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Abstract: Background: Research on the discovery of tumor biomarkers based on big data analysis
is actively being conducted. This study aimed to secure foundational data for identifying new
biomarkers of breast cancer via breast cancer datasets in The Cancer Genome Atlas (TCGA). Methods:
The mRNA profiles of 526 breast cancer and 60 adjacent non-cancerous breast tissues collected
from TCGA datasets were analyzed via MultiExperiment Viewer and GraphPad Prism. Diagnostic
performance was analyzed by identifying the pathological grades of the selected differentially
expressed (DE) mRNAs and the expression patterns of molecular subtypes. Results: Via DE mRNA
profile analysis, we selected 14 mRNAs with downregulated expression (HADH, CPN2, ADAM33,
TDRD10, SNF1LK2, HBA2, KCNIP2, EPB42, PYGM, CEP68, ING3, EMCN, SYF2, and DTWD1)
and six mRNAs with upregulated expression (ZNF8, TOMM40, EVPL, EPN3, AP1M2, and SPINT2)
in breast cancer tissues compared to that in non-cancerous tissues (p < 0.001). Conclusions: In
total, 20 DE mRNAs had an area under cover of 0.9 or higher, demonstrating excellent diagnostic
performance in breast cancer. Therefore, the results of this study will provide foundational data for
planning preliminary studies to identify new tumor biomarkers.
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1. Introduction

At present, the representative tumor markers used for breast cancer diagnosis in
clinical practice are cancer antigen 15-3 (CA15-3) and carcinoembryonic antigen (CEA);
these are approved for breast cancer monitoring by the United States Food and Drug Ad-
ministration [1-3]. CA15-3 can be used to monitor patients during treatment, predict tumor
recurrence, and monitor the treatment of patients with metastatic breast cancer [4]. CEA, a
carcinogenic protein, is a positive marker for several cancers such as colorectal, pancreatic,
stomach, breast, and lung cancers [5]. However, it is known that different countries and
institutions have different opinions regarding CA15-3 and CEA. The European Group on
Tumor Markers recommends the use of CA15-3 and CEA for the early detection of disease,
treatment monitoring, and prognosis evaluation [6]. The National Comprehensive Cancer
Network guidelines do not recommend using CA15-3 and CEA as markers for pretreatment
and clinical evaluation [7]. Further, the American Society of Clinical Oncology guidelines
do not recommend the use of CA15-3 and CEA for diagnosis, staging, and therapeutic
monitoring [8]. Although opinions on the tumor markers for breast cancer currently used
in clinical practice are divided, alternative proposals for new tumor markers for breast
cancer are not accurately presented. Therefore, the discovery of critical biomarkers that
will aid in early diagnosis, treatment, and prognosis is considered very important in breast
cancer research.
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Recently, research on the discovery of tumor biomarkers based on data analysis
of The Cancer Genome Atlas (TCGA) is actively being conducted. TCGA is a cancer-
specific multi-omics data resource, and it is known that 33 types of cancer data obtained
from approximately 11,300 patients comprise the vast amount of data of approximately
2 petabytes [9-11]. The purpose of this TCGA project was to comprehensively characterize
the molecular events of primary cancer and make them available to all researchers [12].
Therefore, TCGA data will be used as practical data to support and analyze research by
numerous researchers.

In a study based on TCGA data, it was reported that transcriptional repressor GATA
binding 1 was specifically differentially expressed (DE) only in triple-negative breast
cancer (TNBC), and that the RNA binding motif single stranded interacting protein 3
was downregulated when the prognosis of breast cancer patients was poor [13,14]. In
addition, many research results have been published in tumor research other than that
of breast cancer. In the case of cholangiocarcinoma, the cluster of differentiation 247, Fc
gamma receptor Ia, and transformation/transcription-domain-associated proteins were
suggested as new markers for mRNA-based cancer vaccine targets, and significance with a
high expression of the family with sequence similarity 65 member A was also reported in
colorectal cancer [15,16]. Generally, TCGA data-based analysis is considered to increase
biological insight by studying the tumor environment based on a vast amount of analysis.

