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Abstract: Semantic segmentation for diagnosing chest-related diseases like cardiomegaly, emphy-
sema, pleural effusions, and pneumothorax is a critical yet understudied tool for identifying the chest
anatomy. A dangerous disease among these is cardiomegaly, in which sudden death is a high risk.
An expert medical practitioner can diagnose cardiomegaly early using a chest radiograph (CXR).
Cardiomegaly is a heart enlargement disease that can be analyzed by calculating the transverse
cardiac diameter (TCD) and the cardiothoracic ratio (CTR). However, the manual estimation of CTR
and other chest-related diseases requires much time from medical experts. Based on their anatomical
semantics, artificial intelligence estimates cardiomegaly and related diseases by segmenting CXRs.
Unfortunately, due to poor-quality images and variations in intensity, the automatic segmentation
of the lungs and heart with CXRs is challenging. Deep learning-based methods are being used to
identify the chest anatomy segmentation, but most of them only consider the lung segmentation,
requiring a great deal of training. This work is based on a multiclass concatenation-based automatic
semantic segmentation network, CardioNet, that was explicitly designed to perform fine segmenta-
tion using fewer parameters than a conventional deep learning scheme. Furthermore, the semantic
segmentation of other chest-related diseases is diagnosed using CardioNet. CardioNet is evaluated
using the JSRT dataset (Japanese Society of Radiological Technology). The JSRT dataset is publicly
available and contains multiclass segmentation of the heart, lungs, and clavicle bones. In addition, our
study examined lung segmentation using another publicly available dataset, Montgomery County
(MC). The experimental results of the proposed CardioNet model achieved acceptable accuracy and
competitive results across all datasets.

Keywords: cardiothoracic ratio; transverse cardiac diameter; semantic segmentation; CardioNet;
chest anatomy

1. Introduction

The most used and evaluated method of diagnosing chest-related pathologies such
as pneumothorax, pulmonary cancer, congestive heart failure, lung nodule, and heart
enlargement is the chest X-ray (CXRs) [1]. Heart enlargement is classified as cardiomegaly,
one of the serious cardiovascular diseases among the general public [2]. Cardiomegaly can
happen from different conditions such as cardiac insufficiency, blood pressure, hyperten-
sion, and coronary artery disease. These cardiac concerns affect patients’ health ranging
from a high risk of heart failure to immediate death [3]. Therefore, the early diagnosis of
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cardiomegaly is critical; the disease can be diagnosed with edge detection of the size and
shape of the chest and heart from posterior–anterior (PA) CXR. The cardiothoracic ratio
(CTR) is a quantitative measure of heart enlargements in CXRs to detect cardiomegaly and
the boundaries of other chest organs [4,5].

The CTR is the ratio between the maximum horizontal cardiac diameter and the
maximum horizontal thoracic diameter, and the normal range is between 0.42 and 0.50. A
value higher than normal (>0.50) is considered cardiomegaly [5]. The manual measurement
of the CTR from CXR performed by medical experts requires the domain knowledge
of chest physiologies. Cardiologists detect cardiomegaly by measuring the heart’s left
distance, DL, and right distance, DR, boundaries from the central vertical line of the chest.
M is the maximum horizontal distance between the left- and right-side boundaries of the
respective lungs, as shown in Figure 1. The method of calculating the CTR for cardiomegaly
is expressed in Equation (1). There is the possibility of observational error, and the process
is time-consuming. This problem has motivated researchers to develop a computer-aided
diagnosis- (CAD) based CTR measurement to diagnose cardiomegaly. Several researchers
have automatically measured the CTR and other heart diseases [6,7]. Most of the techniques
used to detect the boundaries and size of lungs and heart require the accurate segmentation
of anatomical organs.

CTR = (DL + DR)/M (1)
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Figure 1. Chest anatomy segmentation to calculate cardiomegaly: (a) original CXR PA image,
(b) segmented image by CardioNet, (c) maximum width of heart and thorax to calculate the CTR.

In medical imaging, segmentation is extracted with similar properties from the images.
The areas of interest, like the lung and heart, are segmented with automated deep learning
segmentation from the CXRs. The advancements in convolutional neural networks (CNN)
have led to better performance in the image segmentation domain [8]. Multilayer CNNs [9]
are used to detect different types of chest diseases and to segment medical tasks. A CNN-
based automatic brain segmentation is performed on the MRI brain images to detect the
tissues [10]. The authors of [11] proposed a semantic segmentation EG-CNN deep model to
accurately detect the edges and boundaries of organs. Semantic segmentation is a pixel-wise
classification that labels each pixel of a given class and groups the similar features. Medical
images are complex, and this pixel-based semantic segmentation help with efficiently
locating the infected areas in an image [12]. Due to low quality and pixel variations in the
CXRs, the automatic semantic segmentation of the heart and other chest organs (lung and
clavicle bones) is a challenging task. Previous studies addressed this issue and solved it by
developing complex neural networks with higher computational resources [13].

In this study, we addressed this challenging issue and proposed a learning-based
solution that performs accurate segmentation of lungs and heart to measure CTR from
chest PA CXRs. CardioNet is the method proposed and used to determine the presence of
cardiomegaly, and the graphical representation is discussed in Section 3. CardioNet is a
semantic segmentation network that uses the dense identity features in the architecture to
detect the edge properly within a few pixels. This deep model provides fine segmentation
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within fewer trainable parameters than the CNNs. CardioNet was trained on chest PA CXRs
and provided the binary masks to compute the pixels and the positions of the anatomical
organs. The semantic segmentation output and the calculated CTR decide the performance
evaluation and make the final decision.

