neurodevelopment were associated with energy metabolism while
neurodevelopment was also associated with purine metabolism and aminoacyl-tRNA biosynthesis.
While behavior was as-sociated with some of the same pathways as neurodevelopment, it was also
associated with alternations in neurotransmitter metabolism. Alterations in methylation was associ-
ated with aminoacyl-tRNA biosynthesis and branched chain amino acid (BCAA) and nicotinamide
metabolism. Alterations in glutathione metabolism was associated with changes in glycine, serine
and threonine, BCAA and AAA metabolism. Markers of oxidative stress and inflammation were
as-sociated with energy metabolism and aminoacyl-tRNA biosynthesis. Alterations in mitochondrial
metabolism was associated with alterations in energy metabolism and L-glutamine. Using behavioral
and biochemical markers, this study finds convergent disturbances in specific metabolic pathways
with ASD, particularly changes in energy, nicotinamide, neurotransmitters, and BCAA, as well as
aminoacyl-tRNA biosynthesis.

Keywords: amino acid metabolism; autism spectrum disorder; energy metabolism; mass spectrometry;
metabolomics; mitochondria; redox metabolism

1. Introduction

Autism spectrum disorder (ASD) is one of the most concerning medical problems
of our era. ASD continues to increase in prevalence with the most recent Autism and
Developmental Disabilities Monitoring Network estimates suggesting that 1 in 44 children
have the disorder [1] and a more recent study estimating that it might reach a prevalence
of 1 in 30 [2]. Despite studying ASD for decades [3] well-validated objective biomarkers
to assist with the diagnosis are still lacking with most biomarkers in the early stages of
development [4]. Examination of potential physiological markers associated with ASD
reveal that metabolic and immune biomarkers are promising, consistent with converging
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evidence that suggests that mitochondrial dysfunction and oxidative stress are common
factors in many neurodevelopmental disorders [5–8] and interact with immune system
activation to create a pathophysiological disturbance known as the ‘Bad Trio’ [9].

ASD is associated with several systemic metabolic abnormalities. Although only 5%
of children with ASD exhibit classically mitochondrial disease [10], up to 80% demon-
strate biomarkers of abnormalities in energy metabolism [11]. Abnormal biomarkers of
carbohydrate-linked mitochondrial dysfunction such as lactate, pyruvate, and alanine [10]
as well as fatty acid oxidation biomarkers [12,13] are prevalent in the ASD population.
Although biomarkers of fatty acid metabolism are reported as blood-based biomarkers,
such abnormalities have been found in the stool [14] and brain [15] in children with ASD.
Abnormalities in folate one-carbon metabolism (FOCM) are so prevalent in ASD that they
have recently been proposed to be potentially diagnostic [16–18]. Importantly, abnormali-
ties in FOCM have downstream effects on methylation, transsulfuration, redox metabolism,
and oxidative stress [19,20].

Studies on blood amino acids in ASD tend to find variable results, but, overall, studies
find lower overall amino acid concentrations in the blood [10] and urine [21]. A large
prospective, controlled non-randomized multisite study found dysregulated branched
chain amino acid (BCAA) metabolism in 17% of children with ASD, as well as dysreg-
ulated glutamine, glycine, and ornithine in smaller ASD subgroups [22]. Other studies
have implicated tryptophan and tyrosine, two important neurotransmitter precursors, as
dysregulated in ASD [23–25], but some have suggested that these changes may be related
to restricted diets commonly associated with ASD [26]. Consistent with reduced neuro-
transmitter amino acid precursors, studies have implicated abnormalities in monoamine
neurotransmitters themselves [27]. Abnormalities in central folate [28] and tetrahydro-
biopterin [29], cofactors required to convert precursors to neurotransmitters, could also
explain monoamine neurotransmitter abnormalities.

One interesting finding in previous studies that might link many of the aforemen-
tioned metabolic abnormalities is disruption of niacin metabolism. De novo synthesis of
niacin in the human body utilizes the essential amino acid tryptophan [30], and niacin is
the precursor for nicotinamide adenine dinucleotide (NAD+) and nicotinamide adenine
dinucleotide phosphate (NADP+), which are cofactors essential for may metabolic reactions
including redox and energy metabolism [31]. Biomarkers of nicotinamide have been found
to be abnormal in the urine [32,33] and stool [14] in children with ASD.

One complication of metabolic biomarker studies is the large number of metabolites
considered in the analysis, making any one metabolite often non-specific. Thus, for such
analysis, pathway analysis is often helpful to better understand the complex data [34]. In
this study, we use pathway analysis and analysis of metabolic-metabolic interactions to
better understand metabolic signatures associated with ASD. Many studies try to discover
a set of biomarkers which separate individuals with ASD from TD individuals, but such an
approach minimizes that significance of the profound heterogenicity associated with the
ASD population. Thus, in this study, the heterogenicity in the ASD sample is used to better
understand metabolomic abnormalities. Measures of behavior and cognition as well as
specific measures of metabolic derangements associated with ASD are correlated with the
metabolomic measurements to better understand the variation in metabolic abnormalities
associated with ASD and their significance.

2. Materials and Methods
2.1. Participants

The participants in this study represent a subset of previously published cohorts [35,36].
Thus, some of the methods can be found in our previous publications, although they are
briefly outlined here. The protocol was approved by the Institutional Review Board at
the University of Arkansas for Medical Sciences (Little Rock, AR, USA), and the study is
registered in clinicaltrials.gov (NCT02000284). Parents of participants provided written
informed consent. Participants characteristics are given in Table S1.

clinicaltrials.gov


J. Pers. Med. 2022, 12, 1727 3 of 34

Exclusion criteria were (i) chronic treatment with medications that would detrimen-
tally affect mitochondrial function such as antipsychotic medications; (ii) vitamin or mineral
supplementation exceeding the recommended daily allowance, and (iii) prematurity. In-
clusion criteria included the ability to tolerate phlebotomy and, for those with ASD, a
diagnosis of ASD as documented using our previous published criteria [35,36]. Typically
developing (TD) children were include if they did not have any neurological disorders or
developmental delays, and ASD symptoms were ruled out with a Social Communication
Questionnaire score <12. Children underwent a fasting blood draw in the morning.

The neurodevelopmental regression (NDR) history was obtained using the Devel-
opmental and Neurobehavioral Regression (DANR) questionnaire which is described in
detail elsewhere [35]. The DANR records detail information about NDR including specific
questions on premorbid functioning before the regression, duration of the regression, spe-
cific skills lost and when the skills were regained, whether there was a single or multiple
regressions and any known trigger such as illness, fever, or seizure.

2.2. Behavioral Measurements

As standard practice for our laboratory [37,38], research staff were trained by a mul-
tispecialty team consisting of two licensed psychologists and a speech therapist prior to
performing assessments. During the study, a research psychologist supervised research staff
and provided feedback and retraining if necessary. The Vineland Adaptive Behavior Scale
(VABS) 2nd edition was completed using the Survey Interview Form, and parents com-
pleted the Aberrant Behavior Checklist (ABC) and the Social Responsiveness Scale (SRS).
These validated measures provide an assessment of neurodevelopment and ASD symptoms
in children with ASD [37,38]. Sleep was assessed with the standard tool for documenting
sleep abnormalities in ASD, the Childhood Sleep Habits Questionnaire (CSHQ) [39]. Core
Language (CL) was assessed by the most appropriate instrument given the participants
age, either the Clinical Evaluation of Language Fundamentals (CELF)-preschool-2, CELF-
4, or the Preschool Language Scale-5 (PLS-5). The standardized summary score of each
instrument (mean 100, standard deviation 15) was used as the measure of core language.

