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Abstract: MicroRNAs (miRNAs) have drawn enormous attention owing to their significant roles in
various biological processes, as well as in the pathogenesis of human diseases. Therefore, predicting
miRNA–disease associations is a pivotal task for the early diagnosis and better understanding of
disease pathogenesis. To date, numerous computational frameworks have been proposed to identify
potential miRNA–disease associations without escalating the costs and time required for clinical
experiments. In this regard, I propose a novel computational framework (MDMF) for identifying
potential miRNA–disease associations using matrix factorization with a disease similarity constraint.
To evaluate the performance of MDMF, I calculated the area under the ROC curve (AUCs) in the
framework of global and local leave-one-out cross-validation (LOOCV). In conclusion, MDMF
achieved reliable AUC values of 0.9147 and 0.8905 for global and local LOOCV, respectively, which
was a significant improvement upon the previous methods. Additionally, case studies were conducted
on two major human cancers (breast cancer and lung cancer) to validate the effectiveness of MDMF.
Comprehensive experimental results demonstrate that MDMF not only discovers miRNA–disease
associations efficiently but also deciphers the underlying roles of miRNAs in the pathogenesis of
diseases at a system level.

Keywords: microRNA; disease; matrix factorization; miRNA–disease association

1. Introduction

MicroRNAs (miRNAs) are a type of non-coding RNA consisting of 19–22 nucleotides.
miRNAs have been reported to be involved in the regulation of gene expression at the
post-transcriptional level. They bind to the 3′ untranslated regions (UTRs) of target mRNAs
through base paring [1–3]. Since the first two miRNAs were discovered, Caenorhabditis
elegans lin-4 and let-7, and numerous more miRNAs have been discovered thanks to
the high-throughput techniques [4,5]. Furthermore, increasing evidence indicates that
miRNAs play crucial roles in various biological processes. For example, miRNAs are found
to be involving in aging [6], apoptosis [7], cell development [8] differentiation [9], and
proliferation [10]. As such, abnormalities and dysfunction of miRNAs may be involved in
various disease incidents, including cancers, cardiovascular diseases, and nervous system
disorders [11]. For example, miR-21 has been found to play a significant role in regulating
the expression of MAP2K3, a tumor repressor gene related to hepatocellular carcinoma cell
proliferation [12]. In addition, studies have shown that mir-31 and mir335 are involved
in suppressing breast cancer [13–15]. Therefore, it is necessary to determine the role of
miRNAs as biomarkers, which could not only improve the understanding of disease
pathogenesis but also contribute to the treatment and detection of complex human diseases.
In this regard, efforts have focused on identifying the relationship between miRNAs
and diseases through biological experiments such as microarray profiling and qRT-PCR.
However, considering the cost and complexity of biological experiments, computational
approaches for studying disease-related miRNAs may be a good alternative for reducing
the time and money required for clinical methods.

J. Pers. Med. 2022, 12, 885. https://doi.org/10.3390/jpm12060885 https://www.mdpi.com/journal/jpm

https://doi.org/10.3390/jpm12060885
https://doi.org/10.3390/jpm12060885
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jpm
https://www.mdpi.com
https://orcid.org/0000-0002-6086-5693
https://doi.org/10.3390/jpm12060885
https://www.mdpi.com/journal/jpm
https://www.mdpi.com/article/10.3390/jpm12060885?type=check_update&version=3


J. Pers. Med. 2022, 12, 885 2 of 16

Most previous computational approaches have predicted miRNA–disease associations
based on the biological hypothesis that functionally related miRNAs tend to be associated
with phenotypically similar diseases [16]. The most intuitive way of reflecting this as-
sumption is to construct a miRNA similarity network, where nodes represent the miRNAs
and edges represent functional similarities among the miRNAs. Potential disease-related
miRNAs can be identified by observing their neighbors in the miRNA similarity network.
In this regard, several computational methods have been proposed to efficiently identify
disease-related miRNAs. Xuan et al. proposed a computational model called HDMP
for predicting miRNA–disease associations by considering the network using k-nearest
neighbors in the network [16]. HDMP identified potential disease-related miRNAs based
on the assumption that miRNAs in the same cluster or family tend to be associated with
phenotypically similar diseases. However, HDMP cannot be applied to miRNAs with no
disease associations. Jiang et al. developed a hypergeometric distribution-based predic-
tion model by employing a miRNA functional similarity network, a disease phenotype
similarity network, and a human miRNA–disease association network [17]. However,
this model limits further improvement by considering only the local information in the
network. Mørk et al. presented a prediction model of miRPD that utilizes miRNA–disease
associations and disease–protein associations. This model has the prediction power of
predicting both disease-related miRNAs and proteins. [18]. In miRPD, proteins are used
to link the associations between miRNAs and diseases. However, their high dependency
on protein information limits the application of miRNAs with no protein links. Chen et al.
developed the computational model called random walk with restart for miRNA–disease
association (RWRMDA) [19]. RWRMDA is based on the assumption that applying global
information in a network better captures miRNA–disease associations than using only local
information. To infer novel miRNA–disease associations, a random walk with a restart
algorithm was implemented in a pre-constructed miRNA functional similarity network
(MFSN), until the probability of each node became stable. However, this model still fails
to predict miRNAs with no disease association, which limits further improvement. Chen
et al. developed another prediction framework of WBSMDA [20]. WBSMDA integrated
various heterogeneous biological datasets such as known Gaussian interaction profile
kernel similarity, disease semantic similarity network, miRNA functional similarity net-
work, and known miRNA–disease associations. Compared to previous models, WBSMDA
could effectively work on new miRNAs with no disease associations and diseases with
no miRNA associations, which improved prediction accuracy. Chen et al. developed
a prediction model called the HGIMDA [21]. By integrating various similarity values,
such as miRNA functional similarity, disease semantic similarity, Gaussian interaction
profile kernel, HGIMDA identified miRNA–disease associations by searching three-length
paths in the heterogeneous network. Shi et al. developed a computational framework
for disease-related miRNA prioritization by implementing a random walk on a protein–
protein interaction (PPI) network [22]. In this study, miRNA target genes and causal genes
of diseases were mapped onto the PPI network to investigate miRNA–disease associations.
Ha et al. developed a network-based model for identifying disease-related miRNAs based
on the assumption that functionally similar miRNAs tend to share a large proportion of
common environmental factors (EFs) [23]. EFs are known to be important for miRNA
regulation. However, this model can improve performance by considering the chemical
compounds among EFs. In summary, the aforementioned similarity-based methods are
highly dependent on disease-related miRNAs, which limits their further improvement.