The paper’s organization is as follows: We review the related work about cardiomegaly
and the concept of chest anatomy segmentation based on the conventional handcrafted and
deep features in Section 2. In Section 3, we propose a deep methodology for performing
the semantic segmentation. Section 4 provides the CXRs data for the experiment and the
data generation approach; the training and the testing of the proposed CardioNet model
are performed in this section, followed by the experimental evaluation results. The work
concludes with challenges in Section 5.

2. Related Works

There are two methods of segmenting the chest-related organs: handmade and deep
features. The handmade feature-based methods utilize various image-processing schemes,
where in-depth features are the learned features that depend on deep learning-based
semantic segmentation.

2.1. Chest Anatomy Segmentation Using Conventional Handmade Features

Handmade features are based on general image-processing approaches to segmenting
the chest anatomy from the background. Most of the local feature-based methods do not
consider multiclass segmentation of CXRs; rather, they focus on lung region segmentation.
Peng et al. presented the Hull-CPLM method to detect the lung region of interest (ROI). The
segmentation requires prior preprocessing for coarse segmentation, where the principle
curve method is used to refine segmentation [14]. Candemir et al. proposed a non-
grid registration-based lung segmentation method that performs the task in three steps:
content-based image retrieval, sift-flow modeling for deformable registration, and graph
cut optimization for boundary refinement [15]. Jaeger et al. computed three masks of lung
segmentation, a probabilistic lung shape model and a Log Gabor mask, where segmentation
was obtained by averaging and thresholding for the diagnostic purpose [16].

Jangam et al. presented a hybrid segmentation scheme that utilized an optimized
clustering approach to exclude the lung field from the background in CXR images [17].
Vital et al. introduced an automatic system for lung field segmentation. A wavelet en-
hances the CXR images, and in the second step, OTSU thresholding is combined with
mathematical morphology. For the third step, the active contour method improves the
performance [18]. Ahmad et al. proposed a Gaussian derivative filter that considered seven
different orientations of top segment fields. The segmentation task combines the Gaussian
derivative filter with fuzzy c-mean clustering and thresholding [19]. Pattrapisetwong et al.
used an unsupervised method for lung region exclusion from the background. They used
preprocessing to enhance the image contrast, and then a shadow filter was applied to
enhance the outline of the lungs; finally, multilevel thresholding segmented the resultant
lung region [20].

Li et al. used graph-based lung segmentation. In detail, the CXR images are divided
into several subregions and each region’s saliency value, where the cubic spline inter-
polation is used to obtain fine, smoother boundaries of the lung region [21]. Chen et al.
proposed a system that estimates the effusion volume. The segmentation was performed
using a 2-D image processing scheme, similar to the Harris corner detector, for enhancement
using a convolutional process with a 2 × 2 mask to detect the lung contour [22]. Dawoud
presented an iterative framework for lung field segmentation. The method calculates the
intensity and shape information, where the main segmentation is handled with iterative
thresholding [23]. Saad et al. showed that the edge detection from Sobel, Prewitt, and
Laplacian could segment the lung fields; however, the accuracy decreases owing to the
image noise. Therefore, combining these edge detectors with morphological operators
can produce better results for lung segmentation in CXRs [24]. Chondro et al. proposed a
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low-order adaptive lung segmentation method based on the growing region. The ROI was
obtained by brick–block binarization and morphology, where the boundary refinement was
measured by statistical region growing and graph cutting [25]. Chung et al. considered lung
segmentation a prerequisite task for diagnosis. The segmentation of the lungs performed
by the Bayesian active contour model is an iterative process for segmentation [26].

2.2. Chest Anatomy Segmentation Using Deep Feature (CNN)

Conventional handcrafted features are based on specific local intensities; thus, these
methods cannot perform multiclass segmentation at once. The performance parameters
change from image to image. Therefore, automatic deep feature methods are an alternative
to handmade features for evaluation. Long et al. used the first learning method for the
multiclass chest anatomy segmentation. The encode-decoder is used for critical learning of
higher-order structures. The encoder part extracts the features, and the decoder performs
upsampling operations to obtain the final segmented output [27]. An adversarial network
is proposed by Dong et al. to estimate the CTR. The produced model creates the predicted
domain-independent output mask [28]. Tang et al. developed a transfer learning approach
for lung segmentation, and it consists of two main modules. The first module is crisscross
attention-wise responsible for the enriched global contextual information, whereas the
second module, image-to-image translation, is used for data augmentation [29].

Souza et al. used a learning method to segment the lung regions. The original images
were divided into patches, and those patches were classified into lung and non-lung classes
by a neural network [30]. Kalinovsky et al. modified the encoder–decoder-based SegNet
model for lung segmentation and achieved 96.2% accuracy [31]. This method worked on the
limitation of the original SegNet model. It used the max-pooling features to upsample the
features maps in the decoding layers, the LF-SegNet method developed by Mittal et al. [13]
to perform lung segmentation. The lung segmentation was performed and the proposed
model was evaluated on two famous chest X-ray datasets, JSRT and MC, and achieved
98.73% and 95.10% accuracy, respectively. Liu et al. [32] proposed a U-Net segmentation
model on the JSRT dataset to extract the lung regions, and DenseNet is used to segment
the lungs.