2.3. Sample Collections and Storage

Up to 20 mL of blood was collected into an ethylenediaminetetraacetic acid (EDTA)-
Vacutainer tube, chilled on ice, and centrifuged at 1500× g for 10 min at 4 ◦C to separate
plasma within 30 min of collection. Plasma was removed and stored at −80 ◦C for later
analysis and replaced with room temperature wash buffer containing Ca+2/Mg+2-free PBS
with 0.1% BSA and 2 mM EDTA. Diluted blood was then layered on top of Histopaque-
1077 (Sigma Aldrich, St. Louis, MO, USA) and centrifuged at 400× g for 30 min at room
temperature. Peripheral blood mononuclear cells (PBMCs) were washed twice with wash
buffer and counted using a hemocytometer. Viability exceeded 95% in all cases and recovery
was approximately 106/mL in most cases. Isolation procedure duration was 90–120 min.
Fresh PBMCs were used for the mitochondrial respiration assay.

2.4. Redox Biomarkers

High Performance Liquid Chromatography with electrochemical detection was used
to measure free and total reduced glutathione (GSH), as well as oxidized glutathione
(GSSG) from which the free (fGSH/GSSG) and total (tGSH/GSSG) glutathione redox
ratios were calculated. Intracellular redox ratio (iGSH/GSSG) from frozen PBMC was also
measured. Methylation potential was measured as the S-adenosylmethionine (SAM) to S-
adenosylhomocysteine (SAH) ratio. Finally, 3-nitrotyrosine (3-NT), a measure of oxidative
damage to proteins, and 3-chlorotyrosine (3-CT), a measure of immune activity, were also
measured. Measurements were performed within 2 weeks of collection [40,41].
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2.5. Mitochondrial Respiration Assay

Bioenergetic data was obtained from fresh PBMCs the same day as collection using a
state-of-the-art Seahorse XFe96 Analyzer (Seahorse Bioscience, Inc., North Billerica, MA,
USA). The Seahorse analyzer measures oxygen consumption rate (OCR) in real-time in a
96-well plate in a wide range of intact living cell types [42,43]. The assay measures several
key parameters: Adenosine triphosphate (ATP) Linked Respiration (ALR) and Proton
Leak Respiration (PLR). Mitochondrial function in PBMCs of children with ASD has been
measured using the Seahorse XFe96 in siblings with ASD and genetic abnormalities [44], in
children being evaluated for immune abnormalities to demonstrate the correlation between
cytokine profiles and mitochondrial function in children with ASD [45] and in a cohort of
children with ASD with and without NDR [46].

PBMCs were placed in assay media (unbuffered RPMI supplemented with 1 mM
pyruvate, 2 mM glutamate, and 25 mM glucose) that was warmed to 37 ◦C and pH
adjusted to 7.4 prior to cell suspension. XFe96 plates (Seahorse Bioscience, Billerica, MA,
USA) were prepared by adding 25 µL of 50 µg/mL Poly-D-lysine (EMD Millipore, Billerica,
MA, USA) for two hours, washing with 250 µL sterile water and drying in a laminar flow
hood overnight prior to seeding with 4 × 105 viable PBMCs per well. After seeding, the
plates were spun with slow acceleration (4 on a scale of 9) to a maximum of 100 g for 2 min
and then allowed to stop with zero braking (Eppendorf Model 5810R Centrifuge). The plate
orientation was reversed, and the plate was spun again to 100 g in the same fashion. Prior
to Seahorse assay, XFe96 wells were visualized using an inverted microscope to ensure
PBMCs were evenly distributed in a single layer and viability of the cells was confirmed by
trypan blue exclusion. Four replicate samples were measured simultaneously to improve
assay reliability. Runs with clear measurement probe failure, reagent injection failures, or
non-physiology measurements (ALR or PLR < −1 pmol/min) were eliminated. In our
previous study, measurement reliability was found to be excellent [35].

2.6. Metabolomic Analysis

Procedures of metabolomic analysis have been outlined previously [34] but the proce-
dures are outlined here for completeness.

2.6.1. Sample Processing

Frozen samples were first thawed overnight under 4 ◦C, and 50 µL of each sample was
placed in a 2 mL Eppendorf vial. The initial step for protein precipitation and metabolite
extraction was performed by adding 500 µL MeOH and 50 µL internal standard solution
(containing 1810.5 µM 13C3-lactate and 142 µM 13C5-glutamic acid). The mixture was then
vortexed for 10s and stored at −20 ◦C for 30 min, followed by centrifugation at 14,000 RPM
for 10 min at 4 ◦C. The supernatant (450 µL) was collected into a new Eppendorf vial, and
dried using a CentriVap Concentrator (Labconco, Fort Scott, KS, USA). The dried samples
were reconstituted in 150 µL of 40% PBS/60% ACN.

2.6.2. Reagents

Acetonitrile (ACN), methanol (MeOH), ammonium acetate, and acetic acid, all LC-
MS grade, were purchased from Fisher Scientific (Pittsburgh, PA, USA). Ammonium
hydroxide was bought from Sigma-Aldrich (Saint Louis, MO, USA). DI water was provided
in-house by a Water Purification System from EMD Millipore (Billerica, MA, USA). PBS
was bought from GE Healthcare Life Sciences (Logan, UT, USA). The standard compounds
corresponding to the measured metabolites were purchased from Sigma-Aldrich (Saint
Louis, MO, USA) and Fisher Scientific (Pittsburgh, PA, USA).

2.6.3. LC-MS/MS Method

The large-scale targeted LC-MS/MS method is widely used [47–52]. LC-MS/MS ex-
periments were performed on an Agilent 1290 UPLC-6490 QQQ-MS (Santa Clara, CA, USA)
system. Each sample was injected twice, 10 µL for analysis using negative ionization mode
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and 4 µL for analysis using positive ionization mode. Both chromatographic separations
were performed in hydrophilic interaction chromatography (HILIC) mode on a Waters
XBridge BEH Amide column (150 × 2.1 mm, 2.5 µm particle size, Waters Corporation,
Milford, MA, USA). The flow rate was 0.3 mL/min, auto-sampler temperature was kept at
4 ◦C, and the column compartment was set at 40 ◦C. The mobile phase was composed of
Solvents A (10 mM ammonium acetate, 10 mM ammonium hydroxide in 95% H2O/5%
ACN) and B (10 mM ammonium acetate, 10 mM ammonium hydroxide in 95% ACN/5%
H2O). After the initial 1 min isocratic elution of 90% B, the percentage of Solvent B de-
creased to 40% at t = 11 min. The composition of Solvent B maintained at 40% for 4 min
(t = 15 min), and then the percentage of B gradually went back to 90%, to prepare for the
next injection.

The mass spectrometer was equipped with an electrospray ionization (ESI) source. Tar-
geted data acquisition was performed in multiple-reaction-monitoring (MRM) mode. The
whole LC-MS system was controlled by Agilent Masshunter Workstation software (Santa
Clara, CA, USA). The extracted MRM peaks were integrated using Agilent MassHunter
Quantitative Data Analysis (Santa Clara, CA, USA). A pooled sample, which was a mixture
of all blood samples was used as the quality-control (QC) sample. We ran the QC once
every 10 study samples to ensure the good data quality.

2.7. Data Analysis

Metabolomics data was reviewed, and compounds with > 20% coefficient of variation
or without measurable peaks in >20% of all the samples were eliminated. MetaboAnalyst
5.0 (Wishart Research Group, University of Alberta, Edmonton, Canada) was used for data
analysis [53]. Data were scaled using Log10 transformation and auto-scaling (mean-centered
and divided by the standard deviation of each variable) (See Figure S1).

Linear Model Analysis was used to define the significantly different metabolites from
one disease group (ASD) and two sub disease groups (ASD NDR, ASD No NDR) as
compared to control (CNT) group. Correlation Analysis was used to define significant
metabolites that were correlated to participants from both ASD and CNT groups and their
behavioral scores from the CL, VABS, SRS, CSHQ, and ABC. Correlation Analysis was
also used to define significant metabolomic measurements with methylation potential,
tGSH/GSSG, fGSH/GSSG, iGSH/GSSG, 3-NT and 3-CT.

