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Abstract: The primary goal of treating carbon monoxide (CO) poisoning is preventing or minimizing
the development of delayed neuropsychiatric sequelae (DNS). Therefore, screening patients with
a high probability for the occurrence of DNS at the earliest is essential. However, prognostic tools
for predicting DNS are insufficient, and the usefulness of the lactate level as a predictor is unclear.
This systematic review and meta-analysis investigated the association between early phase serum
lactate levels and the occurrence of DNS in adult patients with acute CO poisoning. Observational
studies that included adult patients with CO poisoning and reported initial lactate concentrations
were retrieved from the Embase, MEDLINE, Google Scholar and six domestic databases (KoreaMED,
KMBASE, KISS, NDSL, KISTi and RISS) in January 2022. Lactate values were collected as contin-
uous variables and analyzed using standardized mean differences (SMD) using a random-effect
model. The risk of bias was evaluated using the Quality in Prognosis Studies (QUIPS) tool, and
subgroup, sensitivity and meta regression analyses were performed. Eight studies involving a total of
1350 patients were included. The early phase serum lactate concentration was significantly higher in
the DNS group than in the non-DNS group in adult patients with acute CO poisoning (8 studies; SMD,
0.31; 95% CI, 0.11–0.50; I2 = 44%; p = 0.002). The heterogeneity decreased to I2 = 8% in sensitivity
analysis (omitting Han2021; 7 studies; SMD, 0.38; 95% CI, 0.23–0.53; I2 = 8%; p < 0.001). The risk of
bias was assessed as high in five studies. The DNS group was associated with significantly higher
lactate concentration than that in the non-DNS group.

Keywords: lactate; carbon monoxide poisoning; delayed neuropsychiatric sequelae; meta-analysis;
biomarker

1. Introduction

Carbon monoxide (CO) remains one of the most common causes behind the number of
poisoning admissions to the emergency departments (EDs), with an incidence of 137 cases
and 4.6 deaths per million individuals worldwide [1]. More than 50,000 cases are reported
annually in the United States, and 24,890 deaths have occurred between 1999 to 2014 [2,3].
According to the World Health Organization, more than 140,000 people died due to CO
poisoning between 1980 and 2008 in 28 European member countries [4]. CO is produced
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upon burning carbon-containing fuel in an oxygen-deficient state. The incomplete combus-
tion of carbon compounds by indoor heaters, fire and smoke in the case of a fire incidence,
and automobile exhaust are common sources of CO [5,6]. Although the symptoms of
CO poisoning are non-specific, exposure to low levels may cause headaches, dizziness,
and neuropsychiatric abnormalities. Moreover, moderate to severe exposure can lead to
confusion, loss of consciousness and even death [7].

The binding affinity of CO molecules to hemoglobin is 200 times stronger than that of
oxygen after inhalation, producing a stable complex called carboxyhemoglobin (COHb).
The generated COHb causes cellular hypoxia by shifting the oxyhemoglobin dissociation
curve to the left, reducing the oxygen release, and increasing the cytosolic heme concen-
tration, causing oxidative stress [7,8]. CO binds to the heme protein, disrupts cellular
respiration, and causes neuronal necrosis and apoptosis by producing reactive oxygen
species [9–12]. These mechanisms lead to systemic toxic effects caused by tissue ischemia,
local inflammatory response and nerve cell damage, where damage to the cardiovascular
system and neurological damage appear to be major pathologies of concern [7,8].

In addition to acute symptoms and complications, CO poisoning leads to a subacute
and chronic complication called delayed neuropsychiatric sequelae (DNS) [13,14]. Although
the mechanism of DNS development is unclear, diffuse inflammation is observed in the
deep white matter and periventricular area [15,16]. The main symptoms of DNS vary
from psychotic symptoms, such as depression, insomnia and anxiety, to neuropathic
symptoms, such as headache, dizziness, gait disturbance and cognitive and disorientation
disorders [14,17]. After recovery from acute poisoning, the development of DNS can occur
for up to 1 year. Most patients develop DNS within 6 weeks, and DNS is seen in 3 to 40% of
patients with CO poisoning [17–24]. Although the preventive effect of hyperbaric oxygen
therapy (HBOT) on DNS is debatable, it could be helpful to use HBOT in patients with CO
poisoning as soon as possible to prevent DNS and reduce its severity [25].

