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Abstract: Detection of cephalometric landmarks has contributed to the analysis of malocclusion
during orthodontic diagnosis. Many recent studies involving deep learning have focused on head-
to-head comparisons of accuracy in landmark identification between artificial intelligence (AI) and
humans. However, a human–AI collaboration for the identification of cephalometric landmarks has
not been evaluated. We selected 1193 cephalograms and used them to train the deep anatomical
context feature learning (DACFL) model. The number of target landmarks was 41. To evaluate the
effect of human–AI collaboration on landmark detection, 10 images were extracted randomly from
100 test images. The experiment included 20 dental students as beginners in landmark localization.
The outcomes were determined by measuring the mean radial error (MRE), successful detection
rate (SDR), and successful classification rate (SCR). On the dataset, the DACFL model exhibited an
average MRE of 1.87 ± 2.04 mm and an average SDR of 73.17% within a 2 mm threshold. Compared
with the beginner group, beginner–AI collaboration improved the SDR by 5.33% within a 2 mm
threshold and also improved the SCR by 8.38%. Thus, the beginner–AI collaboration was effective in
the detection of cephalometric landmarks. Further studies should be performed to demonstrate the
benefits of an orthodontist–AI collaboration.

Keywords: cephalometric landmark detection; clinical application; deep learning

1. Introduction

In orthodontics, detection of cephalometric landmarks refers to the localization of
anatomical landmarks of the skull and surrounding soft tissues on lateral cephalograms.
Since the introduction of lateral cephalograms by Broadbent and Hofrath in 1931, this
approach has contributed to the analysis of malocclusion and has become a standardized
diagnostic method in orthodontic practice and research [1]. In the last decade, an advanced
machine-learning method called “deep learning” has received attention. Several studies
have been conducted to improve the accuracy of landmark identification using lateral
cephalograms. Deep learning-based reports using convolutional neural networks (CNNs)
have achieved remarkable results [2–5]. These results suggest that deep learning using
CNNs can assist dentists to reducing clinical problems related to orthodontic diagnosis
such as tediousness, time wastage, and inconsistencies within and across orthodontists.

For the detection of anatomical landmarks, the Institute of Electrical and Electronics
Engineers (IEEE) International Symposium on Biomedical Imaging (ISBI) 2015 released

J. Pers. Med. 2022, 12, 387. https://doi.org/10.3390/jpm12030387 https://www.mdpi.com/journal/jpm

https://doi.org/10.3390/jpm12030387
https://doi.org/10.3390/jpm12030387
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jpm
https://www.mdpi.com
https://orcid.org/0000-0001-7232-9196
https://orcid.org/0000-0002-9942-2400
https://doi.org/10.3390/jpm12030387
https://www.mdpi.com/journal/jpm
https://www.mdpi.com/article/10.3390/jpm12030387?type=check_update&version=1


J. Pers. Med. 2022, 12, 387 2 of 14

an open dataset for training and testing of cephalograms. Despite the limited number of
annotated cephalograms, many CNN-based approaches have been proposed to solve the
problem associated with the detection of anatomical landmarks. In 2017, Arik et al. intro-
duced a framework that employed a CNN to recognize landmark appearance patterns and
subsequently combined it with a statistical shape model to refine the optimal positions of
all landmarks [6]. To address the restricted availability of medical imaging data for network
learning with respect to the localization of anatomical landmarks, Zhang et al. proposed
a two-stage task-oriented deep neural network method [7]. In addition, Urschler et al.
proposed a unified framework that incorporated the image appearance information as
well as geometric landmark configuration into a unified random forest framework, which
was optimized iteratively to refine joint landmark predictions using a coordinate descent
algorithm [8]. Recently, Oh et al. proposed the deep anatomical context feature learning
(DACFL) model, which employs a Laplace heatmap regression method based on a fully
convolutional network. Its main mechanism is accomplished using two main schemes:
local feature perturbation (LFP) and anatomical context (AC) loss. LFP can be considered
a data augmentation method based on prior anatomical knowledge. It perturbs the local
pattern of the cephalogram, forcing the network to seek relevant features globally. AC loss
can result in a large cost when the predicted anatomical configuration of landmarks differs
from the ground-truth configuration. The anatomical configuration considers the angles
and distances between all landmarks. Since the proposed system follows an end-to-end
learning method, only a single feed-forward execution is required in the test phase to
localize all landmarks [2].