Alpha was set to ≤0.05 to identify potential important metabolites at the risk of
incorrectly identifying metabolites which are not important. Since the metabolites identified
were then entered into pathway analysis, metabolites which may be erroneously identified
most likely will be eliminated as they will not be consistent with other metabolites identified
in common pathways. Furthermore, by examining the relationships between behavior and
metabolic changes, the common pathways which converge across multiple analyses can
be identified. Regarding statistical power of the comparisons in this study, the average
statistic across comparisons was used to calculate the effect size. For group comparisons
an t-value of 2.5 resulted in a medium effect size of a Cohen d’ of 0.52 which provides
a power of 68%. For correlation analysis an average r of 0.3 is a medium effect size and
provides an 85% power. G * Power v 3.1.9.7 (Universität Kiel, Germany) was used for the
power calculations.

Key metabolites identified by linear models and correlation were investigated using
the pathway and metabolite-metabolite interaction tool of the network analysis package
MetaboAnalyst 5.0. Metabolite networks were analyzed in detail. The major key metabo-
lites were determined by decreasing node scope to minimum number of nodes to the
top-level nodes.

3. Results
3.1. Linear Models

Comparison of ASD vs. CNT found 23 significant metabolites associated with three
significant pathways (Table 1). Metabolite-metabolite interaction analysis confirmed the
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central role of L-Histidine, Glycine, and Pyroglutamic acid but also demonstrated a central
role of ATP (Figure 1A).

Table 1. Metabolites and their pathways which are different between autism spectrum disorder and
control participants.

Significant Metabolites Significant Pathways

Metabolite Fold ∆ Pathway Matched
Metabolites Impact

Cytidine *** 7.17 Histidine metabolism *
L-Histidine *,

1-Methylhistamine
**

0.31

Taurine ** 4.52 Phenylalanine, tyrosine
and tryptophan

biosynthesis
Phenylpyruvate 0.05

5-Aminolevulinic acid ** 0.22

Dodecanoic acid ** 0.26 Glutathione metabolism
Glycine **,

Pyroglutamic
acid *

0.10

Glycine ** 3.77

1-Methylhistamine ** 3.72

Adenosine triphosphate ** 3.65

2,3,4,5-
Tetrahydroxypentanoic

acid **
3.63

4-Hydroxyproline ** 0.28

Dihydroxyacetone ** 3.27

4-Pyridoxic acid ** 3.26

Phenylpyruvic acid ** 0.31

2-Aminoisobutyric acid ** 3.22

Xylitol ** 3.21

Isobutyric acid * 3.20

Capric acid * 0.31

D-Leucic acid * 0.32

L-Histidine * 3.17

DL-Acetylcarnitine * 3.10

Ribitol * 3.05

L-3-Phenyllactic acid * 0.33

Pyroglutamic acid * 2.83

4-Hydroxybenzaldehyde * 0.37
* p ≤ 0.05, ** p ≤ 0.01; *** p ≤ 0.001. Metabolites in green are higher in the ASD sample while those in red are
reduced in the ASD sample.

A comparison of ASD individuals with and without NDR identified three significant
metabolites which mapped to one significant pathway (Table 2). Metabolite-metabolite
analysis confirmed the importance of nicotinamide metabolism and emphasized its link to
ATP production (Figure 1B).
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Figure 1. Metabolite-metabolite interaction network for significant metabolites that differentiate
participants with (A) autism spectrum disorder (ASD) from typically developing controls and
(B) those with ASD with and without neurodevelopmental regression (NDR). Size of the node
indicates importance in the network. The network highlights that importance of adenosine triphos-
phate in differentiating those with and without ASD and those with ASD but with and without NDR.
The importance of nicotinamide metabolism in differentiating those with and without NDR is also
highlighted by the interaction analysis.
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Table 2. Metabolites and their pathways which are different between participants with and without
neurodevelopmental regression.

Significant Metabolites Significant Pathways

Metabolite Fold ∆ Pathway Matched
Metabolites Impact

2-Pyrocatechuic acid * 0.26 Nicotinate/nicotinamide
metabolism * Niacinamide * 0.19

Niacinamide * 3.92

Acetamide * 3.74
* p ≤ 0.05. Metabolites in green are higher in the neurodevelopmental regression groupe while those in red are
reduced in those without neurodevelopmental regression.

Comparison of CNT to individuals with ASD but without NDR found 18 significant
metabolites which mapped to the aromatic amino acid (AAAs) pathway (Table 3). How-
ever, this pathway had low impact, most likely because these metabolites represented many
diverse pathways (Figure 2A). Indeed, metabolite-metabolite analysis identified several cen-
tral metabolites including dodecanoic and capric acid (both medium chain triglycerides),
phenylpyruvic acid (a phenylalanine derivative), cytidine (a pyrimidine involved in neuronal-
glial glutamate cycling), and taurine (involved in transsulfuration metabolism).

Table 3. Metabolites and their pathways which are different between autism spectrum disorder
without neurodevelopmental regression as compared to control participants.

Significant Metabolites Significant Pathways

Metabolite Fold ∆ Pathway Matched Metabolites Impact

5-Aminolevulinic acid *** 0.15
Phenylalanine, tyrosine

and tryptophan
metabolism *

Phenylpyruvic acid * 0.00

Cytidine *** 6.12

4-Hydroxyproline ** 0.17

4-Pyridoxic acid ** 4.50

2,3,4,5-
Tetrahydroxypentanoic

acid **
4.31

D-Leucic acid * 0.26

L-3-Phenyllactic acid * 0.27

Ribitol * 3.66

Isobutyric acid * 3.49

Xylitol * 3.48

4-Hydroxybenzaldehyde * 0.29

Taurine * 3.27

1-Methylhistamine * 3.23

2-Aminoisobutyric acid * 3.22

4-Hydroxybutyric acid * 0.31

Capric acid * 0.32

Phenylpyruvic acid * 0.33

Dodecanoic acid * 0.33

* p ≤ 0.05, ** p ≤ 0.01; *** p ≤ 0.001.
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Figure 2. Metabolite-metabolite interaction network for significant metabolites that differentiate partici-
pants with (A) autism spectrum disorder (ASD) from typically developing controls. Size of the node
indicates importance in the network. There were multiple metabolites that appeared to differential the
individuals with ASD without a history of neurodevelopmental regression (NDR) from control (B),
particularly phenylpyruvic acid, a phenylalanine derivative. Controls were differentiated from those
with ASD and a history of NDR by several metabolites, particularly adenosine triphosphate.
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Comparing CNT to individuals with ASD with NDR found 19 significant metabo-
lites which mapped to four significant pathway (Table 4). Metabolite-metabolite analysis
converged on ATP which strongly implicates mitochondrial function in NDR (Figure 2B).

Table 4. Metabolites and their pathways which are different between autism spectrum disorder with
neurodevelopmental regression and control participants.

Significant Metabolites Significant Pathways

Metabolite Fold ∆ Pathway Matched Metabolites Impact

Cytidine *** 9.66
Aminoacyl-tRNA biosynthesis ***

L-Asparagine *,
L-Histidine *,

Glycine **, L-Serine **

0.17
Taurine *** 7.54

Adenosine triphosphate *** 6.86 Histidine metabolism ** L-Histidine*,
1-Methylhistamine * 0.31

Glycine ** 6.49 Glyoxylate and dicarboxylate
metabolism * L-Serine **, Glycine ** 0.15

Dodecanoic acid ** 0.20 Glycine, serine and threonine
metabolism * L-Serine **, Glycine ** 0.46

D,L-Acetyl-carnitine ** 4.84

Dihydroxyacetone ** 4.76

Acetamide ** 4.69

L-Histidine ** 4.60

Hydroxykynurenine ** 4.54

L-Serine ** 4.49

1-Methylhistamine * 4.16

L-Asparagine * 3.94

trans-Aconitic acid * 0.28

2,3,4,5-Tetrahydroxypentanoic
acid * 3.49

Capric acid * 0.30

Heptadecanoic acid * 3.33

2-Aminoisobutyric acid * 3.31

Isobutyric acid * 3.27

* p ≤ 0.05, ** p ≤ 0.01; *** p ≤ 0.001.

