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Abstract: Background: The grading process in facial palsy (FP) patients is crucial for time- and
cost-effective therapy decision-making. The House-Brackmann scale (HBS) represents the most
commonly used classification system in FP diagnostics. This study investigated the benefits of linking
machine learning (ML) techniques with the HBS. Methods: Image datasets of 51 patients seen at the
Department of Plastic, Hand, and Reconstructive Surgery at the University Hospital Regensburg,
Germany, between June 2020 and May 2021, were used to build the neural network. A total of nine
facial poses per patient were used to automatically determine the HBS. Results: The algorithm had an
accuracy of 98%. The algorithm processed the real patient image series (i.e., nine images per patient)
in 112 ms. For optimized accuracy, we found 30 training runs to be the most effective training length.
Conclusion: We have developed an easy-to-use, time- and cost-efficient algorithm that provides
highly accurate automated grading of FP patient images. In combination with our application, the
algorithm may facilitate the FP surgeon’s clinical workflow.

Keywords: facial palsy; facial paralysis; House-Brackmann scale; artificial intelligence; deep learning;
bell’s palsy; smile restoration; facial reanimation; application

1. Introduction

Facial palsy (FP) presents with a varying symptom complex attributable to an array
of etiologies [1–5]. FP annually affects up to 53 cases per 100,000 population yielding
comparable incidence rates across biological sexes [6–9]. Most FP patients are diagnosed
with idiopathic FP (Bell’s palsy) followed by trauma, viral infections, and tumors [10,11].
Predisposing factors in FP include, for example, hypertension, diabetes mellitus, inflamma-
tory neural demyelination, and migraine [12–15]. The age classes between 45–55 years are
particularly prone to develop FP [16]. The sequelae of FP encompass adverse effects on
physical, psychological, and social levels. Due to interrupted or erroneous orchestration of
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mimic musculature, FP patients encounter flaccidity or synkinetic facial mass movements,
respectively [17,18]. Micro- and macroanatomical studies have identified key muscles in
FP pathology, such as the depressor anguli oris (DAO), the depressor labii inferioris (DLI),
and the zygomaticus major muscles [19–23]. The malfunction of such muscular corner-
stones leads to a disfiguring facial appearance and dysfunctional mimic movements [10,24].
Emotional expressiveness is hindered and smile symmetry is impaired [5,25]. The pathog-
nomonic attributes of FP catalyze the manifestation of psychosocial disorders, including
anxiety and depression [26]. Tseng et al. demonstrated that FP patients were 59% more
likely to develop an anxiety disorder, as compared to unaffected individuals [27]. A 2016
South Korean study found that 32% of FP cases experienced ≥2 weeks of depressed mood
versus 13% in the general population [28]. Further, increased levels of distress have been
observed in FP patients [29]. In a vicious circle, such conditions promote social withdrawal
and isolation as well as reduced quality of life [30].

Given the heterogeneous etiology and pathology of FP, only a few general recommen-
dations in FP therapy with a sufficient body of evidence exist. For example, studies recom-
mend the prescription of oral steroids to target acute FP cases [31–33]. The surgical manage-
ment of FP symptoms ranges from free versus regional muscle transfer to (micro-)surgical
techniques, including direct neurorrhaphy and neurotization procedures [34]. For specific
indications, even further complex reconstructions have been proposed. Boahene et al.
popularized the concept of multivectoral muscle flaps to account for specific human smile
pattern, while Klebuc et al. described the DAO-DLI-transfer to address a hypertonic DAO
in conjunction with a hypofunctional DLI [35,36]. Azizzadeh et al. have underscored the
beneficial effects of modified selective neurectomies to address synkinetic facial muscula-
ture counteracting the natural smile [17]. If a patient’s eligibility for each surgical technique
is critically reviewed and tailored on a case-by-case basis, FP surgery may pave the way for
sustainable outcomes.

In each FP case, the grading of the disease severity is crucial to launch appropri-
ate treatment strategies early on and evaluate the course of the FP in follow-up visits.
Introduced to the FP community in 1985, the House-Brackmann scale (HBS) has been repre-
senting the standard classification system in FP diagnostics across different (non-)surgical
specialties [37–40]. The overlaying of evidence-based clinical grading systems and state-
of-the-art electronic facial recognition software carries promising potential for objective
classification of FP disease [41,42]. However, there is a scarcity of step-by-step tutorials
outlining the concrete steps that enable FP surgeons to successfully apply machine learning
(ML) techniques in their patient work. We, therefore, aimed to develop an automated facial
palsy grading system for FP surgeons interested in ML.