Most research to date has focused on head-to-head comparisons between artificial
intelligence (AI)-based systems and dentists for the localization of cephalometric land-
marks [2–6,9–16]. Previous studies have shown that AI is equivalent or even superior to
experienced orthodontists under experimental conditions [11,13]. Rapid developments
in AI-based diagnosis have made it imperative to consider the opportunities and risks
of new diagnostic paradigms. In fact, competition between humans and AI is against
the nature and purpose of AI. Therefore, AI support for human diagnosis may be more
useful and practical. The competitive view about AI is evolving based on studies indicating
that a human–AI collaboration approach is more promising. The impact of human–AI
collaboration on the accuracy of cephalometric landmark detection has not been evaluated
to date. This leads to the following question: can a human–AI collaboration perform better
than humans or AI alone in cephalometric landmark detection?

Among the previous CNN models, DACFL outperformed other state-of-the-art meth-
ods and achieved high performance in landmark identification on the IEEE ISBI 2015
dataset [2]. Therefore, our study aimed to evaluate the effect of DACFL-based support on
the clinical skills of beginners in cephalometric diagnosis. Furthermore, we used a private
dataset to evaluate the performance of the DACFL model in clinical applications.

2. Materials and Methods
2.1. Data Preparation

Altogether, 1293 lateral cephalograms were collected from the Picture-Aided Commu-
nication System server (INFINITT Healthcare Co., Ltd., Seoul, Korea) at Jeonbuk National
University Dental Hospital, South Korea. Furthermore, images were collected from chil-
dren and adolescents aged 6–18 years who visited the Department of Pediatric Dentistry
for orthodontic treatment between 2008 and 2018. All applicable data protection laws
were respected. During images collection, patient information was removed from the
cephalograms. This study was approved by the Institutional Review Board of Jeonbuk
National University Hospital (No. CUH2019-05-057).

Lateral cephalograms were acquired for diagnostic purposes and exported in the
JPG format, with resolutions varying between 550 × 550 and 4066 × 4345 pixels. The
dataset was built without any restrictions in terms of sex, craniofacial or dental surgery,
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and treatment. In the first step, 1193 images were randomly selected as training data and
100 images were used as test data. The characteristics of data are listed in Table 1.

Table 1. Descriptive summary of study data.

Variables Mean ± SD/N (%)

Training data
Age (years) 9.31 ± 2.77
Gender (male) 566 (47.44)
Angle classification

Class I 324 (27.16)
Class II division 1 291 (24.39)
Class II division 2 139 (11.65)
Class III 439 (36.80)

Test data
Age (years) 9.74 ± 3.12
Gender (male) 47 (47.00)
Angle classification

Class I 27 (27.00)
Class II division 1 24 (24.00)
Class II division 2 12 (12.00)
Class III 37 (37.00)

Data are expressed mean ± standard deviation (SD) for age and N (%) for gender,
class I, II division 1, II division 2, and III.

In the subsequent step, 10 images from the test data were extracted randomly to eval-
uate the impact of human–AI collaboration on the detection of cephalometric landmarks
(Figure 1).
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Figure 1. Workflow diagram of the study plan. In step 1, JBNU dataset including 1193 images for
training and 100 images for testing was used to evaluate the performance of the DACFL model in
clinical applications. In step 2, 10 images were extracted randomly from JBNU test data to evaluate
the effect of DACFL-based support on the clinical skills of beginners in cephalometric diagnosis.
Abbreviations: AI, artificial intelligence; DACFL, deep anatomical context feature learning; JBNU,
Jeonbuk National University.

2.2. Manual Identification of Cephalometric Landmarks

Altogether, 41 landmarks were manually identified by dental residents at the Depart-
ment of Pediatric Dentistry, Jeonbuk National University Dental Hospital, South Korea
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(Supplementary Table S1). A modified version of a commercial cephalometric analysis
software (V-Ceph version 7, Osstem Implant Co., Ltd., Seoul, Korea) was used to digitize
the records of the 41 cephalometric landmarks. This software displayed the cephalograms
and obtained the coordinates of each landmark.

In this experiment, 20 final-year students from the School of Dentistry, Jeonbuk Na-
tional University, South Korea were selected as beginners. Ten cephalograms that had
been analyzed twice (at a 1-week interval) were used to evaluate the support ability of AI.
Analyses of cephalograms were performed at the following two timepoints.