Several studies have investigated tools for predicting the occurrence of DNS in patients
with acute CO poisoning [17–24]. However, standard screening tools or standardized
guidelines to accurately predict DNS development are lacking. COHb is used as a standard
indicator to diagnose CO poisoning and to confirm the severity of CO poisoning; however,
it does not help predict DNS [17,26,27]. The elimination half-life of COHb in CO poisoning
patients treated with 100% oxygen at normobaric pressure is about 1 h [28,29]. COHb levels
fall rapidly after the end of CO exposure and are decreased before being determined at the
ED. Since the major effect of CO is systemic hypoxia, accompanied by an increase in lactate
concentration, elevated serum lactate concentration can be used as an indicator of systemic
hypoxia [30–32]. Accordingly, several previous studies have been conducted to compare the
initial lactate concentration in DNS and non-DNS development groups, where inconsistent
results have been reported, with remarkable differences [17–24]. Pepe et al. reported that
there was no significant difference in early phase lactate levels between DNS and non-
DNS groups (mmol/L; 1.77 vs. 1.76, p > 0.05) [17]. On the contrary, in a retrospective
observational study, the crude odds ratio of the initial lactate level for development of DNS
was reported to be 1.10 (p = 0.005) [20].

The aim of treating acute CO poisoning is to prevent and reduce the occurrence of
DNS and the early identification of patients at a high risk of DNS development. However,
tools for accurately predicting DNS are insufficient, and the predictive value of lactate
concentration is debatable. In addition, most studies on the correlation between lactate and
DNS development were conducted at a single center with a small sample size. Therefore,
further study is needed to synthesize and interpret the results of serum lactate concentration
for DNS prediction in acute CO poisoning. This systematic review and meta-analysis aimed
to investigate the relationship between the initial serum lactate levels and DNS development
in patients with acute CO poisoning.
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2. Materials and Methods
2.1. Protocol and Registration

This systematic review and meta-analysis was conducted according to the Preferred
Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) and Meta-analysis of
Observational Studies in Epidemiology (MOOSE) guidelines [33,34]. The review protocol
is registered at https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD420
21243025 (accessed on 15 April 2021). Institutional review board approval and informed
consent was not required for this meta-analysis.

2.2. Eligibility Criteria

A questionnaire framework based on the population, intervention, comparison, and
outcome (PICO) was applied in this study. A literature search on critical assessments
was performed to draft a summary of the eligible studies, and their outcomes were then
evaluated through a meta-analysis. The PICO questions were as follows: population
(P) = adult patients with acute CO poisoning; intervention (I) = serum lactate level in the
early phase upon admission in the emergency department; comparator (C) = none; outcome
(O) = occurrence of DNS.

2.3. Information Sources and Literature Search Strategy

We performed an extensive database search to identify all relevant studies that exam-
ined the role of serum lactate levels in predicting DNS in patients with acute CO poisoning.
The search encompassed the EMBASE (1974 to 5 January 2022) and MEDLINE (1946 to
5 January 2022) databases via the Ovid interface. Databases (KoreaMED, KMBASE, KISS,
NDSL, KISTi, and RISS) related to Korea and Google Scholar were also selected for the
analysis. Additionally, we manually cross-referenced the eligible studies to identify other
relevant studies. Two experienced reviewers (HL and JO) conducted the latest update to
our search on 5 January 2022. The following search terms were used: “lactate” and “carbon
monoxide” (Table S1). No language restrictions or methodological filters were used, and
prospective or retrospective observational studies were selected from the list.

2.4. Study Selection

Two experienced reviewers (HL and JO) independently screened titles and abstracts to
filter irrelevant studies. The following criteria were used for exclusion of studies: irrelevant
outcomes, irrelevant intervention, irrelevant populations, irrelevant article type (reviews,
case reports, editorials, letters, comments, conference abstracts, animal studies, and meta-
analyses) and duplicated data. In case of disagreement between the two reviewers, a third
reviewer (HK) was allowed to intervene, and the differences in opinion were discussed
until a consensus was reached. After excluding extraneous abstracts, the full texts of
the selected studies were re-screened and reviewed thoroughly for eligibility using the
predetermined selection criteria. Studies with insufficient data despite contacting the
authors were also excluded. Finally, prospective or retrospective observational studies on
patients who presented to EDs for CO poisoning with elevated serum lactate levels, where
the serum lactate was collected after admission and, also, examined with developed DNS,
were included in this systematic review and meta-analysis.