Venkataramani et al. developed ContextNets for semantic segmentation to adapt the
target domain with fewer images [33]. Frid-Adar et al. considered an important application
of semantic segmentation to detect the clavicle bone positioning using Chest X-rays. The
modified architecture used to segment the clavicle bones and the weights of VGG16 used
in the encoder [34]. Oliveira et al. presented a transfer learning-based approach f chest-
related organs segmentation. The approach consists of pre-trained networks for semantic
segmentation as; U-Net, fully connected network, and SegNet [35]. Wang et al. considered
the instance segmentation to segment multiclass chest organs using chest X-ray images
with Mask-RCNN [36]. Dong et al. presented a generative adversarial network (GAN) for
a semantic segmentation purpose using CXRs [37]. Jiang et al. developed a CNN-based
VGG16 segmentation model with prior weight initialization with fewer data. [38]. Most
of the semantic segmentation from the radiographic images is performed by the UNet
and encoder-decoder architectures or by the different variants of the followings; however,
currently, the recurrent neural network (RNN) is also used for the segmentation purpose
in radiology. Stollenga et al. [39] presented a segmentation 3D LSTM-RNN deep model
to extract the brain features automatically. Chen et al. [40] used a semantic segmentation
approach to 3D images by combining the LSTM-RNN and U-Net architecture.

3. Methodology
3.1. Proposed CardioNet

The flowchart of the proposed CardioNet model for the automatic semantic segmenta-
tion of chest-related organs is presented in Figure 2. An input chest of CXR images without
any preprocessing is given to the CardioNet. CardioNet uses pixel-wise classification to
segment the heart, lungs, and clavicle bones. The output of the model is the segmented
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masks for each class. The heart and lungs masks are utilized to calculate CTR to detect car-
diomegaly, make accurate diagnostic decisions, and measure the model’s performance. The
CardioNet is based on the dense connections between the downsample block, upsample
block, and features boost block. Dense concatenation paths are used for the subsequent lay-
ers in the downsample and upsample block of the CardioNet and between the downsample
and upsample block. The specific paths are introduced for the flow of information within
the network to provide the edge information to the subsequent layers and the upsample
block. Feature boost block is introduced to preserve minor features in the segmented image.
It applies continuous convolutions without resizing the feature map size, which helps to
premaintain needful spatial information to boost the segmentation performance.
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3.2. Chest Anatomy Segmentation Using CardioNet Architecture

Semantic segmentation in CXRs is not an easy task. X-ray images have inferior quality,
whereas the correct CTR computation is based on the true lungs and heart boundaries.
Moreover, the conventional semantic segmentation architectures [27,41] lack spatial in-
formation loss compensation as they are not using any residual or dense connectivity to
empower the feature after the continuous convolutional operation. The proposed Car-
dioNet is a robust network that incorporates three principal parts: a downsample block
(DSB), an upsample block (USB), and a features boost block (FBB).

Figure 3 shows the proposed CardioNet architecture for the CXR semantic segmen-
tation. The DSB is an encoder part of the network that squeezes the vital information
from the input images in combination with dense connectivity benefits. It consists of five
3 × 3 general convolutions and three depth-wise separable convolutions. The convolu-
tional layers with many channels consume more trainable parameters. Therefore, the
convolution in the deeper side of the DSB is replaced by depth-wise convolutions. The edge
features in the CXR image can be very small, and those small features can be eliminated if
the feature map size is greatly reduced within the network. It can be noticed from Table 1
that the smallest feature map size in the DSB is 21 × 21, which is not enough to represent
the minor information available in the CXR; the minor features can be eliminated, and
therefore, the FBB is used to apply continuous convolutions without resizing the feature
map. The FBB retains the feature map on a flat feature map size of 350 × 350, which
can contain the smaller and most valuable features. The USB is mainly based on three
depth-wise separable convolutions combined with five 3 × 3 general convolutions and
batch normalization. As mentioned previously, in the case of DSB, general convolutions
with more channels are costly, so depth-wise separable convolutions are replacing those of
the general convolution layers to reduce cost. Furthermore, softmax and pixel classification
layers are used in the USB; where softmax layer works as the activation function and pixel
classification layer provides a categorical label for each pixel in the image.
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Table 1. Cardio-Net with feature concatenation, where the Downsample and Upsample blocks in-
clude Convolution (Conv), Bottleneck convolution (Bottleneck-C), Depth-wise separable convolution
(DW-Sep-Conv), Concatenation, and Pool. Batch normalization and ReLU layers are used with
convolutions and denoted as “**”.