(1) Twenty dental students were educated regarding the definitions of cephalometric
landmarks and the use of the V-Ceph software before the experiment. All students
traced the positions of anatomical landmarks without AI support. After tracing, the
ground truth was not provided for the students.

(2) After 1 week, all students traced the anatomical landmarks on 10 randomly arranged
images while going through the answers provided by the AI model. The students
were not reported about reusing the images from the previous experiment. These
answers were displayed separately from the actual screen of landmarks. If the students
changed their answers by replacing them with the answers provided by AI, the
changes were recorded.

2.3. Network Architecture and Implementation Details

Our architecture was based on the attention U-Net [17]. The contracting path and the
expansive path consisted of repeated applications of two 3 × 3 convolutions, each followed
by LeakyReLU activation and 2 × 2 max pooling (for the contracting path) or up-sampling
(for the expansive path) [18]. The number of feature channels increased from 64 to 128,
256, and 512 in the contracting path and decreased from 512 to 256, 128, and 64 in the
expansive path. We used AC loss [2] as a cost function and minimized it by using an Adam
optimizer. The initial learning rate was 1 × 10−4, and the learning rate was set by cosine
annealing schedule.

Additionally, we performed data augmentation by rotating the input images randomly
by [−25, 25], rescaling by [0.9, 1.1], and translating by [0, 0.05] for both the x-axis and y-axis.
We changed the brightness, contrast, and hue of the input images randomly in the ranges
[−1, 1], [−1, 1], and [−0.5, 0.5], respectively. The ranges are the ones given by PyTorch.
With a 1/10 probability, we did not apply a data augmentation procedure to the input
images to ensure that the deep learning model could learn the original image [2].

We trained and tested the network using an Intel Xeon Gold 6126 2.6 GHz CPU with
64 GB memory and a RTX 2080 Ti GPU with an 11 GB RAM. The average size of the input
images was 2067 × 1675 pixels, and each image had a different pixel size. Therefore, we
calculated the pixel length of a 50 mm X-ray ruler to calculate the pixel size for each test
image. We resized the input images to 800 × 600 pixels with a mini-batch size of two to
reduce the computing time. In the test phase, we resized the result to the original input
size to obtain the correct result.

2.4. Evaluation Matrices

We used different measurement methods to measure the performance of the landmark-
detection model. The positions of the landmarks were identified using the x- and y-
coordinates. The mean radial error (MRE) and standard deviation (SD) are calculated
as follows:

MRE =
ΣN

i=1Ri

N

SD =

√
ΣN

i=1(Ri − MRE)2

N − 1

In these equations, N denotes the set size. The radial error (R) is the Euclidean distance
and is defined as the distance between the predicted and actual coordinates.
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The successful detection rate (SDR) is an important measure for this problem. The
estimated coordinates are considered correct if the error between the estimated coordinates
and the correct position is less than a precision range. The SDR was calculated as follows:

SDR =
number of successfully detected landmarks with respect to z

N
× 100%

In this equation, z means the precision ranges of 2, 2.5, 3, and 4 mm.
For the classification of anatomical types, the eight clinical measurements set in the

IEEE ISBI 2015 challenge were analyzed (Supplementary Table S2) [19,20]. The measure-
ment values and classification results derived by the dental residents were set as the
reference values, while the classification results by the AI, beginners, and beginner–AI
collaboration were compared using the successful classification rate (SCR).

2.5. Statistical Analysis

The benefits of the beginner–AI collaboration were analyzed for each landmark. A
t-test was applied to compare the average SDR between the beginner-only and beginner–AI
groups within 2, 2.5, 3, and 4 mm thresholds. All data were analyzed using IBM SPSS
Statistics (version 20; IBM Corp., Armonk, NY, USA) and PRISM (version 8.0.2; GraphPad
Software, Inc.; San Diego, CA, USA). Statistical significance was set at a p-value < 0.05.

3. Results
3.1. Performance of the DACFL Model on the Private Dataset
3.1.1. Mean Radial Error

The DACFL model showed an average MRE of 1.87 ± 2.04 mm (Table 2). Among
the 41 landmarks, the sella exhibited the lowest MRE (0.76 ± 0.44 mm), while the glabella
exhibited the highest MRE (5.18 ± 5.13 mm).