2.5. Data Collection Process and Data Items

The basic characteristics and main results of the selected studies were extracted by
the two reviewers (HL and JO). Any disagreements between the reviewers were resolved
by consensus. The study characteristics and extracted covariates were summarized using
standard descriptive statistics. Dichotomous variables were reported as frequencies (%),
whereas continuous variables were reported as means (standard deviation [SD]). The
following variables were extracted: study number, author, year of publication, country,
inclusion period, study design, inclusion criteria of each study in this meta-analysis, the
timing of lactate measurement, sample size, age, sex, the proportion of HBOT management,
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the definition of DNS and observation period of DNS occurrence from hospital discharge.
The mean (±SD) serum lactate level and measurement units were also recorded, and the
estimated mean (±SD) values were calculated from the median values with interquartile
ranges [35]. The unit with the highest frequency in the included studies was selected, and
the other units were converted to selected units.

2.6. Risk of Bias in Individual Studies

Two reviewers (HL and JO) independently evaluated the methodological integrity of
the included studies, where the authors and journals were blinded to the reviewers. Six bias
domains (study participation, study attrition, prognostic factor measurement, outcome
measurement, study confounding, statistical analysis and reporting) were assessed using
the QUIPS tool in systematic reviews [36]. To determine the overall risk, studies with a low
risk of the six abovementioned bias domains were rated as high-quality studies [36].

2.7. Statistical Analysis

In the meta-analysis, we estimated the association between serum lactate levels in the
early phase in adult patients with acute CO poisoning and the development of DNS. The
strength of the association between elevated serum lactate levels and DNS was estimated
using standardized mean differences (SMD). A random-effects model was used to interpret
the individual data of the included studies, considering the diversity of countries, inclusion
periods, inclusion criteria of each study and timing of lactate measurement.

To measure heterogeneity, I2 statistics were used to estimate the proportion of inter-
study inconsistency due to true differences between studies (rather than differences due
to random error or chance), with values of 0–40%, 30–60%, 50–90% and 75–100% denoted
as “might not be important”, “may represent moderate heterogeneity”, “may represent
substantial heterogeneity” and “considerable heterogeneity”, respectively [37,38].

The reference management software Endnote X9 (Clarivate Analytics LLC, Philadel-
phia, PA, United States) was used to organize all studies identified in the literature search.
We also used RevMan version 5.4.1 (Cochrane Collaboration, Nordic Cochrane Centre,
Copenhagen, Denmark) and R version 4.0.4 (R Foundation for Statistical Computing, Vi-
enna, Austria) statistical software to perform the statistical analysis, where a p-value of
<0.05 was considered as statistically significant.

2.8. Additional Analyses

We performed planned subgroup analysis for the following confounders to identify
heterogeneity: proportion of patients managed with HBOT (all patients (100%) vs. partial
patients (<100%)), the country where the study was performed (Korea vs. others), quality
of the study according to the QUIPS tool (high-quality study vs. low-quality study),
sample size according to the median value across the included studies (large sample size vs.
small sample size). Sensitivity analysis was conducted by sequentially omitting studies to
interpret the potential causes of heterogeneity between the studies. Meta regression analysis
was performed to identify heterogeneity and analyze the effect of study characteristics
on the results. The asymmetry of the contour-enhanced funnel plot was investigated to
identify publication bias. The results were considered statistically significant at p < 0.05.