Block Layer Name
Layer Size

(Height × Width × Number
of Channels), (Stride)

Filters/Groups Output

Downsample
block

Conv-1-1 ** 3 × 3 × 64 (S = 1) 64 350 × 350 × 64

Conv-1-2 3 × 3 × 64 (S = 1) 64 350 × 350 × 64

Concatenation-1 350 × 350 × 128

Bottleneck-C-1 ** 1 × 1 (S = 1) 64 350 × 350 × 64

Pool-1 2 × 2 (S = 2) 175 × 175 × 64

Conv-2-1 ** 3 × 3 × 64 (S = 1) 128 175 × 175 × 128

Conv-2-2 3 × 3 × 128 (S = 1) 128 175 × 175 × 128

Concatenation-2 175 × 175 × 256

Bottleneck-C-2 ** 1 × 1 (S = 1) 128 175 × 175 × 128

Pool-2 2 × 2 (S = 2) 87 × 87 × 128

Conv-3-1 ** 3 × 3 × 128 (S = 1) 256 87 × 87 × 256

DW-Sep-Conv-3-2 3 × 3 × 256 (S = 1) 256 87 × 87 × 256

Concatenation-3 87 × 87 × 512

Bottleneck-C-3 ** 1 × 1 (S = 1) 128 87 × 87 × 256
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Table 1. Cont.

Block Layer Name
Layer Size

(Height × Width × Number
of Channels), (Stride)

Filters/Groups Output

Downsample
block

Pool-3 2 × 2 (S = 2) 43 × 43 × 256

DW-Sep-Conv-4-1 ** 3 × 3 × 256 (S = 1) 256 43 × 43 × 256

DW-Sep-Conv-4-2 3 × 3 × 256 (S = 1) 256 43 × 43 × 256

Concatenation-4 43 × 43 × 512

Bottleneck-C-4 ** 1 × 1 (S = 1) 256 43 × 43 × 256

Pool-4 2 × 2 (S = 2) 21 × 21 × 256

Upsample
block

UnPool-4 2 × 2 (S = 2) 43 × 43 × 256

DW-Sep-Conv-4-2 ** 3 × 3 × 256 (S = 1) 256 43 × 43 × 256

DW-Sep-Conv-4-1 3 × 3 × 256 (S = 1) 256 43 × 43 × 256

Concatenation-5 43 × 43 × 512

Bottleneck-C-5 ** 1 × 1 (S = 1) 256 43 × 43 × 256

UnPool-3 2 × 2 (S = 2) 87 × 87 × 256

DW-Sep-Conv-3-2 ** 3 × 3 × 256 (S = 1) 256 87 × 87 × 256

Conv-3-1 3 × 3 × 256 (S = 1) 128 87 × 87 × 128

Concatenation-6 87 × 87 × 640

Bottleneck-C-6 ** 1 × 1 (S = 1) 128 87 × 87 × 128

UnPool-2 2 × 2 (S = 2) 175 × 175 × 128

Conv-2-2 ** 3 × 3 × 128 (S = 1) 128 175 × 175 × 128

Conv-2-1 3 × 3 × 128 (S = 1) 64 175 × 175 × 64

Concatenation-7 175 × 175 × 320

Bottleneck-C-7 ** 1 × 1 (S = 1) 64 175 × 175 × 64

UnPool-1 2 × 2 (S = 2) 350 × 350 × 64

Conv-1-2 ** 3 × 3 × 64 (S = 1) 64 350 × 350 × 64

Conv-1-1 3 × 3 × 64 (S = 1) 64 350 × 350 × 64

Concatenation-8 350 × 350 × 160

Bottleneck-C-8 ** 1 × 1 (S = 1) 2 350 × 350 × 2

Moreover, the residual connections from the ResNet model were used to empower the
features that degraded the contextual image information during the downsampling [41].
This problem is termed a vanishing gradient problem, and researchers attempted to address
it using residual skip connections, but it still faces the information flow latency problem. We
used the dense connectivity function from the DenseNet deep architecture to overcome this
problem and concatenated the in-depth features [42]. DenseNet is a famous classification
model that outperforms the previous networks while using fewer trainable parameters.
The proposed architecture is entirely different from conventional networks such as the
segmentation network (SegNet) [43], outer residual skip network (OR-Skip-Net) [44], and
U-shaped network (U-Net) [45], which are deep neural networks with larger number of
trainable parameters. The shallow architecture of CardioNet exhibits 1.72 million (M)
trainable parameters, while the conventional networks such as SegNet, OR-Skip-Net, and
U-Net, have 29.46 M, 09.70 M, and 31.03 M trainable parameters, respectively. The key
architectural differences of the CardioNet with the conventional segmentation networks
such as Seg-Net, OR-Skip-Net, and U-Net are listed in Table 2.
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Table 2. An architectural comparison of CardioNet with famous segmentation methods.

Method Other Architectures CardioNet

SegNet [43]

26 convolutional layers (3 × 3) 16 convolutional layers (3 × 3)

No depth-wise separable convolution 6 depth-wise separable convolutions are involved in
reducing the number of trainable parameters

No skip connections are used. Dense skip paths are used.

Each block has a different number of
convolutional layers

Each block has the same number of convolutions
(2 convolutions)

No booster block Booster block.

5 pooling layers 4 pooling layers

The number of trainable parameters is 29.46 M. The number of trainable parameters is 1.72 M.

OR-Skip-Net [44]

There is no internal connectivity between the
convolutional layers in the encoder and decoder. Both internal and external connectivities are used.

Residual connectivity is used. Dense connectivity is used.

16 convolutional layers (3 × 3) 16 convolution layers (3 × 3) including 6 layers of
booster block (max. depth 32)

No depth-wise separable convolution 6 depth-wise separable convolution is involved in
reducing the number of trainable parameters

Bottleneck layers are not used. Bottleneck layers are used to reduce the number
of channels.