Owing to recent advancements, machine learning is being widely used in various
areas of research [24–27]. To elucidate the role of miRNAs in tumorigenesis and disease
pathogenesis, considerable efforts have been made to reveal miRNA–disease associations
based on machine learning models. The following miRNA–disease association prediction
method can be categorized into machine leaning-based models. Ha et al. used matrix fac-
torization to identify novel disease-related miRNAs [28]. This model effectively enhanced
performance by applying miRNA expression as a weight for the matrix factorization objec-
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tive function. Chen et al. proposed a computational model called a restricted Boltzmann
machine for inferring potential miRNA–disease associations, for multiple types of miRNA–
disease association predictions (RLSMDA) [29]. Semi-supervised learning was performed
to predict novel disease-related miRNAs without the use of negative samples. However,
choosing the appropriate parameters for the classifiers from two different spaces remains
a problem. Chen et al. also proposed the prediction model called the RBMMMDA [30],
which is a two-layer undirected graphical model consisting of visible layers and hidden
units. RBMMMDA is not only capable of predicting disease-related miRNAs, but also
determining the corresponding types. Li et al. proposed a matrix completion-based model
for miRNA–disease association prediction called MDMDA [31], which uses a singular value
thresholding (SVT) algorithm based on a binary adjacency matrix. Xio et al. presented a
computational model called GRNMF. In this study, the authors measured the interaction
profiles of diseases and miRNAs using a weighted gene network [32]. Chen et al. further
developed a novel computational model to infer potential miRNA–disease associations,
called IMCMDA [33]. By measuring comprehensive similarities among miRNAs and
diseases, IMCMDA performed satisfactorily in detecting disease-related miRNAs. Chen
et al. also proposed a model called MDHGI, which identifies potential miRNA–disease
associations using a matrix decomposition algorithm based on the Gaussian interaction
profile kernel, disease semantic similarity, and miRNA functional similarity [34]. Chen et al.
developed a model called RKNNMDA that uses support vector machine by exploring the
k-nearest neighbors of diseases and miRNAs to prioritize disease-related miRNAs based
on weighted voting [35].

Predicting miRNA–disease associations can be regarded as the type of problem suited
for recommender systems, where the goal is to infer the most plausible rating scores that
a user might assign to a certain item. Among the various machine-learning algorithms,
matrix factorization has achieved immense success in recommender systems. Thus, various
models have been developed to transform the task of prediction potential miRNA–disease
associations into a recommender task [36,37]. The key idea of matrix factorization is to find
two non-negative matrices, called latent spaces, whose product approximates the observed
value in the original matrix. In other words, they map miRNAs and diseases into a shared
latent space to represent a vector of latent features. After the optimization process, the
inner product of each latent space can be used to identify the relationship between miRNAs
and diseases.

Various matrix factorization-based models have been developed to enhance prediction
accuracy by injecting additional information, a process called implicit feedback. Because of
high-throughput techniques, large amounts of biological data are now readily available,
which helps decipher the underlying roles of miRNAs in pathological and physiological
activities. Therefore, it is necessary to take considerations of using additional biological
data, a notion that led to the design of the matrix factorization architecture in this study.

Here, I propose an effective and feasible computational framework to predict miRNA–
disease associations via matrix factorization with disease similarity constraint (MDMF).
MDMF is a pioneering method that leverages known miRNA–disease associations, miRNA
expression values, and disease semantic similarity, and it identifies potential miRNA–
disease associations by satisfying the constraint that the cosine similarity of the disease
latent space should be close to the value of the disease semantic matrix. As a result,
MDMF achieved AUCs of 0.9147 and 0.8905 in the framework of global and local leave-
one-out cross-validation (LOOCV), respectively, which is superior to previous methods.
Furthermore, a literature analysis of the top 50 candidate miRNAs related to breast and
lung cancers clearly demonstrated the effectiveness of MDMF.

