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Abstract: Background: Non-small cell lung cancer (NSCLC) is still one of the types of cancer with
the highest death rates. MicroRNAs (miRNAs) play essential roles in NSCLC development. This
study evaluates miRNA expression patterns and specific mechanisms in male patients with NSCLC.
Methods: We report an integrated microarray analysis of miRNAs for eight matched samples of
males with NSCLC compared to the study of public datasets of males with NSCLC from TCGA,
followed by qRT-PCR validation. Results: For the TCGA dataset, we identified 385 overexpressed and
75 underexpressed miRNAs. Our cohort identified 54 overexpressed and 77 underexpressed miRNAs,
considering a fold-change (FC) of±1.5 and p < 0.05 as the cutoff value. The common miRNA signature
consisted of eight overexpressed and nine underexpressed miRNAs. Validation was performed using
qRT-PCR on the tissue samples for miR-183-3p and miR-34c-5p and on plasma samples for miR-34c-
5p. We also created mRNA-miRNA regulatory networks to identify critical molecules, revealing
NSCLC signaling pathways related to underexpressed and overexpressed transcripts. The genes
targeted by these transcripts were correlated with overall survival. Conclusions: miRNAs and some
of their target genes could play essential roles in investigating the mechanisms involved in NSCLC
evolution and provide opportunities to identify potential therapeutic targets.

Keywords: NSCLC; microRNA; microarray

1. Introduction

Lung cancer is an aggressive malignant tumor and the leading cause of cancer-related
deaths in both developing and developed countries, being the second most diagnosed
cancer worldwide, according to GLOBOCAN 2020 statistics. The statistics for Europe
indicate that about half a million cases of lung cancer are diagnosed yearly. This pathology
has the highest mortality rate in men and women, causing 384,176 deaths/year [1]. The
incidence of lung cancer in European men in 2020 is 315,054 (13.5%), almost double the
number among women, 162,480 (7.9%), making the interest in men’s lung cancer genomic
profiling attractive, especially for the identification of a specific signature and the discovery
of new potential therapeutic approaches that consider sex-related genomic profiles [2].

Based on the histopathological features, lung cancer is broadly classified into two
major classes: non-small-cell lung cancer (NSCLC) and small-cell lung cancer (SCLC) [3].
NSCLC includes three main histological subtypes. Lung squamous cell carcinoma (LUSC)
and lung adenocarcinoma (LUAD) account for more than 80% of the total cases of lung
cancer, and large cell lung cancer (LCLC) completes the rest of up to 20% [4]. Most of these
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cases (over 75%) are diagnosed in late stages when the therapeutic response is limited
and the overall survival poor [5]. In addition, males have an increased risk of death
compared to women; males have a reduced benefit from EGFR inhibitors, and additional
anti-PD1 inhibitors significantly improved the survival in male patients compared with
chemotherapy [6]. Considering these facts, we decided to include only males in our
patient cohort.

MicroRNAs (miRNAs) represent a newly discovered class of non-coding RNA molecules
consisting of 19–25 nucleotides in length and are a highly conserved type of endogenous non-
coding RNA. These transcripts play essential roles in various biological processes such as cell
proliferation, differentiation, and apoptosis by binding to the 3′ untranslated region of target
mRNAs, thus modulating their expression and altering various signaling pathways [7–9].
They are intensively studied due to their capacity to inhibit coding genes that are targeted
by the short sequence of miRNAs. Some new studies show that some potential target
RNAs of miRNAs are not simply targets of miRNAs but also control miRNA’s function and
stability [10].

Functional miRNAs in NSCLC are commonly dysregulated, mainly due to genomic
deletion and changes in the methylation status. Thus, these miRNAs may be able to
produce changes in many cancer-related pathways and processes (cell cycle, metabolism,
epithelial to mesenchymal transition) and modify sensitivity to current therapies [11–13].

Several miRNA profiling platforms, from microarray to next-generation sequencing,
are available to identify miRNAs prospectively [14]. Microarray technology is a powerful
platform for biological exploration. This technology allows the evaluation of coding and
several classes of non-coding gene signatures, revealing their importance in tumorigenesis
and cancer progression [15,16]. In recent years, microarray technology has been successfully
used for miRNA profiling studies to discover new correlations between coding genes
and their involved regulatory pathways. The microarray is one of the most consistent
techniques in translational medicine, especially when the samples are adequately selected
for homogeneity, and the numbers are representative [16,17].

The expression level of different miRNAs can be correlated with several histopatho-
logical biomarkers, give us information about the mutational status of genes, and be used
as early-cancer detection diagnostic tools [18]. miRNA signatures can also be related to
clinical parameters, including disease stage and the presence of targetable mutations, and
can predict response to new therapeutic approaches [19–21]. Several miRNAs are under
investigation for their role as therapeutic targets or modulators of the currently available
therapies in NSCLC [22–24].