2. Materials and Methods
2.1. Data Acquisition from Facial Patients

From June 2020 to May 2021, prospective data acquisition was performed on 51 patients
and additional 10 healthy patients as a control group seen at the Department of Plastic
Surgery at the University Hospital Regensburg, Germany (Figure 1).

Inclusion criteria comprised a pathological HBS (i.e., >I) [40]. Of note, the HBS
classifies FP severity levels from I (i.e., normal facial function) to VI (i.e., complete FP).
Classification is conducted utilizing nine facial expressions (i.e., face in repose; raising the
eyebrows; smile with mouth closed; full-denture smile; pursing the lips; gentle eye-closure;
forced eye-closure; wrinkling the nose; depressing the lower lip). Facial expressions were
recorded based on previous work by Volk and Hadlock [43,44]. As recommended by the
Jena facial palsy group, patients were asked to perform these expressions to the best of
their ability three times prior to photo documentation [43]. Photo documentation was
conducted by either the first or last author (L.K., A.K.) during the last author’s facial
palsy consultation hours utilizing the CANON EOS 400D with the respective flash unit
(Canon, Ota, Japan). The examiner who did not take the patient photos supervised the
documentation process. Prior to our first patient photo documentation, we consulted the
clinical-intern photo department to evaluate our camera/photography settings. All patient
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photos were taken in the same examination room at the same spot to ensure a standardized
camera distance. We further used a camera tripod with fixed setting sizes for standardized
documentation. In cases in which patients were unable to perform the movement, the
authors photographed the best attempt. In cases in which patients stated that they were
not used to this facial movement and did not know how to perform the movement, the
authors provided the same short instruction on how to theoretically perform the respective
movement throughout all cases.
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Figure 1. Overview of the study population and distribution of the House-Brackmann scale (HBS).
The red bar is visualizing ten healthy individuals as a control group. Facial palsy (FP) patients with
HBS scores of IV and VI accounted for the majority of cases, respectively.

We included 51 patients and could therefore validate the network with ten patients
since the dataset was divided into a training group with 41 patients and a validation group
with ten patients. Of note, there is a difference between the ten patients with FP who were
selected from the training data including 51 FP patients by means of a train-test-split and
the ten healthy patients who were used for the final validation. The training/validation
workflow is illustrated in Figure 2.
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2.2. Facial Palsy Image Segmentation

We designed a facial palsy (FP) image segmentation method as the preprocessing section
of the House-Brackmann score classifier, to automatically combine nine input images into
one image. Each single image represents a certain facial expression. The nine images serve
as input for the neural network, while the House-Brackmann scale (HBS) represented the
output value of the network. Beforehand, the images had been pre-classified accordingly by
three physicians specialized in FP therapy to set up a distinct link between the nine images
and the corresponding HBS. The workflow is illustrated in Figure 2.

Due to the enhanced accuracy of the neural network, and with regard to its possible
application in clinical situations, six individual outputs were chosen, each representing one
distinct level in the HBS. First, the nine different patient images were implemented in a
black–white format and scaled to 200 × 200 pixels to rationalize the computationally intensive
training of the neural network. To adapt the nine colored patient images of arbitrary resolution
to these requirements, an algorithm was utilized. The mesh yielded 200 × 1800 (Figure 3).
The second step is the transformation of nine single pictures to single-composed picture input
signals corresponding to the pixels of the nine patient input images and the six output signals,
each representing one distinct level in the HBS. Concerning the output signals, each could
either have a value of zero or one. For example, an HBS = VI should result in the output
value = 1 for the VI. signal, whereas the output values = 0 for the I.–V. signals (Figure 4).
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The neural network training comprises a set of patient images assigned with the
corresponding HBS. Each row in the training set, therefore, corresponds to one patient. For
training purposes, the data was stored in two arrays with one array for the input and one
array for the output data [45].