3.2. Behavioral Correlations: Pathway and Network Analysis

CSHQ correlated with 25 metabolites that mapped to three pathways (Table 5).
Metabolite-metabolite interaction analysis confirmed the role of D-ribose 5-phosphate,
an essential product of the pentose phosphate pathway that can be used to synthesize
guanosine triphosphate (GTP) and ATP (Figure 3). The analysis confirmed the role of gua-
nine, which is the nucleobase of GTP and found two central metabolites: 2-pyrocatechuic
acid (benzoic acid metabolite) and pentadecanoic acid (straight-chain saturated fatty acid).

Table 5. Metabolites and their pathways which correlate with sleep disruption.

Significant Metabolites Significant Pathways

Metabolite r Pathway Matched
Metabolites Impact

Isocitric acid *** 0.37 Citrate cycle (TCA cycle) ** Isocitrate ***, Citrate
**, Fumarate * 0.17

Glucuronic acid *** 0.36 Glyoxylate and
dicarboxylate metabolism *

Citrate **, Glycine *,
Isocitrate *** 0.14
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Table 5. Cont.

Significant Metabolites Significant Pathways

Metabolite r Pathway Matched
Metabolites Impact

Citric acid ** 0.35 Pentose phosphate
pathway *

D-Ribose
5-phosphate **,

D-Ribose *
0.17

Phenylpyruvic acid ** 0.33

3S-methyl-2-oxo-pentanoic
acid ** 0.32

Phenylbutazone ** −0.32

trans-Aconitic acid ** 0.31

2-Hydroxybutyric acid ** −0.30

Cytidine ** −0.29

Amiloride ** −0.29

D-Ribose 5-phosphate ** −0.28

4-Hydroxyproline * 0.27

Glycine * −0.26

Citraconic acid * 0.26

D-Ribose * 0.26

Ketoleucine * 0.26

1-Methylhistamine * −0.25

Dodecanoic acid * 0.25

Pregnenolone sulfate * −0.25

5-Aminolevulinic acid * 0.24

2-Methylglutaric acid * −0.24

Taurine * −0.24

L-3-Phenyllactic acid * 0.24

Fumaric acid * 0.23

N-Acetylglutamine * −0.22

Dihydroxyacetone * −0.22
* p ≤ 0.05, ** p ≤ 0.01; *** p ≤ 0.001.

The VABS was correlated with 28 metabolites that mapped to four pathways (Table 6).
Metabolite-metabolite interaction analysis highlighted the role of D-ribose 5-phosphate and
other glucogenic amino acids, such as L-serine, glycine, and L-glutamine (Figure 4). The
metabolite-metabolite interaction analysis also highlighted two citric acid cycle (CAC) organic
acids, citric acid and isocitric acid, confirming the important role of the mitochondria.

The SRS correlated with 30 metabolites that mapped to 7 significant pathways (Table 7).
Metabolite-metabolite interaction analysis confirmed the central role of D-ribose 5-phosphate
and highlighted the metabolic and signaling roles of various CAC metabolites, such as
citrate and isocitrate (Figure 5). This analysis also underlined the major role of the neu-
rotransmitter, glycine; the glucogenic amino acids, L-alanine, L-glutamine, and L-serine;
and the ketoacids, alpha-ketoisovaleric acid and phenylpyruvate. These metabolites were
matched to various significant pathways such as glyoxylate and dicarboxylate metabolism;
aminoacyl-tRNA biosynthesis; alanine, aspartate and glutamate metabolism; and glycine,
serine and threonine metabolism.
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Figure 3. Metabolite-metabolite interaction network for significant metabolites that correlate to sleep
problems. Size of the node indicates importance in the network. The interaction analysis confirmed
the role of D-ribose 5-phosphate, an essential product of the pentose phosphate pathway that can be
used to synthesize guanosine triphosphate and adenosine triphosphate.

Table 6. Metabolites and their pathways which correlate with neurodevelopment.

Significant Metabolites Significant Pathways

Metabolite r Pathway Matched Metabolites Impact

Phenylpyruvic acid ** 0.35 Glyoxylate and dicarboxylate
metabolism ***

Citrate *, L-Serine **, Glycine **,
Isocitrate *, L-Glutamine * 0.18

Cytidine ** −0.35

Glycine ** −0.33 Glycine, serine and threonine
metabolism *

L-Serine **, Glycine **,
5-Aminolevulinate

0.46
Taurine ** −0.33

Phenylbutazone ** −0.32 Citrate cycle (TCA Cycle) * Isocitrate *, Citrate * 0.14

Amiloride ** −0.31
Aminoacyl-tRNA biosynthesis * L-Glutamine *, Glycine **,

L-Serine **
0.17

Glucuronic acid ** 0.31
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Table 6. Cont.

Significant Metabolites Significant Pathways

Metabolite r Pathway Matched Metabolites Impact

L-Serine ** −0.30

3S-methyl-2-oxo-pentanoic acid ** 0.30

DL-Acetylcarnitine ** −0.30

1-Methylhistamine ** −0.30

L-3-Phenyllactic acid ** 0.29

Dihydroxyacetone * −0.29

L-Glutamine * −0.28

Dodecanoic acid * 0.27

Citraconic acid * 0.27

Isocitric acid * 0.27

4-Pyridoxic acid * −0.26

Capric acid * 0.26

Ketoleucine * 0.26

Pregnenolone sulfate * −0.26

5-Aminolevulinic acid * 0.25

Isovaleric acid * −0.25

2-Aminoisobutyric acid * −0.24

Citric acid * 0.24

4-Hydroxyproline * 0.24

D-Leucic acid * 0.23

D-Ribose 5-phosphate * −0.22
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Figure 4. Metabolite-metabolite interaction network for significant metabolites that correlate to
neurodevelopment. Size of the node indicates importance in the network. The interaction analysis
highlights with citric acid cycle intermediates, citric acid and isocitric acid, as well as glucogenic
amino acids, such as L-serine, glycine, and L-glutamine, highlighting the role of energy metabolism
and the mitochondria specifically.
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Table 7. Metabolites and their pathways which correlate with autism symptoms.

Significant Metabolites Significant Pathways

Metabolite r Pathway Matched Metabolites Impact

Phenylpyruvic acid *** −0.44 Glyoxylate and
dicarboxylate

Metabolism ***

Citrate *, L-Serine **, Glycine *,
Isocitrate *, L-Glutamine * 0.18

Cytidine *** 0.42

5-Aminolevulinic acid *** −0.39 Valine, leucine and
isoleucine

Biosynthesis **

3-Methyl-2-oxobutanoic acid *,
4-Methyl-2-oxopentanoate *** 0

3S-methyl-2-oxo-pentanoic acid *** −0.38

4-Hydroxyproline ** −0.36 Aminoacyl-tRNA
biosynthesis **

L-Glutamine *, Glycine *,
L-Serine **, L-Alanine * 0.17

L-3-Phenyllactic acid ** −0.36

Taurine ** 0.35 Alanine, aspartate and
glutamate

Metabolism *

L-Alanine *, L-Glutamine *,
Citrate *

0.11
Citraconic acid ** −0.35

Ketoleucine ** −0.35 Glycine, serine and
threonine

Metabolism *

L-Serine **, Glycine *,
5-Aminolevulinate ***

0.46
1-Methylhistamine ** 0.33

D-Leucic acid ** −0.32 Pentose and glucuronate
Interconversions *

Xylitol *, D-Glucuronate ** 0.3
Glucuronic acid ** −0.32

Amiloride ** 0.30 Citrate cycle (TCA Cycle) * Isocitrate *, Citrate * 0.14

L-Serine ** 0.29

Xylitol * 0.29

Isocitric acid * −0.28

Glycine * 0.27

DL-Acetylcarnitine * 0.25

L-Glutamine * 0.25

Dihydroxyacetone * 0.25

trans-Aconitic acid * −0.25

Citric acid * −0.25

Capric acid * −0.24

L-Alanine * −0.24

2-Aminoisobutyric acid * 0.24

Isobutyric acid * 0.23

2,3,4,5-Tetrahydroxypentanoic acid * 0.23

4-Pyridoxic acid * 0.23

D-Ribose 5-phosphate * 0.23

Alpha-ketoisovaleric acid * −0.22

* p ≤ 0.05, ** p ≤ 0.01; *** p ≤ 0.001.