Therefore, in this study, the mRNA expression data of 526 breast cancers and 60 adja-
cent non-cancerous breast tissues stored in TCGA were analyzed to identify new biomarkers
for breast cancer. The diagnostic significance of new breast cancer biomarkers was con-
firmed via receiver operating characteristic (ROC) curve analysis of DE mRNAs and the
area under the curve (AUC) value analysis of sensitivity and specificity, and these were
intended to be used as basic data for discovering new breast cancer biomarker candidates.

2. Materials and Methods
2.1. Public Data Collection

Datasets for mRNA expression data and clinical data of breast cancer were obtained
from Firebrowse “http:/ /firebrowse.org (accessed on 13 October 2019)”. Firebrowse is
a user-friendly interface for analyzing reports generated via the Broad Institute’s TCGA-
GDAC firehose pipeline containing processed TCGA data [17]. To identify DE mRNAs
and determine their clinical diagnostic performance, data for all clinical samples, including
age, race, tumor stage, molecular subtype, and expression level (log2 normalization), were
included for 526 breast cancer and 60 adjacent non-cancerous breast tissues. Sixty adjacent
non-cancerous breast tissues were paired with 60 of the 526 breast cancer samples.

2.2. mRNA Expression Analysis

To obtain the profiles of DE mRNAs in breast cancer, we investigated TCGA data. The
intersection of data from 60 breast cancer samples paired with the data of 60 adjacent non-
cancerous breast tissues and 526 breast cancer with the data of 60 adjacent non-cancerous
breast tissues were selected to identify significant mRNA via volcano plot analyses using
the MultiExperiment Viewer (MeV 4.4; The Perl Foundation, Holland, MI, USA) from
17,815 mRNAs.

ROC curve analysis and the AUC were analyzed using GraphPad Prism software
version 8 (La Jolla, CA, USA) to determine the differential expression level of the selected
mRNAs. To select mRNAs with a substantial diagnostic performance, mRNAs with an
AUC value of 0.9 or higher were selected and analyzed through hierarchical clustering.

Heatmap analysis and hierarchical clustering to confirm the expression pattern of the
selected DE mRNAs were performed using MEV software version 4.4 to determine the
mRNA expression profile and identify DE mRNA.


http://firebrowse.org

J. Pers. Med. 2022, 12, 1753

3of 14

2.3. Diagnostic Performance Analysis

To examine the diagnostic performance of the selected DE mRNAs, expression patterns
were analyzed at each stage in the tumor stages, divided into stages I, II, III, and IV;
molecular subtypes were divided into Luminal A (estrogen receptor (ER) or progesterone
receptor (PgR) positive, human epidermal growth factor receptor type 2 (HER2) negative),
Luminal B (ER- or PgR-positive, HER2-positive), HER2-positive, and TNBC.

2.4. Statistical Analysis

Statistical analyses were performed using MEV version 4.4 and GraphPad Prism
version 8 (La Jolla, CA, USA). Student’s ¢-test or one-way analysis of variance (ANOVA)
was used to compare mRNA expression, tumor stages, and molecular subtypes between
cancerous and non-cancerous breast tissues. In all analyses, the differences were considered
statistically significant when p < 0.05 (* p < 0.05, ** p < 0.01, *** p < 0.001).

3. Results
3.1. Characteristics of Breast Cancer Patients

The mRNA dataset consisting of 526 breast cancer and 60 adjacent non-cancerous
breast tissues utilized in this study was obtained from TCGA. Table 1 summarizes the clini-
cal data of breast cancer patients. Among the 526 total breast cancer cases, the proportion of
female patients was 98.86% (520/526). The age of the patients was 57.91 £ 13.26 years. The
most frequently occurring race was Caucasian (68.63%, 361/526), followed by unknown
(17.11%, 90/526), African American (7.60%, 40/526), Asian (6.46%, 34/526), and American
Indian or Alaskan native (0.19%, 1/526). The tumor stages of the patients were 16.92%
(89/526) for Stage I, 56.27% (296/526) for Stage 11, 20.91% (110/526) for Stage III, 2.47%
(13/526) for Stage IV, and 3.43% (18/526) for Unknown. The molecular subtypes of the pa-
tients were 62.74% (330/526) for Luminal A, 15.02% (79/526) for Luminal B, 4.75% (25/526)
for HER2-positive cancer, and 17.49% (92/526) for TNBC.