The literature data revealed that miRNAs might show more significant expression
divergence between male and female groups in both physiological and pathological condi-
tions [25–28]. Differences in the incidence and prognosis according to gender were observed
in inflammatory lung disease and lung cancer [28,29]. An analysis of the LUAD TCGA co-
hort identified 73 sex-biased miRNAs (40 male-biased and 33 female-biased miRNAs) [30].
Therefore, this study aims to explore further the sex-specific miRNA expression in a cohort
of male NSCLC. A better understanding of the sex-specific miRNA dysregulation can
provide essential insights into cancer pathogenesis and better identify new approaches to
stratify patients for currently available therapies or identify new cellular vulnerabilities in
specific patient cohorts.

Our study focuses on the global miRNA expression patterns evaluated using microar-
ray in male NSCLC paired samples (eight matched samples of male patients with NSCLC,
four LUAD and four LUSC, stages IB to IIIA). Our results were compared with the TCGA
miRNA datasets. Differentially expressed miRNAs were validated using qRT-PCR in tissue
and plasma samples from NSCLC patients. We integrated our miRNA expression results
in the ingenuity pathway analysis (IPA) software that was used to identify the underlying
regulatory mechanisms and the involved targeted genes. Among the targets, we selected
EGFR, IGF-IR, and TGFβ1 proteins for validation on plasma samples using ELISA. Our val-
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idation approach uses qRT-PCR and ELISA, two widely available techniques in pathology
laboratories which increases the potential integration of our panels in clinical practice.

2. Materials and Methods

The study workflow of the present research is presented as a flow chart in Figure S1.

2.1. NSCLC TCGA Data Analysis

We performed an analysis on the third level of miRNAs profiling from 467 lung tumors
(NSCLC) and 19 normal tumor-adjacent tissues, all from men (Table 1), obtained from
the TCGA data portal (https://tcga-data.nci.nih.gov/tcga/), accessed on 21 July 2021.
Differential expression analysis was performed using the GeneSpring GX v.13.0 software
from Agilent Technologies (Sant Clara, CA, USA). The volcano plot module was applied
using a fold change of 1.5 and a p-value of < 0.05.

Table 1. Male NSCLC TCGA samples’ characteristics.

Samples Parameters LUAD (n = 210) LUSC (n = 257)

Age
Median, Range ♂ 67, 41–88 68, 41–90

Unknown 9 4

T stage

T1 56 52

T2 121 153

T3 23 43

T4 9 9

Tx 1 -

N stage

N0 131 168

N1 48 63

N2 28 21

N3 - -

Nx 2 5

N unknown 1 -

M stage

M0 142 199

M1 12 3

Mx 55 55

M unknown 1 -

Tumor stage

I 99 117

II 63 95

III 32 39

IV 12 3

Unknown 4 3

Smoking status

Never smoker 19 6

Current smoker 61 86

Quit > 15 years 63 39

Quit ≤ 15 years 57 113

Quit (unknown) 3 4

Unknown 7 9

https://tcga-data.nci.nih.gov/tcga/
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2.2. Patient Cohort

Between December 2016 and February 2022, we collected the matched pairs of tumor
tissue alongside the normal and peripheral whole blood samples from NSCLC samples,
both LUAD and LUSC. The tissue samples were collected using flexible bronchoscopy
with endobronchial biopsy, performed under local anesthesia by an experienced operator.
Normal tissue for the matched paired samples was collected from the contralateral, healthy
lungs of the same patient. This study included patients older than 18 who presented in
the Bronchoscopy Department with suspicion of endobronchial lung cancer on imagistic
studies (computer tomography or positron emission computed tomography). Exclusion
criteria were diagnosis of synchronous or metachronous tumors of other organs, patients
with prior oncologic therapy, and the inability to tolerate the procedure. All patients
enrolled in the study were informed about the inclusion and exclusion criteria and signed
the informed consent. The present study was approved by the institutional ethics committee
of Iuliu Hatieganu University of Medicine and Pharmacy (UMPh), No. 438/24 November
2016 and 264/26 June 2018.

We analyzed the paired tumor and normal tissue samples from 8 male NSCLC patients
for the microarray profiling to depict dysregulated miRNAs. Of the 8 male patients, 4 were
diagnosed with LUAD and 4 with LUSC (Table 2), referred to as UMPh patient cohort. An
independent patient cohort was used for qRT-PCR validation of the selected miRNAs at
the tissue level consisting of 62 NSCLC patients (28 with LUAD and 34 with LUSC), with
their characteristics described in Table 3.