2.3. Structure of the HBS Score Classifier

For the inner structure of the network, a multi-layer network with three parts was
employed ((Figure 5) using machine learning models I, II, and III). The first two layers
consist of a convolutional layer, an activation layer including the activation function “relu”,
and a max-pooling layer. A convolutional layer is a layer in which several neurons are
addressed. This enables a more general evaluation of inserted information. This layer can
recognize and extract individual features from the input data [46]. A max-pooling layer is
used to reduce the computational workload to allow for more efficient processing. Groups
of inputs are mapped to individual neurons of the max pooling layer [47]. The activation
function “relu” corresponds to the following equation:

f (x) =
{

0 i f x < 0
x i f x ≥ 0
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This function is resource efficient and therefore matches the high throughput of data
at the starting point of the neural network.

The classification process is conducted within the convolutional layer and the ac-
tivation layer, while the max-pooling layer further refines the output, saves computing
time, and prevents overfitting by excluding insufficient results. Overfitting leads to an
overfitting neural network and occurs when the neural network is trained for too long
with the training data, and therefore noise and random outliers in the training data are
also adopted as a concept of the model. The problem is that such a trained network can no
longer predict new data unknown to it. The size of the three stages is getting continuously
smaller in the direction of the output. The output of the second stage is then filtered by
a layer of flattening, which connects the second stage with the last stage. The last stage



J. Pers. Med. 2022, 12, 1739 6 of 14

consists of layers with 64 and six neurons, respectively, with each neuron assigned to a
distinct level of the HBS. At the end of the classification process, there is an activation layer
including the activation function “sigmoid,” which corresponds to the following equation:

f (x) =
1

1 + e−x

Since the results of this function can be between zero or one, this equation is com-
monly used as a transfer function in the output layer of neural network models to predict
probabilities between 0–100%.

For training purposes, 80% of the patient data was used to train the network and the
remaining 20% was utilized to validate the neural network. This is called cross-validation.
The network underwent varying numbers of training epochs. During each epoch, stochastic
gradient descent is used to best configure the neural network to map the input data (i.e.,
the patient images) and the output data (i.e., the predicted HBS). Following each training
run, the network was retested to assess its prediction performance on previously unknown
patient data.

Computer operations were performed in the Python programming language (version
3.10.2; Python Software Foundation, Beaverton, OR 97008, USA) on a Lenovo Thinkpad com-
puter (T470, Intel Core i7–7600U processor running at 2.8 GHz with 32 GB of RAM and a Nvidia
GeForce GTX 1650 Ti graphic card; Lenovo Deutschland GmbH, 70563 Stuttgart, Germany).

3. Results
Number of Training Runs Determines Prediction Accuracy

Regarding the accuracy rate, 30 training runs proved to be the most effective. The
average time of each training run was 9.6 h on our test machine.

The performance of a neural network can be determined using the loss function. This
is calculated as follows:

L(ai,yi) = −(yi log(ai) + (1 − yi) log(1 − ai))

In this case, the loss function is used for binary classification, so the output can be zero
or one. More precisely, one speaks of the “binary cross entropy loss” function. The index i
always refers to the training examples. In the corresponding application, the network was
trained with 51 patients and nine images were used to validate the network. The index i is
therefore 51. Since it is a binary function, the result can only be zero or one. This calculation
then leads to the loss or validation loss of the trained neural network.

After training the network, we had a loss of 0.49 for the training data and a loss of
about 0.83 for the validation data. The accuracy for the training data and the validation
data was 80% and 52%, respectively.

When training without validation, i.e., using all available patient images without using
cross-validation, an accuracy of about 98% was achieved with a loss of less than 0.1. This
showed that a longer training of >100 epochs was necessary. After training, the algorithm
processed the real patient image series (i.e., nine images per patient) in 112 ms.

Overall performance could be improved by using more training data. Another point
of leverage includes adapting the network architecture. To this end, more layers could
be added. Further, the resolution of the input data (currently 200 × 1800 pixels) could be
increased. This would render the prediction more independent of physical characteristics,
such as beard growth or skin color, which can currently still impair algorithm predictions.
Ideally, patients should be asked to remove any coverings, such as hair and/or any other
body modification prior to photographic documentation. Another optimization method in-
volves deepening the network structure. Currently, the network consists of three calculation
levels, while more calculation levels could be integrated here. The use of non-sequential
neural networks (i.e., the insertion of parallel computation strands into the network) can
also enhance network performance. This approach is based on the concept that the network
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can then simultaneously compute different tasks with different resolutions, meaning that it
can detect different templates in the input data.