Table 1. Clinical data of enrolled individuals in the current study.

Breast Cancer, n = 526

Characteristics 1, (%)
Female 520, (98.86)
Age (y, mean + SD) 5791, £13.26
Race
Asian 34, (6.46)
African American 40, (7.60)
Caucasian 361, (68.63)
American Indian or Alaska native 1, (0.19)
Unknown 90, (17.11)
Tumor stage
Stage I 89, (16.92)
Stage II 296, (56.27)
Stage III 110, (20.91)
Stage IV 13, (2.47)
Unknown 18, (3.43)
Molecular subtype
Luminal A 330, (62.74)
Luminal B 79, (15.02)
HER2-positive 25, (4.75)
TNBC 92, (17.49)

3.2. Differential Expression of Breast Cancer mRNA Profiles

DE mRNAs profiles were investigated in breast cancer using MEV version 4.4. DE
mRNAs containing significant intersections in 526 breast cancer and 60 non-adjacent breast
tissues, and 60 breast cancer paired with 60 non-adjacent breast tissues, and were selected
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based on —log10(p) > 3 from a total of 17,815 mRNAs. Of the 17,815 mRNAs, 1,445 mRNAs
were found to form an intersection (Figure 1).

A.n=3,994 (p< 0.001) B.n=3,161 (p<0.001)

*AnB=C

C.n = 1,445 (p<0.001)

Figure 1. Volcano spots for screening differentially expressed mRNAs. Cut-off point was
—log 10(p) > 3. (A) 526 breast cancer and 60 adjacent non-cancerous breast tissues, (B) 60 breast can-
cer paired with 60 adjacent non-cancerous breast tissues, (C) intersection of (A,B), * (A) N (B) = (C);

Intersection (A,B).

The diagnostic performance of 1,445 selected DE mRNAs was determined using ROC
curve analysis. 20 DE mRNAs (p < 0.0001) with an area under the curve (AUC) value of 0.9
or higher were selected. Results for selected DE mRNAs are listed in Table 2. The mRNA
with the highest AUC value was ING3 (0.96, 95% CI = 0.94-0.97), and the mRNA with the
lowest AUC value was SPINT2 (0.90, 95% difference = 0.87-0.93).

Table 2. Clinical diagnostic performance of 20 mRNAs differentially expressed in breast cancer.

Log2 Normalized mRNA Level

mRNAs AUC Cutoff Sensitivity Specificity p-Value
Non-Cancerous Cancerous

ING3 0.9884 £ 0.03998 —0.09470 £ 0.2354 (092_9(? 97) <0.5343 8 48671Zé;/039) (81.9611?3;/(.)2 4) <0.0001
SNF1LK2 1.426 + 0.1338 —0.1613 £ 0.02701 (0.9%_9397) <0.4393 (828556§§;/068) (7784%333018) <0.0001
EVPL —0.02857 £ 0.08834 0.8723 £ 0.01995 (092_981 97) >0.4566 (808742E§07/013) (83.9836332/(.)15) <0.0001
HBA2 0.06397 £ 0.2116 —2.279 + 0.02886 (0'9%_9397) <-1.616 (8187549;;/000) (758461531/006) <0.0001
KCNIP2 1.955 + 0.1823 —0.1219 £ 0.02623 (0.9%—9396) <0.3937 (828556§§;/068) (758461f;;/006) <0.0001
SYF2 0.8908 £ 0.07179 0.06124 £ 0.02065 (0.9%—9(:)3.96) <0.5191 (798521?22/009) (799409?8;/024) <0.0001
AP1IM2 —0.04386 + 0.1699 1.649 £ 0.02720 (0.9(()).—9(:)}).96) >1.111 (83.8167?2;/?20) (758461531/006) <0.0001
CPN2 —0.08433 £ 0.08377  —0.8673 £ 0.01309 (0.8%?3 97) <—0.5644 (82?155/—1323/[.)3 4) (77%1%?8?18) <0.0001
EPB42 1.208 + 0.1597 —0.5775 + 0.02256 (0.8%3)3. g7 <0207 (79%21‘2;/‘.’09) (75361%2‘_’0 g  <0-0001
TOMM40 —1.474 + 0.07094 —0.6728 £ 0.01989 0.92 >—1.093 82.04% 86.67% <0.0001