Additional validation was performed at the plasma level in a partially common patient
cohort (n = 19) for the selected miRNAs and ELISA validation of the EGFR, IGF-IR, and
TGFβ1 expression levels (Table 4). The expression levels of the selected miRNAs in plasma
samples were compared with the expression levels encountered in the plasma collected
from 34 healthy subjects. All the experiments performed in this study included only
healthy male controls and NSCLC patients. The healthy control cohort included 34 plasma
specimens, with ages ranging from 40 to 61, with an age average of 49.9 years, all males
(n = 34). These are indispensable as a reference for validating miR-34c-5p at plasma levels.

Table 2. Sample characteristics of the 8 male NSCLC patients used for miRNA microarray evaluation.

Demographics
LUAD n = 4 LUSC n = 4

No. of Patients (%) No. of Patients (%)

Age
50–59 1 (25) 0 (0)
60–69 2 (50) 3 (75)
70–79 1 (25) 1 (25)

Sex M 4 (100) 4 (100)

Stage

IB 0 (0) 1 (25)
IIA 2 (50) 1 (25)
IIB 1 (25) 2 (50)
IIIA 1 (25) 0 (0)

Smoking status
Never smoker 2 (50) 0 (0)
Former smoker 0 (0) 2 (50)
Current smoker 2 (50) 2 (50)
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Table 3. Clinicopathological characteristics of the 62 NSCLC samples used for the miRNA expression
validation with qRT-PCR validation.

Characteristics
LUAD n = 28 LUSC n = 34

No. of Patients (%) No. of Patients (%)

Age

50–59 8 (28.6) 9 (26.5)
60–69 13 (46.4) 14 (41.1)
70–79 6 (21.4) 9 (26.5)
80–89 1 (3.6) 2 (5.9)

Sex M 28 (100) 34 (100)

T
T2 3 (10.7) 3 (8.8)
T3 10 (35.7) 9 (26.5)
T4 15 (53.6) 22 (64.7)

N

N0 4 (14.3) 3 (8.8)
N1 7 (25) 6 (17.6)
N2 14 (50) 21 (61.7)
N3 3 (10.7) 4 (11.8)

M
M0 12 (42.8) 26 (76.5)

M1 16 (57.2) 8 (23.5)

Stage
II 2 (7.2) 2 (5.9)
III 10 (35.7) 25 (73.5)
IV 16 (57.1) 7 (20.6)

Smoking status
Never smoker 6 (21.4) 0 (0)
Current smoker 13 (46.4) 17 (50)
Former smoker 9 (32.2) 17 (50)

Table 4. Demographic and histopathological diagnosis of the 19 NSCLC patients used for plasma
qRT-PCR validation of miR-34c-5p and miR-183-3p, and ELISA determination for EGFR, IGF-IR, and
TGFβ1 from serum.

Characteristics
LUAD n = 4 LUSC n = 15

No. of Patients (%) No. of Patients (%)

Age

50–59 2 (50) 5 (33.3)
60–69 1 (25) 5 (33.3)
70–79 1 (25) 4 (26.6)
80–89 0 (0) 1 (6.7)

Sex M 4 (100) 15 (100)

Stage
II 1 (25) 0 (0)
III 2 (50) 12 (80)
IV 1 (25) 3 (20)

T
T2 3 (75) 2 (13.3)
T3 1 (25) 3 (20)
T4 0 (0) 10 (66.7)

N

N0 2 (50) 0 (0)
N1 0 (0) 2 (13.3)
N2 1 (25) 11 (73.4)
N3 1 (25) 2 (13.3)

M
M0 3 (75) 11 (73.4)

M1 1 (25) 4 (26.7)

Smoking status
Never smoker 1 (25) 0 (0)
Current smoker 1 (25) 7 (46.7)
Former smoker 2 (50) 8 (53.3)
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2.3. Sample Processing and Microarray Evaluation

The total RNA extraction and isolation from 8 paired samples (normal and tumoral
LUAD tissue) were performed using the TriReagent (Sigma-Aldrich, St. Louis, MO, USA)
protocol, followed by the evaluation of RNA concentration using NanoDrop-2000. The
microarray protocol used 100 ng of total RNA for each analyzed sample, as this amount
is recommended in the standard protocol for miRNA evaluation using miRNA complete
labeling and hybridization kit (cat No. 5190–0456 Agilent Technologies, Santa Clara, CA,
USA), followed by a purification step using Micro Bio-Spin P-6 Gel Column (Biorad,
Hercules, CA, USA, cat No. 732-6221).