2. Materials and Methods

In this section, I first enumerate the datasets used for the MDMF and then formulate the
matrix factorization model to address the task of predicting miRNA–disease associations.
The MDMF can be divided into three steps. First, a miRNA–disease association matrix is
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constructed based on the known miRNA–disease association network. In a similar way,
a disease–disease similarity matrix is created through the mesh descriptor. Second, by
combining miRNA expression value as a weight for the objective function, the matrix
factorization model is efficiently learned. Finally, through the MDMF, each miRNA is given
a score for association with a disease, which is used as a basis for making actual predictions.
The main goal of MDMF is to predict miRNA–disease associations. In other words, MDMF
determines whether each miRNA is associated with a disease or not. Therefore, predicting
the relationship between miRNA and disease can be considered as binary classification.
The overall workflow of MDMF is shown in Figure 1.
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Figure 1. The workflow of MDMF. First, a miRNA–disease association matrix is constructed based on
the known miRNA–disease association network. In a similar way, a disease-disease similarity matrix
is created through the mesh descriptor. Second, by combining miRNA expression value as a weight
for the objective function, the matrix factorization model is efficiently learned. Finally, through the
MDMF, each miRNA is given a score for association with a disease, which is used as a basis for
making actual predictions.

2.1. Human miRNA–Disease Association Data

With the discovery of numerous miRNAs through accumulated evidence, various
databases have been developed to store information regarding these miRNAs. Hence,
the author obtained human miRNA–disease associations from public databases (HMDD
v3.2, dbDEMC, and miR2Disease). HMDD v2.0 contains 5430 known miRNA-disease
associations for 495 miRNAs and 383 diseases that are based on verified experimental
results [38]. dbDEMC v2.0 contains information on miRNA–disease associations regarding
on 2224 miRNAs and 36 diseases [39]. miR2disease contains information on 3723 miRNA–
disease associations for 349 miRNAs and 136 diseases [40]. The author removed duplicate
entities and unified disease names by utilizing the MeSH disease terms. Each dataset
contains information indicating the relationship between miRNA and disease. It can
be considered as binary information representing disease and miRNA relationships. By
integrating each data set, it was used as original miRNA–disease association matrix for
matrix factorization. The original miRNA–disease association matrix can be defined as:

yui =

{
1, miRNAiand diseaseiis related

0, otherwise
(1)
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2.2. miRNA Expression Data

Despite the success of matrix factorization in machine learning, it suffers from an
inherent limitation that lowers prediction accuracy owing to the lack of observations (i.e.,
known miRNA–disease associations), that lowers prediction accuracy. Owing to high-
throughput techniques, vast amounts of omics data are now publicly available, which
provide clues for predicting potential links between miRNAs and diseases. To this end,
using miRNA expression values could be a great alternative for uncovering the hidden
functions of miRNAs involved in disease pathogenesis. A value of 0 in the original matrix
does not necessarily indicate that miRNA m is not related to disease d; it is possible
that this relationship has not yet been revealed. Therefore, the author assigned miRNA
expression values for entries that did not have known miRNA–disease associations. MiRNA
expression value consists of numerical information and it was normalized through min–
max normalization. When a specific condition is given (disease), a high miRNA expression
value means that the condition and miRNA are correlated. The miRNA expression data
were obtained from The Cancer Genome Atlas (TCGA), which provides comprehensive
proteomic, epigenomic, genomic, and transcriptomic data [41].

2.3. Disease Semantic Similarity

In this study, the author used a hierarchical directed acyclic graph (DAG) to calculate
similarities between diseases. Generally, a directed acyclic graph (DAG) can be utilized to
model the likelihood of pairwise relationships between two nodes. By introducing DAG,
which captures the semantics behind disease similarities, I was able to calculate precise
similarities among diseases, which is paramount for enhancing the performance in the
identification of disease-related miRNAs. Disease D can be expressed as DAG(D) = (D,
T(D), E(D)). T(D) stands for the ancestor nodes of node D, including node D itself, and
E(D) denotes its direct edges from general terms (parent nodes) to more specific terms
(child nodes) [42]. The author downloaded the Disease Mesh descriptor from the National
Library of Medicine (http://www.nlm.nih.gov) to construct the hierarchical directed acyclic
graph [43], where the disease semantic similarity D can be expressed as follows:

DV(D) = ∑
t∈T(D)

DD(d) (2)

{
DD(d) = 1
DD(d) = max{∆∗DD(d′)|d′ ∈ children o f d} i f d 6= D

(3)

where ∆ is the semantic contribution factor. The author assigned a higher disease semantic
similarity value if a disease pair shared a larger portion of DAGs. The disease semantic
similarity between d(i) and d(j) can be calculated as follows:

SS1(d(i), d(j)) =
∑t∈T(i)∩ T(j)

(
Di(t) + Dj(t)

)
DV(i) + DV(j)

(4)