To test the trained network, data from a healthy control group was used. As the
network was only trained with FP patients, the results were expected to be close to an HBS
of one. Ten healthy individuals were used as a test group. The results of the control group
are shown in Figure 6. Only one individual was assigned a pathological HBS score (i.e.,
HBS > I) resulting in a false positive rate of 10%.
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Figure 6. Evaluation of the control group. The control group comprised of ten healthy individuals of
whom only one was assigned a pathological House-Brackmann scale (HBS) score (i.e., HBS > I).

To visualize the results of the neural network, an application was coded that imple-
mented different states (i.e., “Init”, “Waiting”, “Ready”, “Error”, and “Run”). The workflow
of the application is summarized in Video S1.

First, the trained neural network is loaded in the “Init” state. When the nine patient
images with the correct coding for the corresponding nine facial expressions are not com-
pletely available in the selected folder, the program switches to the “Error” state. The user
can return to the “Waiting” state by selecting a correctly filled folder and then proceed to the
“Ready” state in which the images are processed according to the aforementioned settings
(i.e., black–white format; 200 × 200 pixel resolution). In the “Run” state, the processed
images encounter the mesh. The output of the network is displayed as a bar chart. Here,
each bar corresponds to the output value of each output neuron of the network (Video S1).
Figure 7 illustrates the process workflow of the application.
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4. Discussion

The ever-increasing challenging work environment has resulted in one-third of recon-
structive surgeons and surgery residencies reporting burnout symptoms [48]. Yet, recent
studies have predicted a future shortage of 3000 US reconstructive surgeons by 2050 and
calculated that about 25 million US people have insufficient access to reconstructive surgery
services, meaning that a decimated surgery workforce will soon face an increasing work
volume [49,50]. This exemplary discrepancy underscores the relevance of time- and cost-
efficient tools that facilitate the FP surgeon’s workflow. ML has demonstrated beneficial
effects in clinical applications, such as in the postoperative monitoring of free flap viability
based on skin color or the identification of melanomas using smartphone images [51]. In
this study, we provide a time-efficient, user-friendly, and cost-free FP grading algorithm.

In the senior author’s experience, thorough grading of FP patients based on the most
commonly used classification system, the HBS, can take up to five minutes or even longer in
complex FP patient subsets (e.g., neurofibromatosis or apoplex patients). It is not unusual
for FP specialists to examine 30–40 FP patients per day, which might accumulate to several
hours of grading per day. While these numbers represent worst-case scenarios, the time-
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saving potential of automated FP grading is indisputable. Further, additional diagnostic
tools, such as ultrasound imaging, have gained popularity in FP examination [52–54]. To
include such diagnostic add-ons into the packed clinical routine, FP surgeons first must
save time on other tasks such as FP grading. Utilizing our algorithm, we could process
real patient image series (i.e., nine images per patient) in 112 ms, on average, which is
comparable to the elegant approach developed by Haase et al. (108 ms) [55]. Our model
requires only nine standardized patient images, whereas comparable systems have to be
fed with video content longer than 20 min per patient [56]. Given the structured simplicity
of our model, the entire grading process could be assigned to technical assistants, saving the
FP surgeon additional work time and allowing for more time spent on direct patient-doctor
communication which has been shown to decrease decisional conflicts and preoperative
anxiety from the patient’s side [57]. Morrell et al. demonstrated that even five minutes
of extra doctor-patient time significantly improved patient satisfaction with their medical
provider [58]. From the surgeon’s side, such patient-doctor interaction can counteract
burnout symptoms and promote work satisfaction [59]. More precisely, repetitive and
routine tasks, such as systematic grading, have been identified as burnout drivers, including
the recommendation of experts to outsource such work to robotic/computerized assistance
tools [60]. Our algorithm may allow for a more refined and self-defined time allocation
among the FP surgery workforce.