Microarray slides (G4870C, 8× 60 K, miRbase_21, Agilent Technologies) were scanned
using SureScan microarray scanner (Agilent Technologies), and then for the extraction of the
data, Feature Extraction version 12.0 was used. For the assessment of the altered miRNAs
in tumor tissue vs. adjacent normal tissue GeneSpring GX v.13.0 was used applying a fold
change (FC) threshold of 1.5 and FDR (false discovery rate) correction (p-value ≤0.05).

2.4. Functional Analysis and Target Gene Identification

DIANA miRPath is a specific tool for identifying miRNA-targeted pathway analysis
via a web interface (http://www.microrna.gr/miRPathv2, accessed on 28 July 2021) [31].
To determine the target genes most relevant to our miRNAs, we used IPA software [32,33].

2.5. miRNA Evaluation of Expression Levels in Tissue and Plasma Samples

Plasma preparation and RNA isolation from NSCLC patients and healthy controls
were performed in standard conditions. Peripheral blood on EDTA (ethylenediaminete-
traacetic acid) was obtained from each patient after the initial diagnosis and immediately
processed (less than two hours after collection) by centrifugation at 4000 rpm for 10 min at
room temperature, then aliquoted in 2 mL tubes and deposited at −80 ◦C.

The extraction of total RNA from plasma samples was performed using the plasma/
serum circulating and exosomal RNA purification kit (slurry format), followed by the quan-
tification of RNA concentration using the NanoDrop-1000 spectrophotometer; meanwhile,
the RNA was extracted using the TriReagent-based method for tissue samples.

In the microarray experiment, RT-PCR was performed, starting from 50 ng total
RNA for both tissue and plasma samples, to test the candidate miRNAs observed to
be differentially expressed in a statistically significant manner. Then, RNA was reverse-
transcribed using a TaqMan microRNA reverse transcription kit (Applied Biosystem, Foster
City, CA, USA, 4366596). RT-PCR reactions were performed on the ViiA7 instrument
(Applied Biosystems, Foster City, CA, USA) in a 10µL reaction volume containing TaqMan™
Fast Advanced Master Mix (catalog number: 4444556, Thermo Scientific, Waltham, MA,
USA) and specific primers (miR-34c-5p cat No. 000426 and miR-183-3p cat No. 002270, U6
cat No. 001973 and RNU48 cat No. 001006, Life Technologies, Carlsbad, CA, USA).

The expression level was calculated using the 2−∆∆Ct method, U6, and RNU48
for normalization; p < 0.05 was considered statistically significant. Additionally, a ROC
(receiver operating characteristic) graphical representation was performed to assess the
sensitivity and specificity of each evaluated transcript at plasma and tissue levels using
GraphPad Prism (https://www.graphpad.com/, Version 6, accessed on 23 October 2022),
and the combined ROC curves were generated using the CombiROC online tool [34].

2.6. EGFR, IGF-IR, and TGFβ1 Quantification in Serum Samples

The expression levels of EGFR, IGF-IR, and TGFβ1 were encountered in serum samples
from NSCLC male patients. Healthy subjects were detected using ELISA, with the Human
EGFR DuoSet ELISA (R&D System, Minneapolis, MN, USA, cat No. DY231), Ancillary
Reagent Kit 2 (R&D System, cat No. DY008), IGFIR DuoSet ELISA (R&D System, cat No.
DY 391), Ancillary Reagent Kit 3 (R&D System, cat No. DY240-05), TGF beta 1 DuoSet
ELISA, and Ancillary Reagent Kit 1 (R&D System, cat No. DY 007).

http://www.microrna.gr/miRPathv2
https://www.graphpad.com/
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3. Results
3.1. Clinical and Pathological Characteristics of the Cohorts

The main features of the patients included in the microarray study are listed in Table 2.
Equal proportions of males with LUAD (n = 4) and LUSC (n = 4) were considered, aged
50–79. This assessment included patients from stage IB to IIIA (Table 2). The second cohort
of patients (validation cohort), from which tumor tissue and normal tissue were used to
validate the selected miRNAs, is described in Table 4. The patients’ age was between 50 and
89 years, with a majority in the 60–69 years range. The selected patients were diagnosed
with stage II–IV NSCLC. Moreover, most of these patients were former or current smokers
at diagnosis, with only six patients in the LUAD group being never-smokers. The second
cohort, used for additional validation, partially overlaps with the first validation cohort,
with 12 patients included in both validation cohorts. This cohort included 19 patients from
whom plasma samples were collected (Table 4).