2.4. Gaussian Interaction Profile Kernel Disease Similarity

Gaussian interaction profile (GIP) kernel similarities for diseases are calculated based
on the biological hypothesis that phenotypically similar diseases tend to associate with
functionally similar miRNAs [37]. The binary vector IP(d(i)) represents the interaction
profiles of disease d(i), which can be obtained from known associations between disease
d(i) and each miRNA. The GIP similarity between d(i) and d(j) is defined as follows:

GS(d(i), d(j)) = exp(−rd||IP(d(i))− IP(d(j))||2) (5)

http://www.nlm.nih.gov
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Here, rd denotes the hyperparameter for the bandwidth of the kernel that can be
measured by normalizing r’

d. r’
d represents the average number of related miRNAs per

disease.

rd =
r′d

1
nd

∑nd
i=1||IP(d(i)||2

(6)

2.5. Integrated Disease Similarity

Owing to the reason that disease semantic similarities do not cover all the similarities
between the diseases, the author combined the disease semantic similarity SS and Gaussian
interaction kernel similarity GS for obtaining comprehensive disease similarities. The
integrated similarity between d(i) and d(j) is calculated as follows:

Sd(d(i), d(j))

=

{
SS(d(i), d(j)), i f d(i) and d(j) has semantic similarity
GS(d(i), d(j), otherwise

(7)

2.6. EMDMF

Matrix factorization has shown great performance in recommender systems, where
its goal is to predict the most plausible rating scores that a user might give to certain
items. Therefore, numerous computational models use matrix factorization to perform
various research tasks, including the identification of disease-related miRNAs. The aim is
to find two non-negative matrices, called latent spaces, whose product approximates the
observed value in the original matrix. In this study, the author mathematically formulated
the problem of predicting miRNA–disease associations by employing matrix factorization
with a disease similarity constraint. Unlike previous methods, MDMF leverages integrated
disease similarities to represent a more precise disease latent space. In summary, the goal
of MDMF is to learn the two latent spaces whose products are close to the observed entries
in the original matrix, whereas the cosine similarity of the disease latent space is close to
the value of the integrated disease similarity matrix. This learning process is illustrated
in Figure 2. Equation (8) illustrates the design of a matrix factorization objective function
with a disease similarity constraint. All the notations are listed in Table 1.

min
M,D

1
2
{

p

∑
i=1

q

∑
j=1

wij(rij − dT
j mi)

2
+ α

q

∑
j=1

q

∑
k=j+1

(
Sjk −

dj · dk

‖dj‖2‖dk‖2

)
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Figure 2. The workflow of MDMF. MDMF learns the two latent spaces whose products are close to
the observed entries in the original matrix, whereas the cosine similarity of the disease latent space is
close to the value of the integrated disease similarity matrix.
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Table 1. Notations.

Symbol Description

p, q, k Number of miRNAs, diseases and latent dimensions
M, D miRNA and disease latent matrix

S Disease similarity matrix
W miRNA similarity matrix
L Objective function
λ Hyper parameter for regularization
η Learning rate

I computed the gradient of each latent vector and trained it using the gradient descent
algorithm. The gradients are calculated as follows:

∂L
∂mi

=
q

∑
j=1

wij(dT
j mi − rij)dj + λ1mi (9)

∂L
∂dj

=
p
∑

i=1
wij(dT

j mi − rij)mi + λ2dj + α
q
∑

k=j+1

{(
Sjk −

dj ·dk
‖dj‖2‖dk‖2

) (
− 1
‖dk‖2

)(
dk
‖dj‖2

− dj ·dk

‖dj‖3
2

dj

)}
(10)

Each miRNA disease latent space was updated in the opposite direction of the gradient
with a magnitude proportional to the learning rate. This procedure can be expressed as
follows:

i = 1 to p : mi ← mi + η

{
q

∑
j=1

wij(dT
j mi − rij)dj + λ1mi

}
(11)

j = 1 to q : dj ← dj + η

{ q
∑

i=1
wij(rij − dT

j mi)mi − λ2dj

}
+α

q
∑

k=j+1

{(
Sjk −

dj ·dk
‖dj‖2‖dk‖2

)(
− 1
‖dk‖2

)(
dk
‖dj‖2

− dj ·dk

‖dj‖3
2

dj

)}
(12)

Through Equation (12), the author aims to explicitly inject the integrated disease
similarities into the disease latent space to obtain a more precise disease latent vector
representation. Using the gradient descent algorithm, I could learn latent spaces (i.e.,
miRNA, disease) and identify potential miRNA–disease associations by taking the dot
product of each latent space. All the notations are listed in Table 1.