Recent efforts have focused on combining ML and 3D-frameworks to detect, for
example, volume deficits caused by long-term facial musculature atrophy in FP patients [61].
By implementing such techniques, providers aim for advanced grading, ultimately leading
to a more differentiated decision-making process in FP therapy [62]. The link between ML
and 3D-techniques has resulted in the development of different networks such as AlexNet.
Since its launch in 2012, AlexNet has been successfully used in a broad medical application
field (e.g., to detect pathologic MRI brain scans or to classify chest X-rays of COVID-19
patients) [63–65]. Based on the HBS, Storey et al. have programmed the 3DPalsyNet, which
yielded a classification accuracy of up to 86% (vs. up to 99% in our model). Their algorithm
had poor accuracy levels when grading more difficult FP images [66]. Other comparable
networks have shown accuracy scores ranging from 88 to 97% [64,66–68]. Zhao et al.
demonstrated the prognostic value of a 3D dynamic quantitative analysis system in acute
FP cases. However, for each case, the examiner must position six cameras in front of
the patient so that every reflective point on the patient’s face is detected by at least three
cameras [69]. Such preliminary work increases the overall examination time per patient,
whereas our platform demonstrated accuracy levels of 99% on images taken with a standard
camera widely available in the hospital setting. Anecdotally, the set-up and positioning
did not take longer than one minute for our model. Of note, our network can also process
images taken with modern smartphones, which may further promote cost-effectiveness.
The concept of 3D-technology linked to ML is intriguing, although consequent advantages
of such joint systems in grading accuracy when compared to 2D-based platforms remain to
be ascertained. Due to their complex and multi-layer neural architecture, such platforms
require an extensive and cost-intensive hardware fundament as well as maintenance and
acquisition costs of up to $49,000 [70,71]. Advanced programming skills far beyond the FP
surgeon’s scope are oftentimes needed to develop (and use) such joint systems [72]. Another
study by Jiang et al. also involved a highly precise automated grading concept in FP patients.
Their work focused on measuring facial skin microcirculation perfusion distribution in
FP patients [67]. The Jena group proposed an FP grading index prediction model by
using the eFace grading index, which features 16 ordinal fine-grained grading scales for
resting face and facial motions [68,73]. The authors addressed objective FP assessment
as a linear regression problem instead of an index classification method given the finely
graduated ordinal sub-scales of the eFace-scale. Their dataset included image series of
52 multi-ethnical patients of different ages before and after undergoing a hypoglossal-facial
anastomosis. Each image series contained nine standardized images of the patient’s frontal
face. In a second dataset, they included 28 adult healthy subjects as a control study. The
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authors reported a mean absolute error (MAE) of 11% in FP patients versus 12% in the
control group. The MAE might be further reduced by enlarging the study sample. They
also found that deeper networks, such as ResNet-50, did not provide more suitable features
for their application, while containing more parameters than a standard VGG-16 model
in case fully connected layers were excluded. The authors further outlined the potential
adaptation of this approach to be used in other FP scales, such as the Sunnybrook facial
grading system [74]. Another study from the Jena group introduced an automated FP
grading system based on the Sunnybrook facial grading system [75]. To this end, the
authors used 4572 photographs of 233 patients with unilateral peripheral FP. They reported
an intraclass coefficient of 0.35 comparing subjective and objective/automated FP grading.
The implementation of the Sunnybrook facial grading system carries high translational
potential for clinical use, given the recommendation of the Sir Charles Bell Society to use
the Sunnybrook facial grading system as a standard grading system for reporting outcomes
of facial nerve disorders [76]. Gaber et al. used the Microsoft’s Kinect (v2) for real-time
FP grading [77]. Their approach was based on the detection of facial landmarks as 3D
coordinates both for resting symmetry and voluntary movements, such as raising eyebrows
or smiling. Calculation of the regional facial asymmetry was performed through the ratios
of distances between corresponding landmarks and a common reference point on the two
sides of the face. They also included gamma correction, as well as eye area and mouth slope
features. Their system was tested on healthy individuals and showed promising results,
yielding a symmetry index of 98% for the ocular region and 96% to 99% for the oral region.
A 2017 study by Guo et al. suggested the use of deep convolutional networks for objective
FP grading based on the HBS [78]. The authors addressed the problem of confusing
neighboring HBS degrees by refining the GoogLeNet model resulting in a classification
accuracy of 91% for predicting the HBS degrees. Their dataset included 105 FP subjects
versus 75 healthy subjects. Each image set contained four different facial expressions
totaling 720 labeled images. Interestingly, the authors designed a data augmentation step
to account for the imbalance in HBS degree distribution. Data augmentation included
horizontal flipping, random rotating, and resizing, as well as adding salt and pepper noise.

We propose a simple, yet easy-to-use application that allows FP surgeons with varying infor-
matic knowledge to directly utilize our model. With the recent advancements in 3D-technology
being promising, we are looking forward to including this innovative technique into our model,
as soon as the barriers of cost-effectiveness, user-friendliness, and time-consuming preliminary
work have been overcome. Together with other imaging techniques, such as ultrasound or MRI,
this approach might enlarge the FP surgeon’s diagnostic arsenal and allow for comprehensive
patient evaluation at different time points of FP therapy (Figure 8) [54].