3.2. Evaluation of Tissue miRNAs’ Expression Levels in NSCLC Patients in TCGA and
UMPh Cohort

The differences in miRNA-expression levels in accordance with fold changes
(FC) ± 1.5 and a p < 0.05 were considered significant for the male samples: 385 over-
expressed and 75 underexpressed miRNAs, and for the female samples, 61 overexpressed
and 27 downregulated. The TCGA analysis observed substantial differences between
male and female NSCLC, particularly in the case of downregulated miRNA, revealing an
important miRNA pattern specific for males (63 downregulated and 331 overexpressed)
and females (15 downregulated and 9 overexpressed), and only 12 downregulated and
52 overexpressed miRNAs as common signatures (Figure S2) for male and female NSCLC
from the altered gene expression signatures.

Additional profiling investigation in our patient cohort favored the identification of
the most relevant altered miRNAs based on an analysis of eight paired samples using
microarray analysis: lung cancer tumor tissues (TT) versus normal tissues (TN). The
microarray analysis identified 77 underexpressed and 54 overexpressed miRNAs in the
UMPh male patient cohort.

To further analyze the involvement of these miRNAs in important metabolic and
tumorigenic processes, we realized a heatmap analysis, depicted in Figure 1. The heatmap
analysis, presenting the altered miRNAs in tumor tissue for the TGCA male NSCLC patient
cohort, is summarized in Figure 1A, whereas for the UMPh patient cohort, it is shown in
Figure 1B. Figure 1C,D show commonly dysregulated miRNAs between the TCGA and
UMPh cohorts for both the underexpressed and overexpressed miRNAs. The nine common
underexpressed miRNAs include miR-30a-3p, miR-30a-5p, miR-139-3p, miR-133b, miR-
143-3p, miR-34c-3p, miR-34c-5p, miR-34b-3p, and miR-145-5p. The overexpressed eight
common miRNAs include miR-183-3p, miR-7-5p, miR-21-5p, miR-1224-5p, miR-194-3p,
miR-934, miR-382-5p, and miR-1250-5p.

Additional analyses were performed separately on LUSC and LUAD in both patient
cohorts (Figure S3A,B). In the UMPh patient cohort, for LUAD, the study showed 97 altered
miRNAs (70 underexpressed and 27 overexpressed); meanwhile for LUSC, we found
171 altered miRNAs (66 underexpressed and 105 overexpressed).

The analysis of the patient cohort for LUAD showed 350 altered miRNAs (85 under-
expressed and 265 overexpressed); meanwhile for LUSC, there was observed 522 altered
miRNAs (77 underexpressed and 445 overexpressed). Figure S3C–E presents the common
signatures among the two patient cohorts - LUAD and LUSC cohorts. Additional common
signatures among LUAD and LUSC are shown in Figure S4, separated by upregulated and
underexpressed miRNAs overlapping TCGA and our patient cohort dataset.
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Figure 1. miRNA profiling in NSCLC male patients. (A) Heatmap for the TGCA dataset. (B) Heatmap
for UMPh patient cohort (the blue color denotes underexpression, whereas the red color suggests
overexpression). (C) Venn diagram for underexpressed miRNAs between TCGA (blue) and UMPh
(yellow) cohorts. (D) Venn diagram for overexpressed miRNAs between TCGA (blue) and UMPh
(yellow) cohorts.

3.3. Functional Analysis and Target Genes Identification

Analysis, using DIANA-miRpath (v.3.0) presented for the commonly altered miRNA
signature in male NSCLC patients, reveals significant pathway alterations (Figure 2).
Most of the significantly enriched pathways were cancer-associated. These include TP53
signaling, focal adhesion, PI3K-AKT signaling, the Hippo signaling pathway, the TGF-beta
signaling pathway, and the adherence junction which were proved to be altered (corrected
p < 0.05). Additionally, the specific network related to NSCLC emphasized six clear
transcripts. Among them, miR-145-5p, miR-34c-5p, and miR-30a-5p were downregulated,
and the three upregulated transcripts were miR-21-5p, miR-7-5p, and miR-183-3p, as
presented in Figure 3A.

An important issue was related to the targets of the selected miRNAs of the NSCLC
pathway performed using KEGG pathways via DIANA-miRPath v3.0, revealing some
common targets for both the downregulated and overexpressed transcripts that can be
observed from the Circos graphical representation (Figure 3B). This is the case in the NRAS
gene that is targeted by all three overexpressed transcripts and one downregulated miRNA
(miR-30a-5p). CCND1 is targeted by two overexpressed miRNAs (miR-21-5 and miR-7-5p)
and two downregulated ones (miR-145-5p and miR-30a-5p).
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Figure 2. Heatmaps of significant pathways predicted by DIANA-miRPath (v.3.0) for specific common
miRNAs signature in male NSCLC patients, with clustering based on significance levels. Paths are
represented on the x-axis and miRNAs on the y-axis. The color code expresses the log (p-value), with
the most relevant predicted miRNA–pathway interactions shown in red.