3. Results
3.1. Evaluation Metric

To demonstrate the performance of the MDMF, the author implemented leave-one-out
cross-validation (LOOCV) as an evaluation metric. In general, LOOCV can be considered as
a special type of n-fold cross validation, in which each known miRNA–disease association
is left out as a test sample, while the other samples are used as training samples [44].
Two types of LOOCV exist: global LOOCV and local LOOCV. Global LOOCV considers
all diseases at once, whereas local LOOCV considers only one specific disease at a time.
The main difference between global LOOCV and local LOOCV depends on whether all
diseases were tested at the same time or not. By plotting the true positive rate (TPR,
sensitivity) versus the false positive rate (FPR, 1-specificity), the author drew receiver
operating characteristic (ROC) curves at different thresholds. In the ROC graph, the X-axis
denotes the true positive rate (TPR) and the Y-axis represents the false positive rate (FPR).
In general, the area under the ROC curve (AUC) is widely used to evaluate the performance
of the model; AUC = 1 indicates perfect prediction performance and AUC = 0.5 denotes
random selection [45]. In addition, several evaluation metrics including area under the
precision-recall curve (AUPR), F1-measure (F1), accuracy (ACC), and Matthews correlation
coefficient (MCC) were adopted to demonstrate the performance. PR curves are widely
used in the field of machine learning, where unbalanced datasets are more often observed.
Because of the imbalanced data sets, the PR curve is becoming a useful alternative, which
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can highlight the performance differences lost in the ROC curve. Accuracy refers to the
number of correctly identified disease-related miRNAs among the selected miRNAs. Both
the Matthews correlation coefficient (MCC) and F1 enable to establish the consistency of
experimental results between both metrics and the proportion that change.

3.2. Performance Comparison with Previous Methods

Global LOOCV was used to demonstrate the performance enhancement by MDMF in
predicting known miRNA–disease associations over existing state-of-the-art techniques.
Comparative experiments were performed based on the source code provided in each
paper. In other cases, the author directly implemented the code and implemented the
experiments. As shown in Figure 3, MDMF, MDHGI [34], PMAMCA [28], MCMDA [31],
RLSMDA [29], and RKNNMDA [35] obtained AUCs of 0.9147, 0.9040, 0.8967, 0.8768, 0.8588,
and 0.7750, respectively, within the framework of global LOOCV. Next, I employed another
evaluation metric local LOOCV to evaluate the robustness of MDMF in identifying known
miRNA–disease associations. As shown in Figure 4, MDMF, PMAMCA [28], MDHGI [34],
RKNNMDA [35], RWRMDA [23], MCMDA [31], and RLSMDA [29] achieved AUCs of
0.8905, 0.8693, 0.8427, 0.8292, 0.7937, 0.7850, and 0.7463, respectively, within the framework
of local LOOCV. Furthermore, I performed additional experiments by adopting several
other evaluation metrics, including area under the precision-recall curve (AUPR), Matthews
correlation coefficient (MCC), F1-measure (F1), and accuracy (ACC). In conclusion, the
experimental results (Tables 2 and 3) of the various evaluation metrics clearly demonstrate
the superior performance of MDMF compared to the previous state-of-the-art approaches.
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Table 2. Performance comparison of MDMF with other methods (global LOOCV). Various experi-
ments under the various evaluation metrics clearly demonstrated the comparable performance of
MDMF. Local leave-one-out cross-validation (LOOCV); Area under the ROC curve (AUCs); Area
under the precision-recall curve (AUPR); F1-measure (F1); accuracy (ACC), Matthews correlation
coefficient (MCC).

Methods AUC AUPR F1 ACC MCC

MDMF 0.9147 0.8408 0.8482 0.8547 71.54
MDHGI 0.9040 0.8404 0.8745 0.8391 64.49

PMAMCA 0.8967 0.8501 0.8802 0.8446 68.71
MCMDA 0.8768 0.8043 0.8704 0.8342 63.48
RLSMDA 0.8588 0.7647 0.7342 0.8164 65.42

RKNNMDA 0.7750 0.8482 0.8703 0.8128 64.81

Table 3. Performance comparison of MDMF with other methods (local LOOCV). Various experiments
under the various evaluation metrics clearly demonstrated the comparable performance of MDMF.

Methods AUC AUPR F1 ACC MCC

MDMF 0.8905 0.8129 0.8347 0.8538 69.84
PMAMCA 0.8693 0.8846 0.8284 0.8404 62.49

MDHGI 0.8427 0.8104 0.8591 0.8349 66.91
RKNNMDA 0.8292 0.8864 0.8028 0.8116 64.82
RWRMDA 0.7937 0.7372 0.7729 0.7527 59.42
MCMDA 0.7850 0.8764 0.8418 0.8268 68.16
RLSMDA 0.7463 0.8648 0.8045 0.8143 62.72

3.3. Effect of Disease Similarity Constraint

An important criterion for evaluating the expandability of MDMF is whether the
model achieves high performance while injecting a disease similarity constraint. The author
assigned α as a hyper-parameter that controls the trade-off between the original matrix
factorization and the disease similarity constraint. In extreme cases, if I employ a very small
value of α, I only mine miRNA–disease associations and miRNA expression values for
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matrix factorization. However, if I employ a very large value of α, the integrated disease
similarity information dominates the learning process. To demonstrate the effectiveness of
injecting the disease similarity constraint, I evaluated changes in the AUCs by varying the
value of α. As shown in Figure 5, a higher α yielded better performance. However, beyond
a certain point (α = 0.7), the performance degraded. Therefore, the author fixed the optimal
hyper-parameter value of α to 0.7 for our experiments. The experimental results for the
various parameters are listed in Table 4.
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Table 4. The effects of disease constraint on the performance of MDMF.