The number of trainable parameters is 09.70 M The number of trainable parameters is 1.72 M

U-Net [45]

23 convolutional layers are used 16 convolutional layers (3 × 3)

No depth-wise separable convolution 6 depth-wise separable convolution is involved in
reducing the number of trainable parameters

Up convolutions are used in the expansive part
for upsampling Unpooling layers are used for upsampling

External dense connectivity is used from encoder
to decoder.

Both internal and external dense connectivity in
downsampling and upsampling block

Cropping is required owing to border pixel loss
during convolution Cropping is not required

The number of trainable parameters is 31.03 M The number of trainable parameters is 1.72 M

Figure 4 illustrates the in-depth view of the proposed CardioNet with dense connec-
tivity feature concatenation. CardioNet accomplishes the chest X-ray image; the spatial loss
is compensated by concatenating deep, dense features. The dense concatenation method
transfers these enriched features from the DSB to the USB, as shown in the figure.

As shown in Figure 4, the first convolution layer in the downsample block, i.e.,
Conv − A, receives the Di feature as input, and after applying the convolution opera-
tion, it outputs the Fi feature. This Fi feature is rich with low-level spatial information, and
it flows in two directions for concatenation. First, Fi is provided to the second convolution
(Conv-B), which converts into Ki. Ki is the output achieved after the two convolution
layers, and spatial loss of these convolutional operations is recovered by dense feature
concatenation. The first aggregated rich, dense concatenated feature, A1

Concat., is the output
of Fi and Ki given by Equation (2):

A1
Concat= Fi © Ki (2)
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Here © shows the depth-wise concatenation of Fi and Ki. Fi is also directly transferred
to the corresponding USB to transfer the low-level spatial information to the last layers of
the network for better performance. A1

Concat is the resulting dense feature after the depth-
wise concatenation. This process increases the number of filters for the dense features, the
parameters, and the training time. To overcome this problem, we introduced the Bottlenecki
layer to decrease the number of filters with the combination of the BN and ReLU layers.
The obtained feature after the Bottlenecki block is ∆A1

Concat and given by Equation (3):

∆A1
Concat.= ∆(F i © Ki) (3)

Here, ∆ represents the BN and ReLU operations in combination with the Bottlenecki
layer that limit the filters. Similarly, Figure 4 shows that each USB receives the Ui feature
as input, and after applying the first convolution (Conv-A), it outputs the Ji feature. Ji
has less spatial loss than the next convolution layer, and it flows in two directions for
concatenation. First, Ji is provided to the second convolution (Conv-B), producing Li. Li is
the output obtained after two convolution operations that concatenate with Ji from the first
convolution (Conv-A) and Fi from the corresponding DSB, creating a second aggregated
rich feature A2

Concat. given by Equation (4):

A2
Concat.= Ji © Li © Fi (4)

Here, © shows the depth-wise concatenation of Ji, Li, and Fi. A2
Concat. is a powerful

feature that contains rich information from the initial layers, resulting in better segmen-
tation of the lung and heart region pixels. Again, to overcome the filter size problem, the
Bottleneckj block was used with a combination of BN and ReLU operations. ∆A2

Concat. is a
bottleneck feature and is given by Equation (5):

∆A2
Concat.= ∆(J i © Li © Fi) (5)

Here, ∆ represents the combination of BN and ReLU operations with the Bottleneckj

layer limiting the filter size. Both the bottleneck features (∆A1
Concat., ∆A2

Concat.) achieved
from the downsample block or upsample block empowered the dense connectivity. The
output A2

Concat. of the last USB provided the Softmax and pixel classification.
The layer details in the booster block are shown in Table 3. The connectivity of

the booster block in CardioNet and the dense feature aggregation principle are shown
in Figure 5. The downsample–upsample block (DUB) takes the input feature, and this
feature passes through several convolutional layers to extract the meaningful features for
chest anatomy segmentation. This DUB provides the Fd feature. Fd is densely aggregated
with the rich Fb from the feature booster block (FBB). The features in FBB are without an
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extensive pooling operation and therefore contain the features that represent the low-level
boundary information. Both Fd and Fb are aggregated with depth-wise concatenation to
create S1, given by Equation (6):

S1= Fb © Fd (6)

Table 3. Feature map size details for features boost block. Batch normalization and ReLU layers are
used with bottleneck convolution layers as a unit and denoted as “**”. Stride is 1 throughout the
features boost block.

Block Layer Name
Layer Size

(Height × Width × Number
of channels)

Filters/Groups Output

Features boost block (FBB)

Bottleneck-C ** 1 × 1 × 8 8 350 × 350 × 8

Boost-Conv-1-1 ** 3 × 3 × 8 8 350 × 350 × 8

Boost-Conv-1-2 ** 3 × 3 × 8 8 350 × 350 × 8

Boost-Conv-2-1 ** 3 × 3 × 16 16 350 × 350 × 16

Boost-Conv-2-2 ** 3 × 3 × 16 16 350 × 350 × 16

Boost-Conv-3-1 ** 3 × 3 × 32 32 350 × 350 × 32

Boost-Conv-3-2 ** 3 × 3 × 32 32 350 × 350 × 32
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Here, S1 is the densely aggregated feature created by the depth-wise concatenation
of Fd (feature coming from the DUB block) and Fb (coming from FBB), representing the
depth-wise concatenation.