Table 2. Results of landmark detection in terms of mean radial error.

No. Landmarks
AI

MRE (mm) SD

1 Sella 0.76 0.44

2 Porion 1.40 1.20

3 Basion 2.09 1.98

4 Hinge axis 1.70 1.06

5 Pterygoid 2.38 1.46

6 Nasion 1.33 0.87

7 Orbitale 2.23 1.81

8 A-point 1.43 1.11

9 PM 1.32 0.88

10 Pogonion 1.19 0.96

11 B-point 1.69 1.22

12 Posterior nasal spine 1.63 1.37

13 Anterior nasal spine 1.27 0.91

14 R1 2.32 1.62

15 R3 1.84 1.21

16 Articulare 1.03 0.74

17 Menton 1.22 0.91

18 Maxilla 1 crown 1.03 0.92
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Table 2. Cont.

No. Landmarks
AI

MRE (mm) SD

19 Maxilla 1 root 3.31 2.78

20 Mandible 1 crown 0.90 0.52

21 Mandible 1 root 2.89 4.04

22 Maxilla 6 distal 1.41 1.86

23 Maxilla 6 root 2.20 1.53

24 Mandible 6 distal 1.64 2.32

25 Mandible 6 root 2.97 2.50

26 Glabella 5.18 5.13

27 Soft tissue nasion 3.10 2.44

28 Pronasale 2.06 8.16

29 Columella 1.05 0.87

30 Subnasale 1.06 0.99

31 Soft tissue A 1.21 1.34

32 Upper lip 1.48 4.10

33 Stms 1.82 1.46

34 Stmi 1.03 0.79

35 Lower lip 1.16 0.90

36 Soft tissue B 2.08 2.70

37 Soft tissue pogonion 4.70 10.39

38 Gnathion 1.34 2.08

39 Gonion 2.70 2.14

40 APOcc 1.02 1.19

41 PPOcc 2.33 2.86

Average 1.87 2.04
Abbreviations: AI, artificial intelligence; MRE, mean radial error; SD, standard deviation.

3.1.2. Successful Detection Rate

The model achieved average SDRs of 73.32%, 80.39%, 85.61%, and 91.68% within 2,
2.5, 3, and 4 mm thresholds, respectively. Across all ranges, the sella exhibited the highest
SDR, while the glabella exhibited the lowest SDR. In addition, the SDRs of maxilla 1 root
(38%), mandible 6 root (36%), glabella (32%), and soft tissue nasion (38%) were low within
the 2 mm threshold (Table 3).

Table 3. Results of landmark detection in terms of successful detection rate.

No. Landmarks
SDR (%)

<2 mm <2.5 mm <3 mm <4 mm

1 Sella 97% 100% 100% 100%

2 Porion 84% 92% 94% 95%

3 Basion 59% 73% 82% 89%

4 Hinge axis 64% 79% 90% 97%

5 Pterygoid 48% 58% 69% 85%

6 Nasion 83% 92% 93% 99%
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Table 3. Cont.

No. Landmarks
SDR (%)