α
AUC

(Global LOOCV)
AUC

(Local LOOCV)

0.1 0.8874 0.8711
0.2 0.8954 0.8724
0.3 0.9018 0.8769
0.4 0.9082 0.8784
0.5 0.9127 0.8891
0.6 0.9116 0.8842
0.7 0.9147 0.8905
0.8 0.9128 0.8874
0.9 0.9042 0.8842

3.4. Case Studies (Breast Cancer and Lung Cancer)

To confirm the robustness and effectiveness of MDMF in predicting miRNA–disease
associations, the author conducted case studies on two major human cancers in context of
the miRNA research: breast cancer and lung cancer.

Cancer is associated with abnormal cell growth, which can spread to nearby tissues.
Among the various human cancers, breast cancer is a malignant neoplasm and is the most
common cancer type among women. Therefore, I implemented a case study of breast cancer
to demonstrate the performance of MDMF and prioritized the top 50 candidates based on
the relatedness scores assigned by MDMF. As shown in Table 5, all 50 candidates were
verified as true breast cancer-related miRNAs based on the answer set data. The author
confirmed that all top 50 candidates were involved in breast cancer-related processes.



J. Pers. Med. 2022, 12, 885 11 of 16

Table 5. Top 50 breast cancer-related miRNAs predicted by MDMF and their evidence. All miRNA
candidates were proved to be related with breast cancer.

Rank Name Evidence Rank Name Evidence

1 hsa-miR-214 hmdd, dbDEMC 26 hsa-miR-1237 dbDEMC
2 hsa-miR-937-3p dbDEMC 27 hsa-miR-129 hmdd, dbDEMC
3 hsa-miR-1248 hmdd, dbDEMC 28 hsa-miR-340* dbDEMC
4 hsa-miR-920 dbDEMC 29 hsa-miR-16-1-3p dbDEMC
5 hsa-miR-520e dbDEMC 30 hsa-miR-302b* dbDEMC
6 hsa-miR-593 dbDEMC 31 hsa-miR-1266 hmdd, dbDEMC
7 hsa-miR-381 hmdd, dbDEMC 32 hsa-miR-1249-3p dbDEMC
8 hsa-miR-16 hmdd, dbDEMC 33 hsa-miR-1262 dbDEMC
9 hsa-miR-502 hmdd 34 hsa-miR-494-3p dbDEMC

10 hsa-let-7g* dbDEMC 35 hsa-miR-1911* dbDEMC
11 hsa-miR-370 hmdd, dbDEMC 36 hsa-miR-376b-3p dbDEMC
12 hsa-miR-330 dbDEMC 37 hsa-miR-1276 dbDEMC
13 hsa-miR-452 hmdd, dbDEMC 38 hsa-miR-331-5p dbDEMC
14 hsa-miR-124a-3 hmdd, miR2disease 39 hsa-miR-302e dbDEMC
15 hsa-miR-410-3p dbDEMC 40 hsa-miR-361-5p dbDEMC
16 hsa-miR-500a dbDEMC 41 hsa-miR-205 hmdd, miR2disease, dbDEMC
17 hsa-miR-766-3p dbDEMC 42 hsa-miR-215-5p dbDEMC
18 hsa-miR-29a-3p dbDEMC 43 hsa-miR-30b-3p dbDEMC
19 hsa-miR-23a hmdd, dbDEMC 44 hsa-miR-760 hmdd, dbDEMC
20 hsa-miR-3653-3p dbDEMC 45 hsa-miR-4458 dbDEMC
21 hsa-miR-513b dbDEMC 46 hsa-miR-30c hmdd, dbDEMC
22 hsa-miR-125a-3p dbDEMC 47 hsa-miR-3121-5p dbDEMC
23 hsa-let-7a-2-3p dbDEMC 48 hsa-miR-609 dbDEMC
24 hsa-miR-3130-2 hmdd 49 hsa-miR-21* dbDEMC
25 hsa-miR-1272 dbDEMC 50 hsa-miR-7705 dbDEMC

Lung cancer is the leading cause of cancer-related deaths in both men and women [46].
The dominant factor leading to lung cancer is exposure to cigarette smoke through active or
passive smoking. Epidemiological research on lung cancer has demonstrated that miRNAs
also play an important role in its pathogenesis. Therefore, I further carried out MDMF to
predict potential lung cancer-related miRNAs. As shown in Table 6, the author verified
that all top 50 miRNAs were related to lung cancer.

3.5. Survival Analysis

Survival analysis, also called event analysis, corresponds to the statistics for investi-
gating the time it takes for some event of interest to occur. It is widely used in biomedical
research, where the objective is to observe the time to death of patients. Therefore, I
implemented Kaplan-Meier survival analysis to verify the effect of miRNAs on overall
patient survival using the miRpower-Kaplan-Meier plotter web-tool [47]. Based on the
top 50 candidates, miRNAs with a p-value < 0.005 were selected as potential biomarkers
associated with breast cancer patients using the TCGA dataset. As shown in Figure 6,
survival analysis of highly ranked candidates (hsa-miR-122, hsa-miR-138, hsa-miR-150,
and hsa-miR-204) showed them to be associated with the overall survival of breast cancer
patients, by comparing the difference between the high-risk and low-risk groups. In con-
clusion, the author demonstrated the prognostic power of differentially expressed miRNAs
in breast cancer incidence, as well as the effectiveness of MDMF in discovering potential
biomarkers.
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Table 6. Top 50 lung cancer-related miRNAs predicted by MDMF and their evidence. All miRNA
candidates were proved to be related with lung cancer.