4. Experiments
4.1. Data Augmentation

We investigated chest anatomy segmentation in multiple classes. To analyze the
performance of CardioNet, the Japanese Society of Radiological Technology (JSRT), i.e., a
publicly available multiclass dataset [46], is used. In the JSRT dataset, there are 247 chest
radiograph images for the lungs, heart, and clavicle, each annotated at the pixel level. A
total of 154 of the 247 images show nodules, whereas the remaining 94 do not. The pixel
space of each image in the dataset is 0.175 mm, and the image size is 2048 × 2048 pixels.
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The provided data are divided into two folds with odd (123) and even (124) numbered
images. Training is done one-fold, testing one on the other and vice versa. Considering
the two-fold cross-evaluation criteria, the results are obtained by averaging both folds.
Figure 6 shows sample chest radiograph images from the JSRT dataset with corresponding
ground truth. In detail, the red, green, and blue pixels show the clavicle bone, heart, and
lungs, respectively.
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CardioNet is a pixel-wise classification network that requires large training data to
classify the multiple classes. The original image size and labels of 2048 × 2048 pixels of JSRT
are resized to 350 × 350 pixels to reduce the memory usage of the graphic processing unit
(GPU) and the training time. Different data generation approaches are applied to increase
the data size so the model will learn accurately. Acquiring enough medically labeled data
is difficult, requiring an expert to label the data. The training of CardioNet is performed
with various images, and images are generated with data augmentation. The image
transformations create artificial images by cropping, horizontal flipping, translation, and
horizontal flipping with translation. Figure 7 represents the proposed data augmentation
for this task. The first step of augmentation, horizontal flipping (H-Flip), is applied to
124 original images, which results in 248 images. The 248 images are translated (X = 4,
Y = −4) to produce 496 images. In the third step, horizontally flipping the 496 images
makes 992 images. Using the 992 images from the previous step, the next step applies
the translation of (X = 8, Y = 8) with an H-Flip and the translation of (X = −12, Y = −12)
with an H-Flip, resulting in 1984 and 1984 images, respectively. Consequently, 3968 images
(1984 + 1984) are obtained and used as training images by combining transformational
images from step four.
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In our experiments, CardioNet is trained from scratch using MATLAB R2021b [47]
(without fine-tuning or a pre-trained model, such as DenseNet, ResNet, Inception, or
GoogleNet). CardioNet is trained and tested on a desktop computer, i.e., Intel®® Core™
i7-8700 CPU. The system clock speed is 3.20 GHz, memory (RAM) is 16 GB, and NVIDIA
GPU GeForce RTX 2060 (graphics memory of 8 GB) [48].

4.2. CardioNet Training

CardioNet contains several dense paths that allow the network to provide encoder–
decoder connections both internally and externally, which is a useful tool to help the
network converge quickly. As a result of the spatial edge information from the dense con-
nectivity concatenation feature, the edges can be segmented finely without preprocessing.
CardioNet training takes place from scratch, without any weight transfer or initialization.
Since we designed CardioNet, fine-tuning is not required when training it.

The training of CardioNet involves the following considerations. The gradient of
the network is optimized with a well-known training optimizer called Adam. Adam can
efficiently scale gradients diagonally, is suitable for large datasets, and can even handle
moving object classification problems [49]. Adam is adopted as an optimizer for CardioNet
training due to its benefits. Considering all other parameters, the learning rate of 0.001
for 30 epochs (51,660 iterations) is used throughout the CardioNet training. CardioNet
requires high memory, so a small batch size with 4 images is considered. To maintain the
gradient threshold, the global L2 normalization method with an epsilon of 0.000001 is used
during the training. The cross-entropy loss function with median frequency is used to
make training faster and similar to frequency balancing and cross-entropy [43,44,50,51].
Figure 8a,b represent the relationships between training loss and training accuracy for the
2-across-validation. The loss curves are on the left side and the accuracy curves of training
are on the right side of the figures. The epochs are represented on the x-axis.
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4.3. CardioNet Testing
4.3.1. Chest Anatomy Segmentation Testing Using CardioNet

A CXR image without data preprocessing is given to CardioNet as an input image.
This input image is passed through the CardioNet downsample block and upsample block
to acquire the segmented output. The final output of the proposed network is a multiclass
segmentation mask. These segmented masks further evaluate the final output by generating
the chest-related automatic semantic segmentation results. The performance of CardioNet
is evaluated and measured using different metrics. The following segmentation metrics are
calculated: Accuracy (Acc), Jaccard index (J), and Dice coefficient(D). J is a mean intersection
over union (IoU), and D is calculated as [1,36,52] for a JSRT dataset. Equations (7)–(9) give
the formulas for evaluation metrics:

Acc =
TP + TN

TP + FP + FN + TN
(7)

J =
TP

TP + FP + FN
(8)

D =
2TP

P + FP + FN
(9)

Here, TP = true positives, FP = false positives, and FN = false negatives. We are
considering multiclass segmentation, considering lung class as an example: TP and FP are
predicted as lung pixels and non-lung pixels in the ground truth, respectively. TP pixels
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are the pixels that are predicted as lung pixels and listed as lung pixels in the ground
truth. FN are those lung pixels with ground truth predicted as non-lung pixels by our
CardioNet model.