J. Pers. Med. 2022, 12, x FOR PEER REVIEW 12 of 16 
 

 

 

Figure 8. Implementation of automated grading in the clinical workflow. Automated grading could 

be used in the preoperative planning phase, as well as for direct intraoperative assessment. Follow-

ing (non-)surgical therapy, automated grading may allow for standardizing patient follow-up eval-

uation. 

Limitations 

The present study is not without limitations. Our study population comprised a dis-

proportionate percentage of severe FP cases. To account for this imbalance, we performed 

oversampling. We included 51 patients in this study. Therefore, large-scale studies are 

needed to corroborate our findings and demonstrate the efficiency of our algorithm in 

larger patient cohorts. However, our study population did accurately represent the most 

common clinical FP scenarios. The HBS represents the most commonly used FP grading 

classification system in US clinics but has revealed certain downsides such as the insuffi-

cient implementation of synkinesis [79]. Thus, we aim to translate the algorithm into more 

sophisticated grading systems, such as those developed by Guarin and Hadlock 

[41,80,81]. Work done by the Jena group underscored the implementability of automated 

grading approaches into the Sunnybrook facial grading system [75]. The study by Guo et 

al. provided further potential points of leverage to target the imbalance of HBS degree 

distribution [78], while our study demonstrated the general feasibility of combining all 

photos to generate one single score. Yet, further efforts are needed toward creating a ten-

sor with the nine images per FP patient instead of combining the images which can cause 

dilution of the information present in the images.  

5. Conclusions 

We have developed an easy-to-use, time- and cost-efficient, as well as highly accurate 

algorithm utilizing ML principles. Integrated into a user-friendly application, our model 

may facilitate and accelerate the FP surgeon’s clinical workflow.  

Supplementary Materials: The following supporting information can be downloaded at: 

www.mdpi.com/xxx/s1, Video S1: Exemplary application run. The simple, easy-to-use, working 

surface allows for an uncomplicated and time-efficient application running. 

Author Contributions: Conceptualization, L.K., S.K. and A.K.; Data curation, M.M., M.K.-N. and 

D.O.; Methodology, L.K., M.M., S.K. and A.K.; Project administration, A.K.; Software, M.B. and P.T.; 

Supervision, L.P., H.-G.M., P.N.B., A.C.P. and A.K.; Visualization, M.B., P.T., D.O. and A.C.P.; Writ-

ing—original draft, L.K. and A.K.; Writing—review & editing, M.M., M.K.-N., H.B., A.C.P. and S.K. 

All authors have read and agreed to the published version of the manuscript. 

Figure 8. Implementation of automated grading in the clinical workflow. Automated grading could
be used in the preoperative planning phase, as well as for direct intraoperative assessment. Following
(non-)surgical therapy, automated grading may allow for standardizing patient follow-up evaluation.
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Limitations

The present study is not without limitations. Our study population comprised a dis-
proportionate percentage of severe FP cases. To account for this imbalance, we performed
oversampling. We included 51 patients in this study. Therefore, large-scale studies are
needed to corroborate our findings and demonstrate the efficiency of our algorithm in
larger patient cohorts. However, our study population did accurately represent the most
common clinical FP scenarios. The HBS represents the most commonly used FP grading
classification system in US clinics but has revealed certain downsides such as the insuffi-
cient implementation of synkinesis [79]. Thus, we aim to translate the algorithm into more
sophisticated grading systems, such as those developed by Guarin and Hadlock [41,80,81].
Work done by the Jena group underscored the implementability of automated grading ap-
proaches into the Sunnybrook facial grading system [75]. The study by Guo et al. provided
further potential points of leverage to target the imbalance of HBS degree distribution [78],
while our study demonstrated the general feasibility of combining all photos to generate
one single score. Yet, further efforts are needed toward creating a tensor with the nine
images per FP patient instead of combining the images which can cause dilution of the
information present in the images.

5. Conclusions

We have developed an easy-to-use, time- and cost-efficient, as well as highly accurate
algorithm utilizing ML principles. Integrated into a user-friendly application, our model
may facilitate and accelerate the FP surgeon’s clinical workflow.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jpm12101739/s1, Video S1: Exemplary application run. The simple,
easy-to-use, working surface allows for an uncomplicated and time-efficient application running.
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