<2 mm <2.5 mm <3 mm <4 mm

7 Orbitale 59% 70% 79% 90%

8 A-point 82% 89% 91% 96%

9 PM 80% 88% 95% 100%

10 Pogonion 86% 91% 95% 97%

11 B-point 69% 80% 84% 91%

12 Posterior nasal spine 74% 86% 89% 97%

13 Anterior nasal spine 85% 92% 92% 99%

14 R1 51% 59% 73% 85%

15 R3 61% 77% 88% 94%

16 Articulare 90% 95% 97% 99%

17 Menton 86% 89% 96% 96%

18 Maxilla 1 crown 91% 94% 94% 97%

19 Maxilla 1 root 38% 49% 60% 73%

20 Mandible 1 crown 96% 98% 100% 100%

21 Mandible 1 root 48% 58% 70% 82%

22 Maxilla 6 distal 87% 92% 95% 98%

23 Maxilla 6 root 56% 68% 78% 93%

24 Mandible 6 distal 84% 88% 88% 92%

25 Mandible 6 root 36% 53% 68% 80%

26 Glabella 32% 40% 46% 58%

27 Soft tissue nasion 38% 47% 60% 76%

28 Pronasale 95% 95% 95% 95%

29 Columella 96% 96% 97% 97%

30 Subnasale 93% 96% 97% 98%

31 Soft tissue A 89% 93% 94% 97%

32 Upper lip 89% 91% 93% 97%

33 Stms 68% 77% 83% 92%

34 Stmi 87% 93% 96% 100%

35 Lower lip 86% 88% 92% 99%

36 Soft tissue B 74% 81% 82% 87%

37 Soft tissue pogonion 62% 69% 76% 80%

38 Gnathion 90% 92% 95% 96%

39 Gonion 51% 56% 68% 79%

40 APOcc 93% 94% 95% 98%

41 PPOcc 69% 78% 81% 86%

Average 73.32% 80.39% 85.61% 91.68%
Abbreviation: SDR, successful detection rate.
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3.2. Impact of Artificial Intelligence-Based Assistance on the Performance of Beginners in the
Detection of Cephalometric Landmarks
3.2.1. Mean Radial Error and Successful Detection Rate

Within a 2 mm threshold, the AI, beginner–AI, and beginner-only groups achieved
SDRs of 73.17%, 52.73%, and 47.4%, respectively. Furthermore, the average MREs and SDs
of AI, beginner–AI, and beginner-only groups were 1.89 ± 2.63 mm, 3.14 ± 4.06 mm, and
3.72 ± 4.52 mm, respectively. Details are reported in Table 4. Furthermore, a comparison
between beginner-only and beginner–AI groups in terms of the SDR is shown in Figure 2.

Table 4. Quantitative comparison by average successful detection rate and mean radial error.

Group
SDR (%)

MRE (mm) SD
<2 mm <2.5 mm <3 mm <4 mm

AI 73.17% 79.02% 83.17% 89.51% 1.89 2.63

Beginners 47.40% 54.83% 60.80% 70.21% 3.72 4.52

Beginners + AI 52.73% 61.16% 67.77% 77.01% 3.14 4.06
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Figure 2. Comparison between the beginner-only and beginner–artificial intelligence groups in terms
of the successful detection rate. A t-test was applied to compare the average successful detection
rates between the beginner-only and beginner–AI groups within 2, 2.5, 3, and 4 mm thresholds.
The beginner–AI collaboration improved the successful detection rates within 2, 2.5, 3, and 4 mm
thresholds. Abbreviations: AI, artificial intelligence; ns, not significant.

The DACFL model showed that the lower lip exhibited the lowest MRE (0.62 ± 0.35 mm)
and the highest SDR (100%) while the glabella exhibited the highest MRE (5.72 ± 3.54 mm)
and lowest SDR (20%) (Table 5). In the beginner-only group, mandible 1 crown exhibited
the lowest MRE (1.31 ± 2.99 mm) and highest SDR (93%), while the glabella exhibited the
highest MRE (8.9 ± 7.05 mm) and lowest SDR (20%). In the beginner–AI group, mandible
1 crown exhibited the lowest MRE (1.23 ± 2.96 mm) and highest SDR (94%), while the glabella
exhibited the highest MRE (7.31 ± 5.42 mm) and lowest SDR (16%). The benefits of AI–
beginner collaboration in the localization of anatomical landmarks and the number of decision
changes among the beginners across 41 landmarks are presented in Figures 3 and 4.
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Table 5. Successful detection rate and mean radial error for each landmark within a 2 mm threshold.

No. Landmarks
AI Beginners Beginners + AI

SDR
(%)

MRE ± SD
(mm)

SDR
(%)

MRE ± SD
(mm)

SDR
(%)

MRE ± SD
(mm)