Rank Name Evidence Rank Name Evidence

1 hsa-miR-214 hmdd, dbDEMC 26 hsa-miR-1237 dbDEMC
2 hsa-miR-937-3p dbDEMC 27 hsa-miR-129 hmdd, dbDEMC
3 hsa-miR-1248 hmdd, dbDEMC 28 hsa-miR-340* dbDEMC
4 hsa-miR-920 dbDEMC 29 hsa-miR-16-1-3p dbDEMC
5 hsa-miR-520e dbDEMC 30 hsa-miR-302b* dbDEMC
6 hsa-miR-593 dbDEMC 31 hsa-miR-1266 hmdd, dbDEMC
7 hsa-miR-381 hmdd, dbDEMC 32 hsa-miR-1249-3p dbDEMC
8 hsa-miR-16 hmdd, dbDEMC 33 hsa-miR-1262 dbDEMC
9 hsa-miR-502 hmdd 34 hsa-miR-494-3p dbDEMC

10 hsa-let-7g* dbDEMC 35 hsa-miR-1911* dbDEMC
11 hsa-miR-370 hmdd, dbDEMC 36 hsa-miR-376b-3p dbDEMC
12 hsa-miR-330 dbDEMC 37 hsa-miR-1276 dbDEMC
13 hsa-miR-452 hmdd, dbDEMC 38 hsa-miR-331-5p dbDEMC
14 hsa-miR-124a-3 hmdd, miR2disease 39 hsa-miR-302e dbDEMC
15 hsa-miR-410-3p dbDEMC 40 hsa-miR-361-5p dbDEMC
16 hsa-miR-500a dbDEMC 41 hsa-miR-205 hmdd, miR2disease, dbDEMC
17 hsa-miR-766-3p dbDEMC 42 hsa-miR-215-5p dbDEMC
18 hsa-miR-29a-3p dbDEMC 43 hsa-miR-30b-3p dbDEMC
19 hsa-miR-23a hmdd, dbDEMC 44 hsa-miR-760 hmdd, dbDEMC
20 hsa-miR-3653-3p dbDEMC 45 hsa-miR-4458 dbDEMC
21 hsa-miR-513b dbDEMC 46 hsa-miR-30c hmdd, dbDEMC
22 hsa-miR-125a-3p dbDEMC 47 hsa-miR-3121-5p dbDEMC
23 hsa-let-7a-2-3p dbDEMC 48 hsa-miR-609 dbDEMC
24 hsa-miR-3130-2 hmdd 49 hsa-miR-21* dbDEMC
25 hsa-miR-1272 dbDEMC 50 hsa-miR-7705 dbDEMC
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3.6. Pathway Analysis

The author further conducted the functional analysis of miRNAs based on their targets.
DIANA-mirPath v 3.0 is a web-based tool that provides biological pathways related to
miRNA targets of interest [48]. I found that most of the targets of the lung cancer-related
miRNAs identified by MDMF were associated with lung cancer-related biological processes
and functions. For example, non-small cell lung cancer (NSCLC) is the most lethal factor
in lung cancer-related mortality (Table 7) [49]. Furthermore, studies have revealed a link
between HIF-1 protein and apoptosis and proliferation in lung cancer [50]. Figure 7 shows
a heatmap illustrating the relationship between miRNA targets and their target pathways,
generated using the miRpathDB 2.0 tool [51]. A darker color represents more relevance
in the corresponding pathway functions. In summary, Gene Ontology (GO) analysis and
KEGG pathway analyses clearly demonstrated the robustness and effectiveness of MDMF
in detecting disease-related miRNAs.

Table 7. The effects of disease constraint on the performance of MDMF.

KEGG Pathway p-Value

Hippo signaling pathway 1.41440646708 × 10−7

Chronic myeloid leukemia 6.87396730677 × 10−6

TGF-beta signaling pathway 7.52715819175 × 10−6

ECM-receptor interaction 1.33810742874 × 10−5

FoxO signaling pathway 7.94489535244 × 10−5

Prostate cancer 0.00245651291245
Non-small cell lung cancer (NSCLC) 0.00329923289869

Thyroid cancer 0.00715240823084
ErbB signaling pathway 0.00817122414933

Pancreatic cancer 0.0120595309627
p53 signaling pathway 0.022215235485

HIF-1 signaling pathway 0.0429548116057
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4. Conclusions and Future Perspective