2.9. Level of Evidence

The level of evidence was graded as high, moderate, low, and very low using the
Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) frame-
work [39]. It was conducted using GRADEProfier (version 3.6.1, The GRADE Working
Group), and a summary of findings was presented by an evidence profile.
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3. Results
3.1. Study Selection

A flow diagram of the literature search for this systematic review is presented in
Figure 1. A total of 606 records were identified using the database, along with an additional
manual search. A total of 234 duplicates were removed, and an additional 290 irrelevant
records were excluded based on titles and abstracts. After reviewing the full texts of the
82 remaining records, we excluded 74 records, including irrelevant population (n = 13),
irrelevant outcomes (n = 31), irrelevant intervention (n = 26), duplicated data from the
same studies (n = 1) and irrelevant articles (n = 3). Finally, eight observational studies that
enrolled 1350 patients were included in this meta-analysis [17–24].

Figure 1. Flow diagram for the identification of relevant studies.

3.2. Study Characteristics

The main attributes of the included studies are presented in Table 1. Additionally,
the baseline characteristics of the enrolled patients are provided in Table S2, and the DNS
definition of each study is summarized in Table S3. Eight observational studies were
published between 2011 and 2021. Six studies were conducted in Korea, whereas the
remaining studies were conducted in Turkey and Italy. All studies were single center
studies, and four studies were prospectively designed. The inclusion criterion for all
studies was the presence of COHb, where the cut-off was 3% or 5%. In seven studies,
lactate levels were measured at the time of admission of patients to ED, and in one study,
the level was measured within 6 h of admission to ED. The observation period for the
occurrence of DNS after hospital discharge spanned from 6 weeks to a year, and 22.6% of
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patients with CO poisoning developed DNS. The proportion of patients managed with
HBOT was 83.3%, varying from 22.1% to 100%.

Table 1. Study characteristics included in the meta-analysis.

Study Region Period Design Inclusion Criteria
Timing of
Laboratory

Examination

Number of Pts.
DNS/Total (%)

Observation Period
of DNS Occurrence

from Hospital
Discharge

Han 2021 [19] Korea Jul 2017–Feb 2020 sPOS COHb ≥ 5%
(Smokers: ≥10%) At ED arrival 38/203 (18.7) 3 months

Jeon 2018 [20] Korea Apr 2011–Dec 2015 sPOS Acute COP At ED arrival 101/387 (26.1) 6 weeks

Kim Y 2018 [21] Korea Jan 2015–May 2016 sROS COHb ≥ 5%
(Smokers: ≥10%) At ED arrival 10/102 (9.8) 2 months

Kokulu 2020 [22] Turkey Aug 2018–Jul 2019 sPOS COHb ≥ 5%
(Smokers: ≥10%) At ED arrival 54/183 (29.5) 6 weeks

Lee 2021 [24] Korea Jan 2018–Jul 2018 sROS COHb ≥ 3%
(Smokers: ≥10%) At ED arrival 12/138 (8.7) 6 weeks

Nah 2020 [18] Korea Aug 2016–Jul 2019 sPOS COHb ≥ 5%
(Smokers: ≥10%) At ED arrival 30/154 (19.5) 3 months

Park 2012 [23] Korea Mar 2011–Sep 2011 sROS COHb ≥ 3%
(Smokers: ≥10%) At ED arrival 10/71 (14.1) 6 months

Pepe 2011 [17] Italy 1992–2007 sROS COHb > 5%
(Smokers: >10%)

Within 6 h from
ED arrival 34/141 (24.1) 1 year

Abbreviations: COHb, carboxy hemoglobin; DNS, delayed neuropsychiatric sequelae; ED, emergency depart-
ment; Pts., patients; sPOS, single-center prospective observational study; sROS, single-center retrospective
observational study.

3.3. Risk of Bias within Studies

The risk of bias for the eight included studies was assessed using the QUIPS tool
(Figure S1). The risk of bias was assessed as high in five studies. The major cause of high
risk originated from outcome measurement caused by a lack of objectivity in the DNS
diagnostic criteria in four studies. One study was assessed as having a high risk of bias in
terms of study participation, study attrition and statistical analysis and presentation.

3.4. Results of Meta-Analyses
3.4.1. Serum Lactate Level and Occurrence of Delayed Neuropsychiatric Sequelae

In this meta-analysis, the early phase serum lactate level was significantly higher in
the DNS group than in the non-DNS group, with moderate heterogeneity (8 studies; SMD,
0.31; 95% CI, 0.11–0.50; I2 = 44%; p = 0.002; Figure 2). Four studies showed no differences
between the DNS and non-DNS groups, and four studies showed significantly higher
lactate levels in the DNS group.