1 Sella 90% 1.14 ± 0.52 83.5% 1.67 ± 2.36 84.5% 1.74 ± 2.42

2 Porion 90% 1.19 ± 0.6 25.5% 5.3 ± 4.22 41% 3.34 ± 3.25

3 Basion 70% 2.21 ± 1.88 22% 6.3 ± 4.92 44% 3.58 ± 3.3

4 Hinge axis 70% 1.77 ± 1.35 54.5% 2.56 ± 2.38 56% 2.47 ± 2.44

5 Pterygoid 70% 2.12 ± 1.56 41.5% 3.71 ± 3.11 47.5% 3.27 ± 2.88

6 Nasion 70% 1.62 ± 0.72 42.5% 5.06 ± 5.73 54% 3.25 ± 4.51

7 Orbitale 40% 3.01 ± 2.46 21.5% 4.66 ± 3.4 22% 4.26 ± 3.02

8 A-point 70% 1.8 ± 0.98 45.5% 3.21 ± 3.13 55% 2.74 ± 3.05

9 PM 70% 1.89 ± 0.92 48% 3.06 ± 3.53 49.5% 2.88 ± 3.41

10 Pogonion 90% 1.33 ± 1.06 64% 2.51 ± 3.61 63.5% 2.35 ± 3.41

11 B-point 70% 1.76 ± 0.86 43.5% 3.27 ± 3.6 45.5% 3.1 ± 3.4

12 Posterior nasal spine 70% 1.5 ± 1.02 36.5% 3.77 ± 4.21 40% 3.45 ± 4.16

13 Anterior nasal spine 80% 1.29 ± 0.76 57.5% 2.79 ± 3.92 61.5% 2.59 ± 3.88

14 R1 60% 2.02 ± 1.32 28% 4.05 ± 3.85 36% 3.49 ± 2.74

15 R3 70% 1.74 ± 1.53 36% 3.82 ± 3.55 38% 3.44 ± 3.35

16 Articulare 100% 0.88 ± 0.45 58.5% 2.51 ± 2.62 81% 1.73 ± 2.41

17 Menton 90% 1.26 ± 0.74 67% 2.26 ± 3.15 67% 2.28 ± 3.14

18 Maxilla 1 crown 90% 1.1 ± 0.57 86% 1.48 ± 3.14 88.5% 1.41 ± 3.16

19 Maxilla 1 root 50% 2.9 ± 1.66 32% 3.71 ± 2.96 34% 3.41 ± 3.02

20 Mandible 1 crown 90% 0.99 ± 0.58 92.5% 1.31 ± 2.99 93.5% 1.23 ± 2.96

21 Mandible 1 root 70% 1.91 ± 1.52 42% 3.2 ± 3.21 39.5% 3.12 ± 3.06

22 Maxilla 6 distal 100% 0.93 ± 0.44 73% 2.76 ± 3.46 80.5% 2.11 ± 2.9

23 Maxilla 6 root 50% 2.13 ± 1.27 42% 3.16 ± 2.8 50.5% 2.62 ± 2.46

24 Mandible 6 distal 100% 0.93 ± 0.6 67.5% 3.1 ± 4.24 75% 2.29 ± 3.46

25 Mandible 6 root 20% 3.38 ± 1.97 29% 4.53 ± 4.29 35% 3.49 ± 3.47

26 Glabella 20% 5.72 ± 3.54 19.5% 8.9 ± 7.05 15.5% 7.31 ± 5.42

27 Soft tissue nasion 30% 3.7 ± 2.95 18.5% 6.29 ± 5.19 23% 4.93 ± 4.26

28 Pronasale 90% 4.67 ± 11.98 82.5% 5.24 ± 11.91 82% 5.29 ± 11.93

29 Columella 90% 1.27 ± 1.54 36.5% 3.47 ± 3.42 43.5% 3.04 ± 3.28

30 Subnasale 100% 0.86 ± 0.43 83.5% 1.79 ± 2.86 79.5% 1.84 ± 2.85

31 Soft tissue A 70% 1.37 ± 0.93 31.5% 4.02 ± 3.68 50% 2.66 ± 3.07

32 Upper lip 90% 1.68 ± 2.23 53% 3.12 ± 4.02 58.5% 2.89 ± 3.98

33 Stms 50% 2.3 ±1.91 0% 7.11 ± 3.02 7.5% 6.38 ± 3.2

34 Stmi 90% 0.8 ± 0.57 63% 2.51 ± 3.52 64% 2.39 ± 3.49

35 Lower lip 100% 0.62 ± 0.35 65.5% 2.45 ± 3.49 75% 2.01 ± 3.36

36 Soft tissue B 60% 2.39 ± 1.87 45% 3.05 ± 3.54 45.5% 2.93 ± 3.33

37 Soft tissue pogonion 70% 1.22 ± 0.94 41% 4.61 ± 4.86 54% 3.14 ± 3.94
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Table 5. Cont.