3.4. IPA miRNA–Gene Regulatory Network on Male NSCLC

The miRNA–gene regulatory network in Figure 4 and Figure S5 illustrates the inter-
connection between the miRNAs and the pathways these transcripts are involved in. This
network offers a comprehensive image of altered miRNA signatures and the signaling
pathways disturbed in male patients with an NSCLC diagnosis. The main challenge is iden-
tifying the most relevant altered miRNAs and target genes, considering the common and
specific target genes. This approach can have an essential role in developing novel targeted
therapies. miR-21, miR-34c-5p, miR-30a-3p, miR-143-3p, and miR-145-5p can be considered
candidates considering the higher number of genes targeted. These transcripts are directly
and indirectly connected with the essential genes correlated with overall survival, such
as TGFB1, p38 MAPK, THEMIS, and SMAD2, as observed in the IPA network analysis
(Figure 4A); the core element of the network is miR-34c-5p. Figure 4B presents the miRNA
network cellular movement, development, growth, and proliferation as interconnected with
the essential genes and able to predict overall survival in male lung cancer (ILF3, IGF1R,
and PAX3); in this network can be observed a direct interconnection between miR-34c-5p
and miR-34c-3p with PAX3-FOXO1 or IGF1R.
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Figure 3. NSCLC signaling. (A) NSCLC network performed using KEGG pathways via DIANA-
miRPath v3.0. Yellow are genes targeting one miRNA, and orange are genes targeting at least two
miRNAs. Red squares mark the genes correlated with the overall survival of NSCLC patients using
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transcripts (miR-145-5p, miR-34c-5p, and miR-30a-5p) and three upregulated transcripts (miR-21-5p,
miR-7-5p, and miR-183-3p) and critical genes related to this signaling.
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to cancer, organismal injury, abnormalities, and reproductive system disease; ↑upregulated
genes, ↓downregulated genes in LUAD or LUSC according to UALCAN (http://ualcan.path.uab.
edu). (B) Genes from the network correlated with overall survival in NSCLC, generated using
Kaplan–Meier plotter online platform (https://kmplot.com/analysis/ accessed on 23 October 2022).
(C) Network related to cellular movement, development, growth, and proliferation. (D) Genes from
the network correlated with overall survival in NSCLC, generated using Kaplan–Meier plotter online
platform (https://kmplot.com/analysis/ accessed on 23 October 2022).

3.5. RT-PCR Tissue Validation

Given the context of the information displayed in Figure 4, two miRNAs were chosen
for further validation based on the statistically significant FC obtained from our microarray
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data and the common signature with the TCGA data. Therefore, we set one representative
from the miR-34 family members, miR-34c-3p, and miR-35c-5p; these two miRNAs are in
the top ten downregulated transcripts in NSCLC. In addition, in the case of the upregulated
miRNAs, from the common signature, we selected miR-183-3p (one of the top five upregu-
lated transcripts in the UMPh patient cohort and in the top 25 upregulated miRNAs in the
TCGA data set in NSCLC). The validation at tissue level was performed in an independent
tissue patient cohort comprising 28 matched paired LUAD samples and 34 cases matched
paired LUSC samples (Figure 5). These transcripts are not affected by different cancer
stages, as observed from the TCGA dataset (Figure S6) and our patient cohort (Figure S7).
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expression levels in LUAD. (B) ROC curve for miR-34c-5p in LUAD. (C) miR-183-3p expression levels
in LUAD. (D) ROC curve for miR-183-3p in LUAD. (E) Combined ROC curves for miR-34c-5p and
miR-183-3p in LUAD, generated using CombiROC online tool. (F) miR-34c-5p expression levels in
LUSC. (G) ROC curve for miR-34c-5p in LUSC. (H) miR-183-3p expression levels in LUSC. (I) ROC
curve for miR-183-3p in LUSC. (J) Combined ROC curves for miR-34c-5p and miR-183-3p in LUSC,
generated using CombiROC online tool (** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001).