(0.89-0.96)

(78.50-85.22)

(75.41-94.06)
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Table 2. Cont.

Log2 Normalized mRNA Level

mRNAs AUC Cutoff Sensitivity Specificity p-Value
Non-Cancerous Cancerous

EMCN 5.715 + 0.1217 4.270 + 0.03668 (0.9%'_93 g5 <5048 (78i10.fgj1/[.)87) (75261%2?0 g <0001
CEP68 1.610 + 0.08263 0.6641 =+ 0.02243 (0.8%_95. g5 <1113 (78%?82?87) (71.8438.331/(.)71) <0.0001
HADH 1.056 01059 _%.%255?51 - (0.8(;—9(?.95) <0.4448 (soizzngm) (79.9409'98;/(.)24) <0.0001
ADAM33  0.8487 + 0.08717 *%"%113;6919 * . 8(;'_95 o7y <0338 (8522328/?90) (773%33?1 g <0001
EPN3 0.5513 + 0.1724 2.411 = 0.04022 (0.8%_9;. g5  >1:5% (78%?;;/?22) (791%?8;/‘_’2 gy <0001
ZNF8 —0.6821 £ 0.06841  0.1177 & 0.02107 (0.8%_95 g6 03715 (81%%207/?65) (77383;332)/?1 g <0001
DTWD1 01174 +0.07557  —0.7459 + 0.02202 (0'8%_95 g5) <0301 (80?7‘12'1507/‘?13) (791%98;/2 gy <0001
PYGM 1.132 £ 0.1535 —0.3815 = 0.02526 (0.8%_902. g ~ <0:09362 (81?;4?;;/?00) (71%13553?71) <0.0001
TDRD10 1.561 & 0.1077 0.4343 £ 0.01890 (0.8(;?01.9 g 08479 (81?53%07/?82) (75361'f;Zf’0 g  <0-0001
SPINT2 0.9341 + 0.1939 2.351 + 0.02249 (0'8(;'_93 g3 1981 (78.5?31(5?;;/?05) (7&38'3;’;/?71) <0.0001

In addition, the 20 selected DE mRNAs were investigated for trends in breast cancer
through a heatmap. Of the 20 DE mRNAs, the expressions of 14 DE mRNAs (HADH, CPN2,
ADAMS33, TDRD10, SNF1LK2, HBA2, KCNIP2, EPB42, PYGM, CEP68, ING3, EMCN, SYF2,
and DTWD1) were downregulated in cancerous tissues compared to that in non-cancerous
tissues, and the expressions of six DE mRNAs (ZNF8, TOMM40, EVPL, EPN3, AP1M2, and
SPINT2) were upregulated in cancerous tissues compared to that in non-cancerous tissues

(Figure 2).