The CL correlated with 8 metabolites that mapped to two significant pathways
(Table 8). Metabolite-metabolite interaction analysis highlighted the roles of ATP and
ribose 5-phosphate (Figure 6). The roles of the CAC organic acids citric and isocitric acid
were again highlighted. Additionally, dodecanoic acid (medium chain fatty acid) and
glycine (neurotransmitter) were confirmed as central metabolites.

The ABC was correlate with 14 metabolites that mapped to two significant pathways:
phenylalanine metabolism and AAA biosynthesis (Table 9). Metabolite-metabolite inter-
action analysis highlighted the central role of guanine (a component of GTP), cytidine (a
component of RNA), and caprylic acid (a medium-chain fatty acid) (Figure 7).
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Figure 5. Metabolite-metabolite interaction network for significant metabolites that correlate to
autism symptoms. Size of the node indicates importance in the network. The interaction analysis
highlights with citric acid cycle metabolites such citric acid and carbon dioxide as well as glucogenic
amino acids, such as L-serine, glycine, and L-glutamine, highlighting the role of energy metabolism
and the mitochondria specifically.

Table 8. Metabolites and their pathways which correlate with language ability.

Significant Metabolites Significant Pathways

Metabolite r Pathway Matched Metabolites Impact

Creatinine ** −0.40 Pentose and glucuronate
interconversions

L-Arabitol *, Xylitol * 0.17
Ribitol * 0.33

Galactitol * 0.32 Galactose metabolism Galactitol *, D-Sorbitol * 0

Sorbitol * 0.31

L-Arabitol * 0.30

Xylitol * 0.30

Mannitol * 0.30

Phenylbutazone * −0.30

* p ≤ 0.05, ** p ≤ 0.01.
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Figure 6. Metabolite-metabolite interaction network for significant metabolites that correlate to
Language ability. Size of the node indicates importance in the network. The interaction analysis
reveals the importance of both energy and purine metabolism.

Table 9. Metabolites and their pathways which correlate with aberrant behavior.

Significant Metabolites Significant Pathways

Metabolite r Pathway Matched Metabolites Impact

L-3-Phenyllactic acid *** −0.39
Phenylalanine metabolism ** Phenylpyruvate **,

2-Hydroxyphenylacetate * 0.26
Phenylpyruvic acid ** −0.35

D-Leucic acid ** −0.34 Phenylalanine, tyrosine and
tryptophan biosynthesis * Phenylpyruvate ** 0

Guanine * −0.26

3-Hexenedioic acid * −0.25

L-Arabinose * 0.25

Ortho-Hydroxyphenylacetic
acid * −0.25

Amiloride * 0.24

Glucuronic acid * −0.24

3S-methyl-2-oxo-pentanoic
acid * −0.23

Cytidine * 0.23

L-Alpha-aminobutyric acid * −0.23

3-Hydroxyisovaleric acid * −0.22

Caprylic acid * −0.22

* p ≤ 0.05, ** p ≤ 0.01; *** p ≤ 0.001.
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3.3. Correlations with Targeted Metabolites: Pathway and Network Analysis

Methylation potential correlated with 28 metabolites with mapping to 6 pathways
(Table 10). Metabolite-metabolite interaction analysis highlighted ATP; the glucogenic
amino acids, L-methionine, L-arginine, L-threonine, L-isoleucine, L-valine, L-phenylalanine,
L-histidine, L-glycine, L-glutamine and L-serine; and the ketogenic amino acid, L-lysine
(Figure 8). The most significant pathway that these amino acids matched to was aminoacyl-
tRNA biosynthesis.

Table 10. Metabolites and their pathways which correlate with methylation potential.

Significant Metabolites Significant Pathways

Metabolite r Pathway Matched Metabolites Impact

Methylguanidine *** 0.41

Aminoacyl-tRNA
biosynthesis ***

L-Asparagine *, L-Histidine *,
L-Phenylalanine **, L-Arginine **,

L-Glutamine *, L-Serine *,
L-Methionine **, L-Valine *,
L-Lysine ***, L-Isoleucine **,
L-Threonine ***, L-Proline **

0.17

L-Threonine *** 0.41

L-Homoserine *** 0.41

L-Lysine *** 0.36

L-Isoleucine ** 0.33

L-Arginine ** 0.31
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Table 10. Cont.

Significant Metabolites Significant Pathways

Metabolite r Pathway Matched Metabolites Impact

Caprylic acid ** 0.29 Valine, leucine and
isoleucine biosynthesis ***

L-Threonine ***, L-Isoleucine ***,
L-Valine * 0Adenosine triphosphate ** 0.29

L-Methionine ** 0.29 Cysteine and methionine
metabolism *

L-Serine *, L-Methionine **,
(S)-2-Aminobutanoate* 0.17

Indolelactic acid ** 0.29

2-hydroxyglutaric acid ** 0.28 Arginine biosynthesis * L-Arginine ***, L-Glutamine * 0.08

L-Proline ** 0.27 Nicotinate and
nicotinamide metabolism * Quinolinate *, Nicotinamide * 0.19

L-Phenylalanine ** 0.27
Histidine metabolism *

L-Histidine *,
N(pi)-Methyl-L-histidine * 0.22

L-Alloisoleucine ** 0.27

L-Kynurenine * 0.26

L-Asparagine * 0.26

L-Alpha-aminobutyric acid * 0.26

1-Methylhistidine * 0.25

5-Hydroxyindoleacetic acid * 0.25

Quinolinic acid * 0.25

L-Valine * 0.24

L-Glutamine * 0.24

L-Serine * 0.23

L-Histidine * 0.22

Capric acid * 0.22

Niacinamide * 0.21

L-3-Phenyllactic acid * 0.21

Picolinic acid * 0.20

* p ≤ 0.05, ** p ≤ 0.01; *** p ≤ 0.001.
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Figure 8. Metabolite-metabolite interaction network for significant metabolites that correlate methy-
lation potential (S-adenosylmethionine to S-adenosylhomocysteine ratio). Size of the node indicates
importance in the network. The interaction analysis highlights the importance of energy metabolism
including glucogenic and ketogenic amino acids.

tGSH/GSSG correlated with two significant metabolites and mapped to two significant
pathways (Table 11). The only central metabolite discriminated in the metabolite-metabolite
interaction analysis was creatine, which is an essential organic compound for maintaining
and storing energy (Figure 9).
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Table 11. Metabolites and their pathways which correlate with the total glutathione redox ratio.

Significant Metabolites Significant Pathways

Metabolite r Pathway Matched
Metabolites Impact

Creatine * −0.26
Glycine, serine
and threonine
metabolism *

Creatine * 0

Nonadecanoic
acid * 0.21

Arginine and
proline

metabolism *
Creatine * 0.01

* p ≤ 0.05.
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Figure 9. Metabolite-metabolite interaction network for significant metabolites that correlate to total
glutathione redox ratio. Size of the node indicates importance in the network. The interaction analysis
highlights the importance of creatine, an essential organic compound for maintaining and storing energy.

fGSH/GSSG correlated with two significant metabolites and two significant pathways,
interesting the same pathways associated with aberrant behavior (Table 12). The ketoacid
phenylpyruvic acid was highlighted in the metabolite-metabolite interaction analysis
(Figure 10).
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Table 12. Metabolites and their pathways which correlate with the free glutathione redox ratio.

Significant Metabolites Significant Pathways

Metabolite r Pathway Matched Metabolites Impact

Nonadecanoic acid * 0.24 Phenylalanine, tyrosine and
tryptophan biosynthesis ** Phenylpyruvate * 0

Phenylpyruvic acid * 0.22

Phenylalanine metabolism * Phenylpyruvate * 0.26

* p ≤ 0.05, ** p ≤ 0.01.
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Figure 10. Metabolite-metabolite interaction network for significant metabolites that correlate to free
glutathione redox. Size of the node indicates importance in the network. The interaction analysis
highlights the importance of phenylpyruvic acid, implicating phenylalanine metabolism.

iGSH-GSSG was correlated with 7 metabolites and mapped to one pathway (Table 13).
Metabolite-metabolite interaction analysis identified alpha-ketoisovaleric acid (keto acid),
cytidine (a component of RNA), citrulline (non-essential amino acid), 5-aminolevulinic acid
(responsible for heme production in mammals), and L-alpha-aminobutyric acid (product of
the catabolism of methionine, threonine, and serine) as central metabolites (Figure 11).
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Table 13. Metabolites and their pathways which correlate with the intracellular glutathione redox ratio.