No. Landmarks
AI Beginners Beginners + AI

SDR
(%)

MRE ± SD
(mm)

SDR
(%)

MRE ± SD
(mm)

SDR
(%)

MRE ± SD
(mm)

38 Gnathion 100% 0.7 ± 0.52 66.5% 2.16 ± 3.15 66.5% 2.12 ± 3.13

39 Gonion 50% 2.92 ± 1.74 23% 4.23 ± 3.07 26.5% 3.92 ± 2.89

40 APOcc 90% 1.83 ± 2.76 69% 2.8 ± 4.07 71.5% 2.75 ± 4.03

41 PPOcc 60% 2.53 ± 2.91 6% 7.09 ± 5.56 17% 5.59 ± 5.04
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Figure 3. Benefit of beginner–AI collaboration in the detection of cephalometric landmarks. Based on
successful detection rate for each landmark within a 2 mm threshold, the benefits of beginner–AI
collaboration were analyzed. In general, this collaboration showed a positive impact on the majority
of cephalometric landmarks.
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Figure 4. Number of decision changes among beginners across 41 landmarks. In the second experi-
ment, the beginners traced the anatomical landmarks on 10 images with the AI’s answer view. The
recorded changes are represented as number of ratings. In general, the number of decision changes
was small despite being shown at most anatomical landmarks.

3.2.2. Successful Classification Rate

The AI, beginner–AI, and beginner-only groups achieved SCRs of 83.75%, 69.69%, and
61.31%, respectively (Table 6). In the AI group, the SNA (100%) and FHA (100%) exhibited
the highest SCR, while the ANB (60%) exhibited the lowest SCR. In the beginner-only
group, the MW (81%) exhibited the highest SCR, while the ANB (47%) exhibited the lowest
SCR. Among beginner–AI group, the FHA (88%) exhibited the highest SCR while ANB
(52%) exhibited the lowest SCR. A comparison between beginner-only and beginner–AI
groups in terms of eight measurement parameters is shown in Figure 5.
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Table 6. Successful classification rate for eight clinical measurements.

Measurements
SCR (%)

AI Beginners Beginners + AI

ANB 60% 46.5% 52%

SNB 90% 58.5% 72.5%

SNA 100% 51% 64%

ODI 70% 62.5% 66%

APDI 90% 47.5% 57.5%

FHI 90% 66% 76%

FHA 100% 77.5% 88%

MW 70% 81% 81.5%

Average 83.75% 61.31% 69.69%
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Figure 5. Comparison of eight clinical measurements between the beginner-only and beginner–AI
groups. From the SCRs of two groups, a figure was presented to demonstrate the AI’s support. As a
result, the beginner–AI collaboration improved the SCRs of eight clinical measurements. Abbreviation:
SCR, successful classification rate.

4. Discussion
4.1. Performance of the DACFL Model on the Private Dataset

Most previous studies have tested the accuracy of anatomical landmark detection on
IEEE ISBI 2015 lateral cephalograms [2–6,9,15], possibly showing high comparability, but
limited generalizability. Therefore, testing broad data can demonstrate the generalizability
and robustness of the model. Among the previous models, the DACFL model showed
a high SDR as a state-of-the-art model for cephalometric landmark detection [2]. In the
case of private cephalograms, the model showed a slight reduction in the SDR within a
2 mm threshold. This result was superior or similar to those from previous studies [3,4,12].
In a previous study, an even more dramatic drop in the accuracy was observed when the
models were tested on a fully external dataset [3,4]. Overall, the results for the private
dataset were inferior to those for the public dataset with standardized images [2–6,9,15].

In the present study, the private dataset was associated with difficulties in landmark
detection in children. These difficulties were probably due to low bone density, size and
shape variability of anatomical structures, and the existence of primary teeth and permanent
tooth germs. In addition to maxillofacial anatomy, patients’ heads vary in shape. Although
we selected a reference cephalogram that was closely matched to the one from training
data for each test, there were still missed situations. Correct head positioning of the patient
during the procedure is important to avoid errors in the identification and measurement of
landmarks [4,21,22]. It is difficult to maintain the heads of children in standard positions. In
addition to the quality of dataset, the number of images and cephalometric landmarks also
influence the results. A previous study showed that the accuracy of AI increased linearly
with an increasing number of learning datasets and decreased with an increasing number of
detection targets [23]. Our study used an insufficiently large number of images and detected
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41 anatomical landmarks. The training data should be increased to an optimal number of
images between 2300 and 5400 to improve the performance of landmark detection.