Normalized expression

Study group
. Cancerous
. Non- Cancerous

HADH
CPN2
ADAM33
TDRD10
SNF1LK2
HBA2
KCNIP2
EPB42
PYGM
CEP68
ING3
EMCN
SYF2
DTWD1
ZNF8
TOMM40
EVPL
EPN3
AP1M2
SPINT2

Figure 2. Heatmap of selected 20 mRNAs from cancerous and non-cancerous tissues. Heatmap is
obtained using bidirectional hierarchical clustering of 20 significantly expressed mRNAs (p < 0.05 by
Pearson correlation, hierarchical clustering analysis). Red dots indicate upregulated mRNAs and
green dots indicate downregulated mRNAs.
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3.3. Diagnostic Performance Analysis via mRNA Expression Profile Verification

mRNA expression profile was verified to investigate its diagnostic performance. It
was found to be lower (HADH, CPN2, ADAM33, TDRD10, SNF1LK2, HBA2, KCNIP2,
EPB42, PYGM, CEP68, ING3, EMCN, SYF2, and DTWD1) or higher (ZNF8, TOMMA40,
EVPL, EPN3, AP1M2, and SPINT?2) in breast cancer tissue than in adjacent non-cancerous
tissue (Figures 3 and 4).
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Figure 3. Expression levels of downregulated mRNA in breast cancer tissues. 14 differentially
expressed (DE) mRNA profile data with p < 0.001 values. (A) ING3, (B) SNF1LK2, (C) HBA2,
(D) KCNIP2, (E) SYF2, (F) CPN2, (G) EPB42, (H) EMCN, (I) CEP68, (J) HADH, (K) ADAM33,
(L) DTWD1, (M) PYGM, and (N) TDRD10.
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Figure 4. Expression levels of upregulated mRNA in non-cancerous tissues. 6 DE mRNA profile data
with p < 0.001 values. (A) APIM2, (B) EVPL, (C) TOMMA40, (D) EPN3, (E) ZNF8, and (F) SPINT2.

The expression pattern of DE mRNA according to the tumor stage in mRNAs was
downregulated in breast cancer tissue, SYF2 and DTWD1 showed a more down-expressed
pattern as the cancer progressed (Figure 5). In upregulated mRNAs in breast cancer tissue,
EPN3 was up-expressed as the cancer progressed, and ZNF8 was down-expressed as the
cancer progressed (Figure 6). Data from 18 samples were excluded from this study because
the stage was unknown.
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Figure 5. Expression patterns of DE mRNAs downregulated in breast cancer tissue according to
tumor stages. (A) ING3, (B) SNF1LK2, (C) HBA2, (D) KCNIP2, (E) SYF2, (F) CPN2, (G) EPB42,
(H) EMCN, (I) CEP68, (J) HADH, (K) ADAMS33, (L) DTWD1, (M) PYGM, and (N) TDRD10. Data are
reported as mean + SD. * p < 0.05, ** p < 0.01.
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Figure 6. Expression patterns of DE mRNAs upregulated in breast cancer tissue according to tumor
stages. (A) AP1IM2, (B) EVPL, (C) TOMMA40, (D) EPN3, (E) ZNF8, and (F) SPINT2. Data are reported
as mean £ SD. * p < 0.05, * p < 0.01.

In addition, we investigated whether DE mRNAs whose expression were downreg-
ulated and upregulated in breast cancer were correlated with molecular subtype. The
expression levels of DE mRNAs according to molecular subtype status are shown in
Figures 7 and 8. DE mRNAs downregulated in breast cancer tissue were not significant in
molecular subtypes. However, among the DE mRNAs whose expressions were upregu-
lated in breast cancer tissues, TOMM40 was highly expressed in TNBC compared to that
seen in other molecular subtypes, and EPN3 was expressed lower in TNBC than in other
molecular subtypes.
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Figure 7. Expression patterns of DE mRNAs downregulated in breast cancer tissue according to
molecular subtypes. (A) ING3, (B) SNF1LK2, (C) HBA2, (D) KCNIP2, (E) SYF2, (F) CPN2, (G) EPB42,
(H) EMCN, (I) CEP68, (J) HADH, (K) ADAM33, (L) DTWD1, (M) PYGM, and (N) TDRD10. Data are
reported as mean + SD. * p < 0.05, ** p < 0.01, *** p < 0.001.
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Figure 8. Expression patterns of DE mRNAs upregulated in breast cancer tissue according to
molecular subtypes. (A) AP1IM2, (B) EVPL, (C) TOMMA40, (D) EPN3, (E) ZNFS8, and (F) SPINT2. Data
are reported as mean & SD. * p < 0.05, ** p < 0.01, ** p < 0.001.