Significant Metabolites Significant Pathways

Metabolite r Pathway Matched Metabolites Impact

Suberic acid ** 0.31 Valine, leucine and
isoleucine *

3-Methyl-2-oxobutanoic
acid 0

Cytidine * −0.26

5-Aminolevulinic acid * 0.25

L-Alpha-aminobutyric acid * 0.24

Citrulline * 0.24

4-Hydroxyproline * 0.23

Alpha-ketoisovaleric acid * −0.21

* p ≤ 0.05, ** p ≤ 0.01.
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Figure 11. Metabolite-metabolite interaction network for significant metabolites that correlate to in-
tracellular reduced glutathione redox ratio. Size of the node indicates importance in the network. The
interaction analysis demonstrated various pathways including nucleotide, urea cycle and branched
chain amino acid metabolism.

3-NT correlated with 16 metabolites and four pathways (Table 14). Metabolite-
metabolite interaction analysis found palmitic acid, the most common saturated fatty
acid in the body; cytosine, a nucleobase in DNA and RNA; and cytidine, a component of
RNA as central metabolites (Figure 12). Additionally, this analysis identified three amino
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acids as central metabolites, D-glutamic acid, L-Glutamine, and L-serine. These amino
acids were found to be matched in three of the four total significant pathways.

Table 14. Metabolites and their pathways which correlate with oxidative damage.

Significant Metabolites Significant Pathways

Metabolite r Pathway Matched Metabolites Impact

Stearic acid *** 0.34 D-Glutamine and
D-glutamate metabolism ** D-Glutamate **, L-Glutamine * 0.5

Palmitic acid ** 0.30

Isobutyric acid ** 0.29 Glyoxylate and
dicarboxylate metabolism * L-Serine **, L-Glutamine * 0.04

Cytidine ** 0.28 Glycine, serine and
threonine metabolism * L-Serine **, 5-Aminolevulinate * 0.22

D-Leucic acid ** −0.27 Biosynthesis of
unsaturated fatty acids *

Palmitic acid **, Octadecanoic
acid 0

L-Serine ** 0.27

D-Glutamic acid ** 0.27

4-Pyridoxic acid * 0.26

5-Aminolevulinic acid * −0.24

L-Glutamine * 0.22

4-Hydroxyproline * −0.22

Cytosine * 0.22

Methylmalonic acid * −0.22

Acetamide * 0.21

N-Acetylethanolamine * 0.21

2-Methylglutaric acid * −0.20

* p ≤ 0.05, ** p ≤ 0.01; *** p ≤ 0.001.
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3-CT correlated with 31 metabolites and mapped to three pathways (Table 15).
Metabolite-metabolite interaction analysis identified ATP and cytosine as well as the
amino acids: L-serine, L-glutamine, glycine, L-tyrosine, L-histidine, L-valine, and L-lysine
(Figure 13). These metabolites hint at mitochondrial function as they all have metabolic
pathways associated with the mitochondria, though L-histidine is converted into pyru-
vate, the starting point of the CAC. Additionally, the majority of the amino acid central
metabolites are matched to the aminoacyl-tRNA biosynthesis.

Table 15. Metabolites and their pathways which correlate with a marker of inflammation.

Significant Metabolites Significant Pathways

Metabolite r Pathway Matched Metabolites Impact

L-Glutamine *** 0.47

Aminoacyl-tRNA
biosynthesis***

L-Asparagine ***,
L-Histidine ***,

L-Glutamine ***, Glycine **,
L-Serine ***, L-Valine *,

L-Lysine *, L-Tyrosine **,
L-Proline ***

0.17
L-Serine *** 0.42

L-Proline *** 0.39

L-Histidine *** 0.39

DL-Acetylcarnitine *** 0.38 Glyoxylate and
dicarboxylate
metabolism*

L-Serine ***, Glycine **,
L-Glutamine *** 0.15

Palmitic acid *** 0.37

Acetamide *** 0.37 Glycine, serine and
threonine

metabolism*

L-Serine ***, Glycine **,
5-Aminolevulinate * 0.46

L-Asparagine *** 0.34

Stearic acid ** 0.33 Histidine
metabolism*

L-Histidine ***,
Imidazole-4-acetate * 0.22

D-Leucic acid ** −0.33

Epinephrine ** 0.32

Taurine ** 0.30

6-Methyl-DL-Tryptophan ** 0.29

Cytidine ** 0.28

3-Hexenedioic acid ** −0.27

5-Hydroxyindoleacetic acid ** 0.27

L-Tyrosine ** 0.27

Glycine ** 0.27

Adenosine triphosphate ** 0.27

Imidazoleacetic acid * 0.26

Dihydroxyacetone * 0.26

Isobutyric acid * 0.25

Cytosine * 0.23

L-Alloisoleucine * 0.23

5-Aminolevulinic acid * −0.23

Methylmalonic acid * −0.22

Picolinic acid * 0.22

2-hydroxyglutaric acid * 0.22

L-Valine * 0.21

L-Lysine * 0.21

N-Acetylglutamine * 0.21

* p ≤ 0.05, ** p ≤ 0.01; *** p ≤ 0.001.

ALR correlated with 14 metabolites and two pathways (Table 16). Metabolite-metabolite
interaction analysis highlighted the role of citric acid and isocitric acid, two CAC interme-
diates (Figure 14).
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3-chlorotyrosine, a biomarker of inflammation. Size of the node indicates importance in the network.
The interaction analysis highlights the importance of the energy metabolism, particularly amino acid
which feed into the citric acid cycle.

Table 16. Metabolites and their pathways which correlate with adenosine triphosphate linked respiration.

Significant Metabolites Significant Pathways

Metabolite r Pathway Matched Metabolites Impact

Hypoxanthine *** −0.34 Citrate cycle (TCA cycle) ** Isocitrate *, Citrate * 0.14

3-Hexenedioic acid ** 0.31 Glyoxylate and dicarboxylate
metabolism * Citrate *, Isocitrate * 0.03

Pyroglutamic acid ** −0.27

D-Ribose ** 0.27

Uridine ** −0.27

L-Arabinose * −0.26

Citric acid * 0.25

Isocitric acid * 0.24

Glucuronic acid * 0.23

Salicylic acid * 0.22

2-Methylglutaric acid * −0.22

Creatine * −0.21

Nonadecanoic acid * 0.20

N-Acetylglutamine * −0.20

* p ≤ 0.05, ** p ≤ 0.01; *** p ≤ 0.001.
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adenosine triphosphate-linked respiration, an index of mitochondrial energy production. Size of the
node indicates importance in the network. The interaction analysis highlights the importance of citric
acid cycle intermediates.

PLR correlated with 7 metabolites and mapped to three pathways (Table 17). Three
glucogenic amino acids, L-glutamine, L-histidine, and L-proline, were identified in the
metabolite-metabolite interaction analysis (Figure 15).

Table 17. Metabolites and their pathways which correlate with proton-leak respiration.

Significant Metabolites Significant Pathways

Metabolite r Pathway Matched
Metabolites Impact

L-Proline ** 0.28 Aminoacyl-tRNA
biosynthesis ***

L-Histidine *,
L-Glutamine *,

L-Proline **
0

Acetamide * 0.26

3-Hydroxyisovaleric
acid * 0.26 D-Glutamine and

D-glutamate metabolism * L-Glutamine * 0
L-Glutamine * 0.25

Ribitol * 0.22 Nitrogen metabolism * L-Glutamine * 0

L-Histidine * 0.21

DL-Acetylcarnitine * 0.21

* p ≤ 0.05, ** p ≤ 0.01; *** p ≤ 0.001.
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importance of glucogenic amino acids.