The segmented chest X-ray images with CardioNet using the JSRT dataset are shown
in Figure 9. The FP convention is black; the FN convention is yellow; and the TP convention
is shown in green, blue, and red for the heart, lung, and clavicle bone classes, respectively.
While there are some bad segmentation cases, there is no significant segmentation error
using our method for the test images.

J. Pers. Med. 2022, 12, x FOR PEER REVIEW 14 of 21 
 

 

are the pixels that are predicted as lung pixels and listed as lung pixels in the ground truth. 

FN are those lung pixels with ground truth predicted as non-lung pixels by our CardioNet 

model.  

The segmented chest X-ray images with CardioNet using the JSRT dataset are shown 

in Figure 9. The FP convention is black; the FN convention is yellow; and the TP conven-

tion is shown in green, blue, and red for the heart, lung, and clavicle bone classes, respec-

tively. While there are some bad segmentation cases, there is no significant segmentation 

error using our method for the test images. 

 

 
 

(a) (b) (c) 

Figure 9. Examples of chest-related organs by CardioNet: (a) original chest PA X-ray image; (b) 

image with a ground-truth mask; (c) CardioNet predicted mask. 

4.3.2. Ablation Study 

An ablation study of our proposed method was conducted to prove the efficiency of 

CardioNet. We considered two variants of CardioNet, one with the booster block, i.e., 

CardioNet-B (mentioned as CardioNet throughout the whole manuscript), and the second 

one without the booster block, referred to as CardioNet-X. Here, we compared CardioNet-

B with CardioNet-X. The experiments showed that the effectiveness of the booster block 

in CardioNet-B provides superior results to those of CardioNet-X (without booster block). 

Table 4 shows that CardioNet-B with the booster block provides higher Acc, J, and D val-

ues than CardioNet-X with a minor increase in the number of trainable parameters. 

Booster block creates considerable performance differences owing to preserving spatial 

information to boost the segmentation performance. 

Table 4. The ablation study-based comparison of CardioNet-B and CardioNet-X on the JSRT da-

taset. 

Methods 
Segmentation Re-

gions 

Number of Train-

able Parameters 

Number of 3 × 3 

Convolution Lay-

ers 

Acc J D 

CardioNet-X 
Lungs 

1.57 M 10 
98.08 93.04 96.38 

Heart 98.91 88.70 93.84 

Figure 9. Examples of chest-related organs by CardioNet: (a) original chest PA X-ray image; (b) image
with a ground-truth mask; (c) CardioNet predicted mask.

4.3.2. Ablation Study

An ablation study of our proposed method was conducted to prove the efficiency
of CardioNet. We considered two variants of CardioNet, one with the booster block, i.e.,
CardioNet-B (mentioned as CardioNet throughout the whole manuscript), and the second
one without the booster block, referred to as CardioNet-X. Here, we compared CardioNet-B
with CardioNet-X. The experiments showed that the effectiveness of the booster block in
CardioNet-B provides superior results to those of CardioNet-X (without booster block).
Table 4 shows that CardioNet-B with the booster block provides higher Acc, J, and D values
than CardioNet-X with a minor increase in the number of trainable parameters. Booster
block creates considerable performance differences owing to preserving spatial information
to boost the segmentation performance.
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Table 4. The ablation study-based comparison of CardioNet-B and CardioNet-X on the JSRT dataset.

Methods Segmentation Regions Number of Trainable
Parameters

Number of 3 × 3
Convolution Layers Acc J D

CardioNet-X

Lungs

1.57 M 10

98.08 93.04 96.38

Heart 98.91 88.70 93.84

Clavicle bone 97.81 85.99 91.53

CardioNet-B

Lungs

1.72 M 16

99.24 97.28 98.61

Heart 99.08 90.42 94.76

Clavicle bone 99.76 86.74 92.74

4.3.3. Comparison of CardioNet with Deep Methods

This section compares CardioNet segmentation performance with other methods.
The segmentation performance of the existing state-of-the-art methods compared with
CardioNet is shown in Table 5. This comparison is based on the JSRT dataset. The local
feature-based methods and the learned feature-based methods are presented separately in
Table 5. Based on J and D, the study results demonstrate that CardioNet outperforms other
studies for chest anatomy segmentation.

Table 5. Accuracies of CardioNet and existing methods for the JSRT dataset (unit: %).