4. Discussion

Recently, research on the discovery of tumor biomarkers based on big data analysis is
actively being conducted, such as the use of TCGA data to identify these biomarkers [13-16].
Online bioinformatics tools contain big data that provide comprehensive genetic informa-
tion for various cancers via microarray and next-generation sequencing technology [10,11].
These online bioinformatics tools have provided numerous researchers with data to publish
new research papers, resulting in increased biological insight. Therefore, research on the
discovery of new biomarkers related to tumor development is actively being conducted in
clinical practice, and breast cancer is no exception. CA15-3 and CEA tumor markers are
being used to diagnose, treat, and predict breast cancer; however, as limitations such as the
low efficacy and low sensitivity of early diagnosis are revealed, expectations for new tumor
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markers to supplement these in the future are increasing [18-20]. Therefore, in this study,
DE mRNAs were identified by analyzing the mRNA expression data of 526 breast cancer
and 60 adjacent non-breast cancer tissues collected from TCGA data and, based on this, an
attempt was made to secure preliminary data to discover new biomarkers that would aid
in the diagnosis and treatment breast cancer.

Since TCGA data used in this study were collected from non-cancerous tissue data
of patients such as breast cancer tissue, a primary screening analysis was attempted af-
ter considering these clinical characteristics. Through volcano spot analysis, significant
3994 mRNAs were identified in 526 breast cancer tissues and 60 adjacent non-mammary
tissues, and significant 3161 mRNAs were identified in 60 adjacent non-mammary cancer tis-
sues of the patient, such as 60 breast cancer tissue samples. Then, a significantly (p < 0.001)
number of 1445 mRNAs in both groups were selected and this study was performed.

Through ROC analysis of 1,445 mRNAs selected via volcano spot analysis, a total
of 20 mRNAs (ING3, SNF1LK2, EVPL, HBA2, KCNIP2, SYF2, AP1M2, CPN2, EPB42,
TOMM40, EMCN, CEP68, HADH, ADAM33, EPN3, ZNF8, DTWD1, PYGM, TDRD10,
SPINT2) with an AUC value of 0.9 or higher were identified (Table 2). AUC values through
ROC analysis indicate diagnostic accuracy and are classified as AUC = 0.5 (non-informative),
0.5 < AUC < 0.7 (Iess accurate), 0.7 < AUC < 0.9 (moderately accurate), 0.9 < AUC < 1.0
(highly accurate) and AUC =1 (perfect) [21]. Therefore, the 20 mRNAs identified in this
study are highly likely to serve as new biomarkers with a highly accurate AUC value
(0.9 < AUC < 1.0). Through a heat map analysis of the 20 selected DE mRNAs, 14 mRNAs
(HADH, CPN2, ADAM33, TDRD10, SNF1LK2, HBA2, KCNIP2, EPB42, PYGM, CEP68S,
ING3, EMCN, SYF2, DTWD1) were found to be downregulated in breast cancer tissues and
six mRNAs (ZNF8, TOMM40, EVPL, EPN3, AP1M2, SPINT2) were upregulated in breast
cancer tissues (Figure 2).

The expression patterns of the 20 DE mRNAs identified in this study were compared
with those reported in other papers published from 2000 to 2022 that studied the expression
patterns of various tumors including breast cancer (Table 3). There were nine mRNAs
(INGS3, SNF1LK2, SYF2, CPN2, EMCN, ADAM33, TDRD10, EPN3, SPINT?2) for which
there was at least one or more study related to breast cancer. Eleven mRNAs (INGS3,
SNF1LK2, SYF2, CPN2, EPB42, EMCN, HADH, DTWD1, PYGM, EPN3, SPINT2) with
at least one or more other tumor-related study were found. The expression patterns of
SYF2 and CPN2 in other breast cancer studies and in studies of other tumor types were
both opposite to the findings of this study [22-25]. In addition, EPN3 was upregulated
in other breast cancer-related studies, similar to this study, but was downregulated in
gastric cancer and upregulated in glioblastoma, with the opposite results [26-28]. SPINT2
showed various expression patterns in tumors. In other studies related to breast cancer,
results that contradicted the results of this study were reported, and other tumor-related
studies (liver, renal, gastric, cervical, prostate cancer, and medulloblastoma) showed that
SPINT2 expression was downregulated [29-32]. However, studies related to other tumors,
including breast cancer, were insufficient overall. Therefore, if a prospective study of 20 DE
mRNAs selected based on the analysis results of this study is performed on breast cancer
patients, it is expected that a new biomarker can be specifically identified.