4. Discussion

This study used large-scale targeted LC-MS/MS metabolomic analysis to examine
the metabolic profiles in blood from 57 children with ASD (29 with NDR) and com-
pared these metabolic profiles to TD controls of similar age and gender. Furthermore,
we examined the associations between metabolic measurements and behavioral and
neurodevelopmental measurements and targeted metabolic biomarkers known to be
abnormal in children with ASD.

4.1. Summary of Results

As a group, those with ASD were compared to TD controls, and the NDR subgroups
were compared to each other and to TD controls, separately. Overall, 23 metabolites were
found to be significantly different between ASD participants and TD controls representing
significant differences in three pathways, histidine and GSH metabolism, as well as AAA
biosynthesis. Nicotinamide metabolism differentiated those with ASD with NDR from
those without NDR. The AAAs differentiated TD controls from individuals with ASD
without NDR. Interesting, a different metabolic signature was found for those with NDR
when compared to TD controls. Those with a history of NDR demonstrate disruption of
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aminoacyl-tRNA biosynthesis and histidine metabolism, as well as metabolism of glyoxy-
late and dicarboxylate (energy metabolism) and glycine, serine and threonine (energy and
purine metabolism). Thus, these results suggest that subsets of children with ASD have
distinct metabolism profiles specifically dependent on their developmental profile (NDR
vs. no NDR).

To better understand the heterogeneity of children with ASD, variations in behavior
and neurodevelopment were correlated with changes in metabolism. Abnormalities in
sleep were directly associated with disruption is energy metabolism, specifically CAC
metabolism as well as the pentose phosphate pathway, an important source of nicotinamide
adenine dinucleotide phosphate (NADPH). Overall neurodevelopment, as measured by the
VABS, found that an association with energy and purine metabolism as well as aminoacyl-
tRNA biosynthesis. Language was associated not only with a primary disruption in energy
pathways but also in glycine, an amino acid neurotransmitter. ASD symptoms, as measured
by the SRS, was found to be associated with energy, BCAA and glutamate metabolism, as
well as aminoacyl-tRNA biosynthesis. Interestingly, disruptive behavior was primarily
associated with AAA metabolism, implicating monoamine neurotransmitters. Thus, from
this analysis, neurodevelopment metrics seems to be associated with energy metabolism,
but ASD and aberrant behavior appears to be more related to amino acid metabolism and
monoamine neurotransmitters.

Correlations between targeted measures of ASD metabolism and metabolomics were
also considered. A measure of methylation potential, the SAM/SAH ratio, was found to be
related to a wide range of metabolic processes, including very strongly related to aminoacyl-
tRNA biosynthesis and related to BCAA, histidine and nicotinamide metabolism, as well
as disruption in amino acids related to methylation such as methionine. Interestingly,
the total GSH redox ratio was related to glycine, serine, threonine, arginine and proline
metabolism through its relation to disruption of creatine while the free GSH redox ratio
was associated with changed in AAA metabolism. The intracellular GSH redox ratio was
related to BCAAs.

Oxidative stress, as measured by 3-NT, was found to be related to glutamine, glycine,
serine and threonine metabolism, as well as CAC and fatty acid energy metabolism.
Metabolic-metabolic interaction analysis highlighted the importance of vitamin B6 and
B12 in this network as both pyridoxal-5-phosphate and methylmalonic acid were high-
lighted nodes in the network. Interestingly, two D-amino acids, including D-glutamic
acid and D-glutamate, which are related to bacterial metabolism were associated with
3-NT. 3-CT, a marker of immune activation, was found to be related to a wide range of
metabolic pathways, including a very strong relationship to aminoacyl-tRNA biosynthe-
sis and also histidine, glycine, serine and threonine metabolism, as well as CAC energy
metabolism. Metabolic-metabolic interaction analysis highlighted the involvement of ATP
and L-glutamine in these pathways. As expected, ALR, a measure of the mitochondrial
ATP production, was associated with CAC metabolites. Interestingly, PLR, a measure of
the mitochondria’s handling of oxidative stress at the inner mitochondrial membrane, was
found to be related to glutamine metabolism.

4.2. Energy Metabolism

Disruption in energy metabolism was demonstrated in several different comparative
analyses of ASD and TD individuals and in the correlations with behavior, neurodevel-
opment, and targeted metabolic pathways. Energy pathways were found to differentiate
individuals with ASD and NDR and be related to sleep, overall neurodevelopment, lan-
guage, and ASD symptoms (SRS). Interestingly, methylation and GSH metabolism did not
seem to be connected to energy yet measures of oxidative stress and immune activation
were related. Not surprisingly, ALR, a measure of mitochondrial production of energy,
was strongly linked to the CAC while proton linked respiration was linked to glutamate
metabolism. This latter finding is interesting as glutamate is an alternative fuel for the
mitochondrial that is understudied in mitochondrial research of developmental disorders.
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The repeated association of energy metabolism with many aspects of ASD is not
surprising given the high rate of mitochondrial dysfunction associated with ASD [10,11].
Furthermore, the link to neurodevelopment and language is not surprising as previous
studies have linked developmental delays to abnormal CAC and energy pathway biomark-
ers in urine [54], plasma [55,56], and CSF [34]. Children with ASD and mitochondrial
disease appear to have two developmental profiles, those with developmental delays,
including motor delay, and those that manifest NDR [10]. Our current study has linked
energy metabolism abnormalities to both subgroups as abnormalities in energy metabolism
differentiated those with NDR from TD controls and correlated with several measures of
neurodevelopment.

Interestingly, pathways other than central CAC metabolites were also identified. For
example, disruption in glyoxylate and dicarboxylate pathway was identified in several
analyses. This is an interesting pathway as it provides a short cut between the proximal
CAC (isocitrate) and distal CAC (succinate, malate), thereby bypassing α-ketoglutarate
and succinyl-CoA. These two intermediates that are bypassed are important in ASD physi-
ology as propionic acid, an important short chain fatty acid associated with ASD symp-
toms [13,57], enters the CAC through succinyl-CoA, and α-ketoglutarate is closely metabol-
ically connected to glutamate, an important neurotransmitter that is well known to be
dysregulated in ASD.

Dysregulation of glycine, serine and threonine pathways is connected to the CAC
through serine that is directly metabolized into pyruvate. Disruption in serine metabolism
has been linked to ASD in the past [58], and glycine is an important amino acid neuro-
transmitter in the cortex and is a building block (precursor) to GSH. It is important to note
that mitochondria are an important regulator of amino acids, as the urea cycle, the nitro-
gen disposal system, is partially located in the mitochondrial matrix, and BCAA (leucine,
isoleucine, and valine) are key metabolic intermediates of mitochondrial metabolism.

4.3. Amino Acid Neurotransmitter Metabolism

Several pathways were associated with changes in the AAA (Phenylalanine, tyrosine,
and tryptophan) biosynthesis. Examining the metabolite changes demonstrates that this
was driven by phenylpyruvate, a product which accumulates when phenylalanine break-
down is reduced, usually when hydroxylase activity is inhibited. This enzyme and other
the hydroxylases required to metabolize AAA precursor into monoamine neurotransmitters
are dependent on tetrahydrobiopterin as a cofactor, and low tetrahydrobiopterin levels are
known to be associated with ASD [29]. Treatment trials of ASD children with tetrahydro-
biopterin improve ASD behaviors [29] and the redox state [59]. Parallel to this, our analysis
found that abnormalities in AAA biosynthesis were related to aberrant behavior and redox
regulation as well as differentiated children with ASD and NDR from NT controls.

L-Glutamine was found to be related to measure of neurodevelopment (VABS), ASD
symptoms (SRS), as well as markers of methylation, oxidative, inflammation, and mi-
tochondrial control of oxidative stress (PLR). Glutamine is a central amino acid which
connects neurotransmission, redox metabolism, and mitochondrial function. Glutamine
is the precursor/product of both glutamate, the main cortical excitatory neurotransmitter,
and gamma-aminobutyric acid (GABA), the main cortical inhibitory neurotransmitter. As
excitatory/inhibitory balance is known to be disrupted in ASD through these two neuro-
transmitters [60], glutamate balance is critical in ASD. Balance of these neurotransmitter is
essential as balanced glutamate transmission is essential for learning and has been linked
to many psychiatric symptoms such as repetitive behaviors which, in part, define ASD.
Thus, the connection of glutamine to neurodevelopment and ASD symptoms found in this
study is consistent with its physiological role.