3.6. RT-PCR Plasma Validation

The expression of miR-34c-5p was upregulated in the plasma samples of cancer pa-
tients compared with the healthy controls (p = 0.004 and AUC = 0.8467) and are concordant
with those observed in the microarray experiment in both the tumor tissue and plasma
samples (Figure 6), in 19 NSCLC plasma samples and 34 healthy males used as controls.
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3.7. EGFR, IGF-IR, and TGFβ1 Quantification in Serum Male NSCLC Patients

As an additional validation step, we evaluated circulating EGFR, IGF-IR, and TGFβ1
in male NSCLC patients (n = 19) and healthy subjects (n = 34). The results are shown in
Figure 7. The results indicate decreased concentration levels in the serum samples for EGFR
in male NSCLC patients versus healthy subjects. No statistically significant alteration was
observed for IGF-IR and TGFβ1.
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4. Discussion

To identify the miRNA candidates as potential therapeutic targets, we overlapped
our microarray data with a male NSCLC TCGA dataset containing the miRNA expression
profiles from the tumor tissue, followed by validation at the plasma level of one miRNA
candidate (miR-34c-5p) and the EGFR level of expression in the serum samples.

However, given that a large number of miRNAs can target a single mRNA and a
single miRNA can target several mRNAs, further studies are needed to better understand
the gender-associated differences in male NSCLC pathways and emphasize the complex
regulatory networks, as revealed in Figure 3. Our bioinformatics network analysis supports
the previously presented idea that mRNAs are targeted by multiple miRNAs [35]. This is
the case for NRAS, EGFR, CDK6, and CCND1, as shown in the regulatory pathways in
Figure 3A.

The expression of miR-34 in lung cancer has also been evaluated in several studies
indicating that the world of three miR-34 family members is decreased in lung tumor tissue
compared to normal tissues [36–38]. This family also includes miR-34c-3p and miR-34c-
5p, and these transcripts have a reduced expression according to the analysis performed
in our study and the same seed sequence of miRNA as miR-449 [39,40]. Another study
revealed that the low expression of circulating miR-34 family members correlates with
poor survival in NSCLC patients. The MiR-34 family members act as tumor suppressors
in NSCLC [41,42] and are considered critical regulators of the TP53 signaling [43] and
EMT (epithelial to mesenchymal transition) [44]. A recent study revealed that miR-34b and
miR-34c are more effective tumor suppressors than miR-34a [40], which is directly related
to the TP53 signaling [45].

Moreover, miR-34a/c appears to be involved in TRAIL-induced apoptosis in lung
cancer [36]. The limitations in our study are related to the reduced number of samples,
particularly in the plasma quantification of miR-34c-5p. As can be observed in Figure 8,
this transcript is involved in all steps of tumor progression directly or indirectly, together
with other multiple biological processes.



J. Pers. Med. 2022, 12, 2056 14 of 18J. Pers. Med. 2022, 12, x FOR PEER REVIEW 15 of 19 
 

 

 
Figure 8. IPA network emphasizes the interconnection of miR-34c-5p with key cancer hallmarks, 
including invasion, proliferation, and metastatic potential. 

MiR-183 is a transcript significantly upregulated in NSCLC, suggesting that it has an 
oncogenic function in the lung cancer pathogenesis [46]. Our study confirmed the overex-
pression in tumor tissue versus normal tissue from NSCLC patients versus healthy con-
trols. MiR-183 is related to cancer progression by repressing the expression of PTEN [46] 
and PIK3CA [47]. The PIK3CA regulatory axis is identified as a potentially effective ther-
apeutic strategy for lung cancer [47], considering that this signaling pathway is also tar-
geted by other significant miRNAs, such as miR-21-5p and miR-34c (Figure 2). It is essen-
tial to mention that these altered transcripts are interconnected with genes correlated with 
overall survival in lung cancer, as shown, highlighted in red, in Figure 3A. The MiR-34 
family members and miR-21 demonstrated the highest degree of connectivity, illustrated 
in the complex miRNA regulatory network (Figure 4A). 

EGFR represents an essential element of this NSCLC network. EGFR is a protein in-
volved in various pathways that control cell proliferation, differentiation, apoptosis, an-
giogenesis, and metastasis, including Ras/Raf/MAPK, JAK/STAT, and PI3K-Akt path-
ways [48]. Moreover, tyrosine kinase inhibitors (TKIs) targeting EGFR have been devel-
oped with significant improvements in response rates and survival [49,50]. IGF-1R was 
reported as regulating apoptosis and its overexpression in tumor tissues contributing to 
an antiapoptotic effect by improving cell survival, with its activation resulting in trans-
mitting signals downstream through the PI3K-AKT1-MTOR and MAPK pathways [51]. 
Cross-talk between EGFR and IGF-1R pathways promotes resistance to EGFR TKIs and 
monoclonal antibodies for EGFR and the upregulation of IGF-1R in NSCLC patients, in-
ducing EGFR TKI resistance [52–54]. Regarding TGFβ1, this transcript was appraised 
given its well-known involvement in EMT, including NSCLC [55]. The PI3K-Akt and 
RhoA pathways are activated following TGFβ1 signaling [56]. 