Researchers are now focusing on the vital role of miRNAs in disease incidence to
better understand complex human diseases. Numerous computational models have been
developed to identify disease-related miRNAs by reducing the cost and time for clinical
experiments. Aiming at modeling miRNA–disease association prediction model more
accurately, the author proposes a novel computational framework, called MDMF, which
naturally fuses the Gaussian interaction profile kernel similarity, disease semantic similarity,
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and miRNA expression values into a matrix factorization model. The matrix factorization-
based model developed in this study combines different biological datasets. The high
performance of MDMF is attributed to several factors. First, I measured comprehensive
disease similarities through the incorporation of heterogeneous data. Second, based on the
intuition that incorporating additional information leads to enhanced prediction accuracy,
I integrated the Gaussian interaction profile kernel similarity, disease semantic similarity,
and miRNA expression values, by adjusting the matrix factorization objective function.
Finally, I used the recommender algorithm, matrix factorization, which maps miRNAs
and diseases into a shared latent space to predict disease-related miRNAs, resulting in
satisfactory prediction accuracy. However, there is still room for improvement in prediction
accuracy. Due to the nature of matrix factorization, there is a limitation of capturing only
linear relationships by taking inner product of each latent space. Therefore, applying
various machine-learning models that can capture non-linear relationships will further
improve the prediction performance. From this perspective, the authors plan to develop a
hybrid model that combines a linear model and a non-linear model in a future study. The
performance of MDMF could be further improved if more biological data are available for
the model, such as data regarding target genes and environmental factors. Furthermore,
extracting accurate miRNA and disease features using more sophisticated machine learning
models can also improve performance.
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41. Tomczak, K.; Czerwińska, P.; Wiznerowicz, M. The Cancer Genome Atlas (TCGA): An immeasurable source of knowledge.

Współczesna Onkol. 2015, 19, A68–A77. [CrossRef] [PubMed]
42. Wang, D.; Wang, J.; Lu, M.; Song, F.; Cui, Q. Inferring the human microRNA functional similarity and functional network based

on microRNA-associated diseases. Bioinformatics 2010, 26, 1644–1650. [CrossRef] [PubMed]
43. Lipscomb, C.E. Medical subject headings (MeSH). Bull. Med. Libr. Assoc. 2000, 88, 265–266. [PubMed]
44. Wong, T.T. Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation. Pattern Recognit.

2015, 48, 2839–2846. [CrossRef]

http://doi.org/10.1371/annotation/a076115e-dd8c-4da7-989d-c1174a8cd31e
http://doi.org/10.1186/1752-0509-4-S1-S2
http://doi.org/10.1093/bioinformatics/btt677
http://doi.org/10.1039/c2mb25180a
http://doi.org/10.1038/srep21106
http://doi.org/10.18632/oncotarget.11251
http://www.ncbi.nlm.nih.gov/pubmed/27533456
http://doi.org/10.1186/1752-0509-7-101
http://www.ncbi.nlm.nih.gov/pubmed/24103777
http://doi.org/10.3233/BME-151477
http://www.ncbi.nlm.nih.gov/pubmed/26405945
http://doi.org/10.3390/jpm9040051
http://www.ncbi.nlm.nih.gov/pubmed/31775219
http://doi.org/10.3390/jpm12010004
http://doi.org/10.3390/jpm11030182
http://doi.org/10.1109/ACCESS.2021.3084148
http://doi.org/10.1186/s12918-019-0700-4
http://doi.org/10.1038/srep05501
http://doi.org/10.1038/srep13877
http://doi.org/10.18632/oncotarget.15061
http://www.ncbi.nlm.nih.gov/pubmed/28177900
http://doi.org/10.1093/bioinformatics/btx545
http://www.ncbi.nlm.nih.gov/pubmed/28968779
http://doi.org/10.1093/bioinformatics/bty503
http://www.ncbi.nlm.nih.gov/pubmed/29939227
http://doi.org/10.1371/journal.pcbi.1006418
http://www.ncbi.nlm.nih.gov/pubmed/30142158
http://doi.org/10.1080/15476286.2017.1312226
http://www.ncbi.nlm.nih.gov/pubmed/28421868
http://doi.org/10.1016/j.jbi.2019.103358
http://doi.org/10.3390/cells9040881
http://doi.org/10.1093/nar/gkt1023
http://doi.org/10.1186/1471-2164-11-S4-S5
http://doi.org/10.1093/nar/gkn714
http://doi.org/10.5114/wo.2014.47136
http://www.ncbi.nlm.nih.gov/pubmed/25691825
http://doi.org/10.1093/bioinformatics/btq241
http://www.ncbi.nlm.nih.gov/pubmed/20439255
http://www.ncbi.nlm.nih.gov/pubmed/10928714
http://doi.org/10.1016/j.patcog.2015.03.009


J. Pers. Med. 2022, 12, 885 16 of 16

45. Huang, J.; Ling, C.X. Using AUC and accuracy in evaluating learning algorithms. IEEE Trans. Knowl. Data Eng. 2005, 17, 299–310.
[CrossRef]

46. Siegel, R.L.; Miller, K.D.; Sauer, A.G.; Fedewa, S.A.; Butterly, L.F.; Anderson, J.C.; Cercek, A.; Smith, R.A.; Jemal, A. Colorectal
cancer statistics. CA Cancer J. Clin. 2020, 70, 145–164. [CrossRef]

47. Lánczky, A.; Nagy, Á.; Bottai, G.; Munkácsy, G.; Szabó, A.; Santarpia, L.; Győrffy, B. miRpower: A web-tool to validate survival-
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