Glutamate is an essential component of GSH which is the body’s major antioxidant,
consistent with the findings in this study that it is associated with measures of oxidative
damage and inflammation. One of the products of the methylation cycle is homocysteine
which can be metabolized into cysteine. Cysteine is one of the major three components of
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GSH, along with glutamate and glycine. As such, glutamate is connected to methylation
and control of oxidative stress through the production of GSH.

Interestingly, in several of the analysis, glutamine was also related to markers of
mitochondrial function. As mentioned above, glutamine is a mitochondrial substrate for
producing energy which enters the CAC through α-ketoglutarate. The repeated findings of
an activation of the glyoxylate and dicarboxylate pathway which bypasses this portion of
the CAC suggests an increase in glutamine is entering the CAC. Thus, this suggests a close
association of the neurotransmitter regulation and mitochondrial function in ASD.

Glycine is an inhibitory neurotransmitter with anti-inflammatory, cytoprotective, and
immune modulating properties [61]. In this study, glycine was associated with the NDR
subtype of ASD and measures of sleep and ASD symptoms, neurodevelopment and GSH
metabolism, and a marker of inflammation. Interesting, mitochondrial metabolism was also
associated with the same factors (except for 3CT). Glycine is connected to mitochondrial
metabolism in several ways. Glycine combines with Succinyl-CoA, a CAC intermediate,
to produce 5-aminolevulinate, a precursor used for heme synthesis which is important
for the function of cytochromes used in the electron transport chain complexes. Glycine
is also involved in mitochondrial one-carbon metabolism and is essential to produce
purines. Glycine is also interconverted into CO2 and ammonium. Thus, aside from being a
neurotransmitter, glycine is involved in several other critical pathways that could influence
brain function and development.

4.4. Branched Chain Amino Acid Metabolism

BCAA biosynthesis was found to correlate with ASD symptoms, methylation potential
and intracellular GSH ratio, although with low pathway impact scores. It is estimated
that approximately 17% of children with ASD have relative reduced concentrations of
BCAAs [22]. This finding is supposedly similar to Branched Chain Ketoacid Dehydroge-
nase Kinase deficiency, an inborn error of metabolism, which is characterized by ASD,
epilepsy, and intellectual disability [62]. However, unlike studies on mice in which the
animal responded to BCAA supplementation, such a simple treatment has not been shown
to be successfully therapeutic in humans. Branch chain amino acids have diverse physio-
logical roles including modulating glucose and fatty acid metabolism as well as regulating
important molecular pathways and promoting protein synthesis, and they are connected
to mitochondrial function by feeding into the CAC through succinyl-CoA [63]. Thus,
BCAAs appear to may have an interesting role in ASD, although their integral role in ASD
physiology needs to be better elucidated.

4.5. Nicotinamide Metabolism

NDR was associated with changes in nicotinamide metabolism. Previous studies
have found that urine nicotinamide metabolites may be a biomarker for ASD [32] and may
indicate increased nicotinamide degradation [33]. NADP and its redox couple (NADPH)
are cofactors for many important metabolic pathways [64]. NADP is important in CAC
enzymes, pyruvate metabolism, mitochondrial proton-translocation, folate metabolism
and glutamate deamination. NADPH is essential for fatty acid synthesis, steroidogenesis,
drug metabolism and heme degradation [64,65], ubiquinol production [66] and thioredoxin
reductases function [67]. Interestingly, mitochondrial NADP biosynthesis has been linked
to mitochondrial redox regulation [68] and has been linked to a mitochondrial disease
phenotype [68]. NAD precursors have been shown to have therapeutic effect on mitochon-
drial function [69]. Given that NDR has been linked to a unique type of mitochondrial
dysfunction [46], it is possible that NAD has a role in the dysregulation of mitochondrial
function in NDR.

4.6. Aminoacyl-tRNA Biosynthesis

Variations in aminoacyl-tRNA biosynthesis were found in participants with ASD and
a history of NDR and were related to measures of neurodevelopment, ASD symptoms,
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methylation potential, and immune activation. Aminoacyl-tRNAs, tRNAs bonded to their
cognate amino acid, serve as key substrates responsible for translating the genetic code into
proteins. Synthesis of these tRNAs directly relies on the aminoacyl-tRNA synthase [70].
Thus, aminoacyl-tRNA biosynthesis is a key component for producing key proteins for
cellular functions. Other aspects of tRNA function have also been linked to ASD. For
example, ASD-associated regulatory SNPs have been found to impact aminoacyl-tRNA
biosynthesis in the fetal cortex, impacting additional pathways such as ribosome biogen-
esis [71]. Thus, disruption of tRNA function may underly the biological mechanisms of
ASD in some individuals.

4.7. Histidine

Disruptions in histidine metabolism differentiated TD controls from those with ASD,
particularly those with ASD and a history of NDR. Methylation potential and 3-CT, a
marker of immune activation, were also strongly related to the histidine metabolism.
The strong correlation between the 3-CT measurement and histidine metabolism may be
explained by how histamine, an integral of the immune system, can be easily synthesized
by decarboxylation of histidine [72]. Various studies have reported changes in the immune
systems of children with ASD [73]. Histidine is a precursor of carnosine, a dipeptide
that contains beta alanine and histidine, in the human brain, where it acts as a buffer
and antioxidant [72]. Carnosine has been shown to regulate various biological pathways
connected to intellectual disabilities [74] and has been shown to be therapeutic for in
controlled studies [75–77]. In addition, multiple researchers have looked at Histidinemia,
or elevated histidine concentration in the blood, and have shown a relationship between
histidinemia and ASD [78,79] and language delay [80,81].

4.8. Common Pathways

Interestingly, the data from this study converged on several pathways. One interesting
aspect of the many of the pathways and metabolites is that many of the pathways were all
connected to various intermediates within the CAC. As energy metabolism, particularly
with respect to the mitochondria and CAC, is repeatedly identified in many of the pathway
analysis, it is very possible that the majority of the non-mitochondrial pathways found
to be disrupted could be caused by or the cause of mitochondrial dysfunction through
disruption of the flux of metabolites in the CAC. This could explain the high prevalence
of mitochondrial dysfunction without the findings of mutation is mitochondrial genes.
Specifically, disruption in function of these non-mitochondrial pathways could be the cause
of secondary mitochondrial dysfunction in many individuals with ASD. A better under-
standing of these connections between mitochondrial and non-mitochondrial pathways
could lead to improved treatments for individuals with ASD.

4.9. Limiations

This study has several limitations, particularly the limited sample size, providing only
a limited ability to understand the heterogeneity of ASD. In order to account for this, the
variation in behavior and other specific metabolic disruptions associated with ASD were
correlated with metabolites measured. To investigate the relationship between metabolic
signatures and mitochondrial function parameters derived from whole fresh intact cellular
based respirometry were examined. However, in the future, additional markers could be
examined. The study participants were derived from a natural history study of individuals
with ASD with much of the data obtained retrospectively. Thus, future cohorts derived
from prospective early life histories would increase the strength of the study.

5. Conclusions

This study examined the metabolic profiles of ASD in relation to several behavior,
neurodevelopmental and targeted metabolic biomarkers in an effort to uncover a metabolic
signature related to ASD. We used both pathway analysis and metabolomic-metabolomic
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interactions to examine metabolites. Energy and amino acid pathways were commonly
disrupted with many of the amino acids being closely linked to energy production.

This study had several limitations including selection of samples from general
samples of ASD which were not preselected to have a specific range of severity and a
limited number of controls. Further studies should use larger sample sizes to better
characterize the patients and a greater number of controls. Simultaneous collection of
urine and stool samples may be very useful to better understand how systematic and
microbiome changes can influence metabolism.
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