As previously reported, miR-21 is upregulated under conditions in which EGFR sig-
naling is activated; a fact proved in a cohort of non-smoking patients [57]. Based on our 
data, it was observed that EGFR is targeted by overexpressed miR-7-5p and downregu-
lated miR-145-5p and miR-30a-5p. Reports have proven that the serum EGFR levels are 
connected with aggressive cancer development. Quantifying serum/plasma EGFR levels 
in NSCLC patients and the correlation with clinical parameters remains controversial. In 

Figure 8. IPA network emphasizes the interconnection of miR-34c-5p with key cancer hallmarks,
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MiR-183 is a transcript significantly upregulated in NSCLC, suggesting that it has
an oncogenic function in the lung cancer pathogenesis [46]. Our study confirmed the
overexpression in tumor tissue versus normal tissue from NSCLC patients versus healthy
controls. MiR-183 is related to cancer progression by repressing the expression of PTEN [46]
and PIK3CA [47]. The PIK3CA regulatory axis is identified as a potentially effective
therapeutic strategy for lung cancer [47], considering that this signaling pathway is also
targeted by other significant miRNAs, such as miR-21-5p and miR-34c (Figure 2). It is
essential to mention that these altered transcripts are interconnected with genes correlated
with overall survival in lung cancer, as shown, highlighted in red, in Figure 3A. The MiR-34
family members and miR-21 demonstrated the highest degree of connectivity, illustrated in
the complex miRNA regulatory network (Figure 4A).

EGFR represents an essential element of this NSCLC network. EGFR is a protein
involved in various pathways that control cell proliferation, differentiation, apoptosis,
angiogenesis, and metastasis, including Ras/Raf/MAPK, JAK/STAT, and PI3K-Akt path-
ways [48]. Moreover, tyrosine kinase inhibitors (TKIs) targeting EGFR have been developed
with significant improvements in response rates and survival [49,50]. IGF-1R was reported
as regulating apoptosis and its overexpression in tumor tissues contributing to an anti-
apoptotic effect by improving cell survival, with its activation resulting in transmitting
signals downstream through the PI3K-AKT1-MTOR and MAPK pathways [51]. Cross-talk
between EGFR and IGF-1R pathways promotes resistance to EGFR TKIs and monoclonal
antibodies for EGFR and the upregulation of IGF-1R in NSCLC patients, inducing EGFR
TKI resistance [52–54]. Regarding TGFβ1, this transcript was appraised given its well-
known involvement in EMT, including NSCLC [55]. The PI3K-Akt and RhoA pathways
are activated following TGFβ1 signaling [56].

As previously reported, miR-21 is upregulated under conditions in which EGFR sig-
naling is activated; a fact proved in a cohort of non-smoking patients [57]. Based on our
data, it was observed that EGFR is targeted by overexpressed miR-7-5p and downregu-
lated miR-145-5p and miR-30a-5p. Reports have proven that the serum EGFR levels are
connected with aggressive cancer development. Quantifying serum/plasma EGFR levels
in NSCLC patients and the correlation with clinical parameters remains controversial. In
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our patient cohort, the expression levels were downregulated in NSCLC patients versus
the healthy control group. Increased expression levels of EGFR were observed in advanced
stages, and decreased expression levels were observed post-surgery [58]. EGFR proved
to be dysregulated in male NSCLC; the importance of this potential sex-related tumor
particularity remains to be determined.

5. Conclusions

This study demonstrates the central role of miRNAs in male NSCLC cancer pathogene-
sis. Our study identified nine underexpressed and eight overexpressed miRNAs that can be
further investigated to better understand the particularities of male NSCLC. miRNA panels
can complement the currently available diagnostic approaches represented by pathology
and the associated molecular pathology methods by allowing a better stratification of
patients in terms of disease management, treatment selection, and prognosis. Based on the
miRNA panel expression profiles, we can get a dynamic image of the associated tumor
biological processes that will identify patients that need additional adjuvant therapies
depending on their stage at diagnosis. Our data reveal that the regulatory networks in
male NSCLC can be relied on, as this will identify the most relevant connections between
miRNA and associated targets.

In conclusion, in the present study, we showed the involvement of specific miRNAs
in male NSCLC development. The miRNA–mRNA regulatory networks identified in
male NSCLC can be used in additional studies that can further decode the sex-specific
particularities of this cancer. Moreover, the plasma validation of miR-34c-5p expression
could add to the value of this circulating biomarker in NSCLC. The small sample size is an
explicit limitation of this study, with inquiries remaining to be answered before moving
further with these data into clinical practice.
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