For clinical applications, a mean error within a 2 mm threshold has been suggested
to be acceptable in many related studies [2–6,9–11,13–16,24]. Therefore, the MRE in the
present study was clinically acceptable. However, while assessing which specific landmarks
were prone to incorrect detection, the maxilla 1 root, mandible 6 root, glabella, and soft
tissue nasion showed greater deviations. These findings are not consistent with those from
previous studies [3,4,12]. This discrepancy can be explained by the fact that maxilla 1 root
was affected by the existence of maxillary anterior tooth germs. The location of the apex
was based on general knowledge of the expected taper perceived from the crown and
visible portion of the root. This problem was also encountered during previous research
on reliability [10,11,25–28]. Furthermore, the mandible 6 root was affected by overlapping
structures, which is a common problem in the lateral cephalograms. Dental landmarks
usually tend to have poorer validity than skeletal landmarks [10,11,27]. Soft tissue nasion
and the glabella were located in areas with considerably higher dark. Thus, it was difficult
to identify these soft tissue landmarks precisely, even in a magnified view.

4.2. Impact of AI-Based Assistance on the Performance of Beginners in Cephalometric
Landmark Detection

The AI group had the highest average SDR, followed by the beginner–AI and beginner-
only groups. With AI support, the average SDR increased by up to 5.33% within a 2 mm
threshold, while the average MRE decreased. Detection of porion, basion, nasion, articulare,
soft tissue A, soft tissue pogonion, and PPOcc improved over 10% in terms of SDR. The
remaining landmarks were detected with little or no improvement in the SDR (Figure 2).
In general, AI aids beginners in improving landmark detection. This was demonstrated
by the impact of the beginner–AI collaboration on each landmark (Figure 3). However,
the improvement was insignificant, since there were small changes in the positions of the
landmarks (Figure 4).

In addition to the SDR, we calculated the SCR to evaluate the classification perfor-
mance. The DACFL model showed better results than previous models [6,12,29]. As
expected, measurements consisting of landmarks with higher SDRs yielded higher SCR
values. The average SCRs of the three groups showed a descending trend similar to that
observed in case of average SDRs (highest in the AI group, followed by the beginner–AI
group and the beginner-only group). With AI support, the average SCR increased by 8.38%,
but the increase was not statistically significant. This may be explained by the low increase
in the SDRs with AI support. The SCRs for the measurement of SNA, SNB, APDI, FHI,
and FHA improved over 10%, while the SCR showed little improvement for the remaining
measurements (Table 6).

In the present study, beginners were the final-year dental students with little experience
in the detection of cephalometric landmarks. The precision of landmark identification can
be affected by various factors such as the level of knowledge, individual understanding of
the definitions of landmarks, and quality of cephalometric images [30,31]. Among the soft
tissue landmarks, glabella, soft tissue nasion, columella, soft tissue A, and stms showed
low SDRs due to higher dark in these regions. Problems with image quality influenced
the ability of dental students who lacked experience in cephalometric landmark detection.
In a previous study, dental students showed a high variability in landmark identification
results [32]. This finding is consistent with the results of the present study (Table 5).
Furthermore, inexperienced annotators exhibited a lower accuracy of landmark detection
than AI for lateral cephalograms, which was consistent with the results of a previous study
involving frontal cephalograms [33].

Our study has several limitations. The private dataset was small and had fewer varia-
tions. The patients were children and adolescents. This might have influenced the detection
of cephalometric landmark. Thus, private datasets for adults should be investigated to
confirm the performance of the DACFL model. The number of cephalometric landmarks



J. Pers. Med. 2022, 12, 387 13 of 14

was not sufficiently large to examine the full ability the of model. Moreover, landmark
identification was performed by beginners. A previous study showed that experienced
orthodontists exhibited lower variability in landmark detection than dental students. Fur-
ther studies are necessary to demonstrate the benefits of a collaboration between AI and
experienced orthodontists.

5. Conclusions

Our study showed that the DACFL model achieved an SDR of 73.17% within a 2 mm
threshold on a private dataset. Furthermore, the beginner–AI collaboration improved
the SDR by 5.33% within a 2 mm threshold and also improved the SCR by 8.38% when
compared with beginners. These results suggest that the DACFL model is applicable to
clinical orthodontic diagnosis. Further studies should be performed to demonstrate the
benefits of a collaboration between AI and experienced orthodontists.
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