Table 3. Comparison of expression patterns of the selected 20 DE mRNAs with the results of this
study and other tumor studies.

Expression Patterns in

s NCBI Gene Expression Pattern in . Expression Patterns in Different
Symbol Description D This Study Other Studies Related Types of Cancer
to Breast Cancer
. . Downregulated in liver cancer,
ING3 Inhibitor Of Growth Family 54556 Downregulation Downregulation [33,34]  head and neck cancer and colorectal
Member 3
cancer [35-37]

SNF1LK2 Salt Inducible Kinase 2 23235 Downregulation Downregulation [38—40] Downregulateﬁlllrf gastric cancer

HBA2 Hemoglobin Subunit Alpha 2 3040 Downregulation -
KCNIP2 Potassium Voltage-Gated 30819 Downregulation

Channel Interacting Protein 2
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Table 3. Cont.

Expression Patterns in

L NCBI Gene Expression Pattern in . Expression Patterns in Different
Symbol Description D This Study Other Studies Related Types of Cancer
to Breast Cancer
SYF2 SYF2 Pre-MRNA Splicing Factor 25949 Downregulation Upregulation [23] Upregulated in epithelial ovarian
cancer [22]
CPN2 Carboxypeptidase N Subunit 2 1370 Downregulation Upregulation [25] Upregulated in lung cancer [24]
EPB42 ErythrocyteBIE\i/fénf;ane Protein 2038 Downregulation } Downregulated Ezlzp]Jancreatic cancer
EMCN Endomucin 51705 Downregulation Downregulation [43] Downregulated in renal cancer [44]
CEP68 Centrosomal Protein 68 23177 Downregulation - -
Hydroxyacyl-CoA . } Downregulated in renal cancer and
HADH Dehydrogenase 3033 Downregulation gastric cancer [45-47]
ADAM33 ADAM Metallopeptidase 80332 Downregulation Downregulation [48,49]
Domain 33
DTWD1 DTW Domain Containing 1 56986 Downregulation - Downregulate%(l)rf gastric cancer
PYGM Glycogen Phosphorylase, Muscle 5837 Downregulation ) Downregulated in head and neck
Associated cancer [51]
TDRD10 Tudor Domain Containing 10 126668 Downregulation Downregulation [52] -
Adaptor Related Protein .
AP1IM2 Complex 1 Subunit Mu 2 10053 Upregulation - -
EVPL Envoplakin 2125 Upregulation - -
Translocase Of Outer .
TOMM40 Mitochondrial Membrane 40 10452 Upregulation ) B
Downregulated in gastric cancer
EPN3 Epsin 3 55040 Upregulation Upregulation [28] [26]
Upregulated in glioblastoma [27]
ZNF8 Zinc Finger Protein 8 7554 Upregulation
. . s . . Downregulated in liver, renal,
SPINT2 Serine Peptidase Inhibitor, Kunitz 10653 Upregulation Upregulation [32] gastric, cervical, prostate cancer and

Type 2

Downregulation [29] medulloblastoma [29-31]