Figure 2. Forest plot of the association between early phase serum lactate level and occurrence of
delayed neuropsychiatric sequelae in adult patients with acute carbon monoxide poisoning [17–24].

3.4.2. Additional Analysis for Identifying and Measuring Heterogeneity

The results of the predefined subgroup analyses are summarized in Table S4. The
differences between the subgroups were not significant for the three characteristics except
HBOT (I2 = 0%). However, the subgroups by the proportion of HBOT therapy did not show
decreased heterogeneity. A summary of the sensitivity analysis is presented in Figure 3
and Table S5. The heterogeneity decreased to “might not be important” after omitting Han
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2021 (7 studies; SMD, 0.38; 95% CI, 0.23–0.53; I2 = 8%; p < 0.001). No significant reduction
in heterogeneity was seen after omitting seven other studies.

Figure 3. A summary of the sensitivity analysis [17–24].

There was no definite asymmetry in the forest plots. No significant asymmetry was
confirmed in the results of the contour-enhanced funnel plot, which was used to evaluate
reporting bias, such as publication bias (Figure S2). Moreover, there was no significant
influence of the observation period of DNS on the results of meta-regression analysis
(p = 0.12; Figure S3).

3.4.3. Level of Evidence

The results of this study were assigned a low level of evidence according to the
evidence profile using the GRADE framework (Table S6). Analysis of observational studies
was the main reason for the low level of evidence. The importance of the result was judged
as critical because DNS is a severe sequela in patients, where the prediction is crucial
for prevention.

4. Discussion

The prediction of DNS development in patients with CO poisoning at an early phase
is an important factor for treatment; however, tools for accurate prediction are insufficient.
Several studies have investigated biomarkers as predictors of DNS. However, most of these
studies were conducted at a single center, where the sample size was relatively small, and
the results were inconsistent.

In this study, we investigated the association between early phase serum lactate levels
and the occurrence of DNS in patients with acute CO poisoning using meta-analysis. We
found that patients who developed DNS had considerably higher serum lactate levels in
the early phase of acute CO poisoning than those who did not develop DNS. To the best of
our knowledge, no study has been identified in which that investigated the relationship
between biomarkers and DNS occurrence was investigated using meta-analysis.

Normal blood lactate concentration is approximately 1 mEq/L, and even a small
increase in lactate concentration to 1.5 mEq/L or higher in critically ill patients is associated
with high mortality [40,41]. The serum lactate concentration has been widely used for many
years as an indicator of changes in tissue perfusion in critically ill patients [30,31,42]. In
addition to the increase in anaerobic metabolism, hyperlactatemia is caused by increased
glycolysis, catecholamine-stimulated Na+–K+ pump activity, altered pyruvate dehydroge-
nase activity, and decreased lactate clearance due to hepatic hypoperfusion [43].

Serum lactate concentration could be enhanced in CO poisoning due to anaerobic
glycolysis leading to systemic hypoxia; a relationship between serum lactate concentration
and the severity of CO poisoning has been reported [32,44–46]. Cervellin et al. reported a
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significant correlation between the initial blood COHb level and lactate level in patients
with CO poisoning (r = 0.54; p < 0.001), where lactate level was useful as a crucial indicator
in predicting the need for hospitalization of patients with CO poisoning [32]. Another
retrospective study reported that lactate level could be used as an important factor for the
prediction of severe complications and the need for intensive care unit treatment, along with
old age, white blood cell count and level of consciousness at hospitalization [44]. However,
Benaissa et al. reported that the serum lactate level alone was insufficient to measure the
degree of CO poisoning in a prospective study of 146 patients with CO poisoning [45].
Another study reported that the initial lactate level in CO poisoning could be considered
an adjunctive parameter of severity along with the clinical criteria and COHb [46].