In this study, as the pathological stage increased, SYF2, DTWD1, and ZNF8 were down-
regulated, and EPN3 was upregulated (Figures 5 and 6). First, SYF2 in showed significant
differences in pathological stages stage I-IV (p < 0.05), stage I-1II (p < 0.01), and stage I-II
(p < 0.01), As the pathological stage progressed, the expression level decreased. However,
in other studies, SYF2 expression was upregulated in cancer tissues compared to that in
normal tissues as the tumor grade increased in ovarian and breast cancers [10,23]. DTWD1
showed a significant difference in the stage I-IV (p < 0.01), stage I-III (p < 0.01), stage I-1I
(p < 0.05), and the expression level decreased as the pathological stage progressed. How-
ever, there are very few studies on the pathological stage in other tumors, including breast
cancer, making it difficult to draw comparisons. In addition, ZNF8 showed significant
differences in stages I-IV (p < 0.05), stages I-1II (p < 0.01), and stages II-1II (p < 0.05), and its
expression was upregulated in breast cancer tissues compared to that in normal tissues:
the higher the pathological stage, the more its expression was downregulated. However,
there have been very few tumor-related studies on ZNF8, and its function is not clearly
known. In this study, EPN3 showed significant differences in stage I-IV (p < 0.01), stage
I-1II (p < 0.01), and stage I-1I (p < 0.01) and the higher the pathological stage, the higher
the expression level. EPN3 expression has been reported to be upregulated in high-grade
tissues compared to that in low-grade tissues in glioblastoma [27]. In addition, EPN3 has
been reported to enhance the migration and invasion of cancer cells [53]. However, EPN3
expression patterns could not be compared because there are very few studies related to
breast cancer. The pathological stage is one of the major determinants influencing the
decision to use systemic therapy for breast cancer patients [54]. Therefore, SYF2, DTWD1,
ZNF8, and EPN3 are biomarkers that can help to differentiate pathological stages and are
judged to be helpful in determining the appropriate treatment for patients.

According to receptor status, molecular subtypes are broadly classified into four types,
Luminal A (ER- or PgR- positive, HER2-negative), Luminal B (ER- or PgR-positive, HER2-
positive), HER2-positive and TNBC, and are known to be key factors in determining the
treatment strategy in early breast cancer patients [55,56]. Therefore, it is important that the
discovery of biomarkers that help to distinguish molecular subtypes will aid in determining
the appropriate treatment method for patients. While classifying molecular subtypes in
this study, TOMM40 and EPN3 in Figure 8 showed significant results. TOMM40 showed
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a significant difference with p < 0.001 in most molecular subtypes: It was found to be
highly expressed in TNBC. EPN3 showed a significant difference with p < 0.001 in all types
except for HER2-positive molecular subtype Luminal B and HER2-positive. EPN3 is highly
expressed in HER?2 receptor-expressing molecular subtypes (Luminal B, HER2-positive),
and its expression is downregulated in TNBC, which is considered to be significant in
distinguishing molecular subtypes. TNBC is known to have a poor prognosis compared to
other molecular subtypes of breast cancer due to its high heterogeneity, aggression, and
lack of treatment options [57,58]. Therefore, TOMM40 and EPN3 are expected to serve as
screening factors for differentiating TNBC and other molecular subtypes.

5. Conclusions

In conclusion, 20 DE mRNAs with high diagnostic accuracy with an AUC value > 0.9
or higher were identified via TCGA data analysis, and their diagnostic performance was
confirmed. This would aid in the discovery of new tumor markers for breast cancer. Among
the 20 identified DE mRNAs, EPN3 expression was upregulated in breast cancer tissues
compared to that in normal tissues and was upregulated as the histopathological grade
of breast cancer increased. In addition, the expression pattern of EPN3 varied depending
on the expression of the receptor; therefore, EPN3 was considered to have high diagnostic
value. This can be expected to serve as a helpful marker when diagnosing breast cancer
and deciding on the direction of treatment. However, as in a study of TCGA data analysis,
it was not possible to plan an even distribution with respect to the type and number of
samples and clinical characteristics. Hence, validation experiments were been conducted
on the DE mRNAs identified at the clinical sample, cellular, or animal levels. Therefore, it
is expected that the results of data analysis from this study will serve as basic data when
planning preliminary studies to discover new tumor markers in the future.
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