Studies comparing the initial blood lactate concentrations of the DNS and non-DNS
groups have also been reported. In a retrospective study conducted by Pepe et al., there
was no significant difference in the initial blood lactate concentration between DNS and
non-DNS groups (DNS vs. non-DNS, 1.77 vs. 1.76; p > 0.05) [17]. Zhang et al. reported a
significant difference in lactate concentration elevation between DNS and non-DNS groups
in univariate analysis (DNS vs. non-DNS, 38% vs. 13%; p = 0.008), whereas no significant
difference was seen in multivariate analysis (p = 0.12) [47]. Moreover, it has also been
suggested that the initial lactate concentration did not help predict DNS in multivariate
analyses conducted in other studies [22,24].

Elevated lactate levels in the early phase of CO poisoning can lead to systemic cellular
ischemia and inflammatory response due to the direct effect of CO. Although it is difficult
to assume that enhanced lactate levels specifically cause damage to the central nervous
system, it is highly likely that the damage increases proportionally with hypoxia and
abnormal inflammation of the central nervous system, considering the characteristics of
CO poisoning. In addition, there is a correlation between acute-phase brain damage and
high lactate concentration, considering the marked association between high blood lactate
concentration and changes in consciousness in acute CO poisoning [44]. Acute brain nerve
damage is anticipated to induce DNS through mechanisms such as lipid oxidation and
excess dopamine during the recovery phase.

In this study, the association between serum lactate levels in the early phase of CO
poisoning and the occurrence of DNS was analyzed in eight included studies. There
was a significant difference in the early phase serum lactate concentration between the
DNS and non-DNS groups with a moderate degree of heterogeneity. In the sensitivity
analysis, heterogeneity decreased to I2 = 8% from I2 = 44%, omitting the results of the
study conducted by Han et al. [19]. They reported that a shift of a large proportion of the
included patients from other hospitals that received oxygen therapy led to a difference in
the biomarker level between the time of poisoning and time of blood sample collection [19].
The heterogeneity with other studies could be attributed to the fact that the lactate level is
highly affected by oxygen treatment, which may have influenced their results.

This study has several limitations. First, there was heterogeneity among the studies
included in the meta-analysis and patient characteristics. This study was conducted using
SMD, a random-effects model considering variation among studies and additional analysis
was performed to decrease heterogeneity. Second, five out of the eight included studies were
assessed as low quality. Third, there are no universal guidelines or diagnostic criteria for
DNS, and the clinical manifestations of DNS vary from mild to severe. Therefore, different
diagnostic criteria for each study may have influenced the results and heterogeneity. Fourth,
six of the eight included studies were conducted in Korea. The results of this study cannot
be extrapolated to other racial groups and countries worldwide. Fifth, the time from CO
exposure to blood sampling and follow-up or changes in lactate levels was not included
in the analysis. Sixth, we did not consider confounders that might affect the lactate levels,
such as underlying diseases, route of CO exposure, intentionality, use of drugs or alcohol
and smoking history.
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5. Conclusions

The early phase serum lactate concentration was significantly higher in the DNS
group than in the non-DNS group in adult patients with acute CO poisoning. A lactate
concentration test for patients with CO poisoning could help predict DNS. A well-designed,
large-scale, prospective study is required to support the results of this study due to the
presence of less evidence in the literature.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jpm12040651/s1, Figure S1: Quality of the studies included in the
systematic review and meta-analysis; Figure S2: Funnel plot to assess the publication bias for the
association between early phase serum lactate level and occurrence of delayed neuropsychiatric se-
quelae in acute carbon monoxide poisoning patients; Figure S3: Mixed-effects model meta-regression
analysis: Association between the initial lactate level and occurrence of delayed neuropsychiatric
sequelae in acute carbon monoxide poisoning patients determined using the observation period
regression; Table S1: Search strategy; Table S2: Baseline characteristics of patients included in the
meta-analysis for the association between initial serum biomarker and delayed neuropsychiatric
sequelae in carbon monoxide poisoning patients; Table S3: Definition of delayed neuropsychiatric
sequelae; Table S4: Summary of subgroup analysis; Table S5: Summary of standardized mean dif-
ference for the association between early phase lactate and occurrence of delayed neuropsychiatric
sequelae in acute carbon monoxide poisoning patients with sensitivity analysis; Table S6: Evidence
profile of main results using GRADE.
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