Type Method
Lungs Heart Clavicle Bone

Acc J D Acc J D Acc J D

Local feature-based
methods

Coppini et al. [53] - 92.7 95.5 - - - - - -

Jangam et al. [17] - 95.6 97.6 - - - - - -

ASM default [54] - 90.3 - - 79.3 - - 69.0 -

Chondro et al. [25] - 96.3 - - - - - - -

Candemir et al. [15] - 95.4 96.7 - - - - - -

Dawoud [23] - 94.0 - - - - - - -

Peng et al. [55] 97.0 93.6 96.7 - - - - - -

Wan Ahmed et al. [19] 95.77 - - - - - - - -

Deep feature-based
methods

Dai et al. FCN [56] - 94.7 97.3 - 86.6 92.7 - - -

Oliveira et al. FCN [35] 95.05 97.45 89.25 94.24 75.52 85.90

OR-Skip-Net [44] 98.92 96.14 98.02 98.94 88.8 94.01 99.70 83.79 91.07

ResNet101 [36] 95.3 97.6 90.4 94.9 85.2 92.0

ContextNet-2 [33] - 96.5 - - - - -

BFPN [52] - 87.0 93.0 - 82.0 90.0 - - -

InvertedNet [1] 94.9 97.4 88.8 94.1 83.3 91.0

HybridGNet [57] 97.43 93.34

RU-Net [58] 85.57

MPDC DDLA U-Net [59] 95.61 97.90

CardioNet
(Average of Fold 1

and Fold 2)
99.24 97.28 98.61 99.08 90.42 94.76 99.76 86.74 92.74

4.3.4. Lung Segmentation from MC Dataset Using CardioNet

After obtaining the valuable results from the JSRT image dataset, we evaluated the
performance of our CardioNet model with the Montgomery County chest X-rays (MC)
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dataset. MC is a publicly available dataset published by the famous Montgomery County
tuberculosis program, one of the most famous in the USA. It has 138 chest PA X-ray images
with 80 normal and 58 TB cases. Figure 10 shows sample images from the MC data with
lung contour binary masks, and the format of the X-ray images format is PNG. We divided
the MC dataset into training and testing following [60], where the training set has 80 images,
the validation set has 20, and the testing set consists of 38 images. The MC dataset is also
augmented, and the image size was artificially increased using the same augmentation
approach used for the JSRT dataset (Section 4.1). We only provided the ground truth masks
for lungs. The CardioNet results for the MC dataset are shown in Figure 11. However, the
experimental comparison of CardioNet with other existing models is shown in Table 6. The
experimental results clearly show that CardioNet outperformed for lung segmentation and
can be used in real-world medical applications for diagnostic purposes.
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Table 6. The comparison of proposed CardioNet and other state-of-the-art methods for the MC
dataset (unit: %).

Type Method Accuracy Jaccard Index Dice Coefficient

Handcrafted feature-based
methods

Vajda et al. [61] 69.0 - -

Candemir et al. [4] - 94.1 96.0

Peng et al. [55] 97.0 - -

Deep feature-based methods

Feature selection and Vote [62] 83.0 - -

Feature selection with BN [62] 77.0 - -

Bayesian feature pyramid
network [52] - 87.0 93.0

Souza et al. [30] 96.97 88.07 96.97

HybridGNet [57] 95.4

MPDC DDLA U-Net [59] 94.83 96.53

CardioNet (proposed method) 98.92 95.61 97.75

4.3.5. Automated Computation of CTR by the Proposed Method

As explained in the introduction section, medical practitioners can use CTR in di-
agnosing cardiomegaly, a heart enlargement disease. CTR is a quantitative measure of
heart enlargements in CXRs to detect cardiomegaly and boundaries of other chest organs.
CTR estimates the size of the heart. The cardiac health experts manually calculate it. Our
proposed semantic segmentation network (CardioNet) can automate the computation of
CTR by accurately segmenting the lungs and heart boundaries. As shown in Figure 12a,
the heart boundary is critical in X-ray images due to a change in pixel values. The CTR
can only be calculated by the proposed method once the heart and lungs are segmented
properly. With our feature-boosting mechanism, we can achieve accurate boundaries of the
heart and lungs even with minor changes in pixel values.
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Figure 12. Example image from the JSRT dataset for calculating CTR using the proposed CardioNet:
(a) original image; (b) ground truth image annotated with the cardiothoracic ratio (G-CTR); (c) pre-
dicted mask annotated with the cardiothoracic ratio (P-CTR).

An example image from the JSRT dataset for calculating the CTR of the ground
truth and the predicted mask (by CardioNet) using Equation (1) is shown in Figure 12b,c,
respectively. For calculating the CTR, we need the ratio of distance DL + DR and M.
Here, DL + DR is the distance between two extreme points of the heart. M is the maximum
horizontal distance between two extreme outer points for both lungs. The distance DL + DR
by the predicted mask is 126 pixels, and the distance M is 304. Hence, using Equation (1),
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the predicted CTR (P-CTR) will be 0.4145. On the other hand, the distance DL + DR by the
ground truth mask is 123 pixels, and the distance M is 303. Therefore, the ground truth
CTR (G-CTR) calculated by Equation (1) is 0.4045. In JSRT, masks are prepared under the
supervision of an expert radiologist. It can be determined from the obtained results that
the proposed automatic method has predicted the CTR very efficiently. Hence, it can aid
the medical practitioner in diagnosing using CTR and other chest anatomy segmentation
as an alternative system.

5. Conclusions

Anatomical chest structures (lungs, hearts, and clavicle bones) were segmented using
a residual connection-based semantic segmentation network (CardioNet) for diagnostic
purposes. Even under nonideal situations and multiple classes, the method provides
excellent segmentation accuracy. Since the pixel value of the heart is low and its boundary
edges blend with the lungs, segmenting the heart is essential. CardioNet can segment the
heart accurately, even in X-ray images of inferior quality. The segmentation accuracy of
the heart and lung regions is directly related to the CTR. Conventional CNNs reduce the
feature map size to classify classes, resulting in the depreciation of the minor information
(clavicle bone and small-sized heart) due to the overuse of the max-pooling layers. The
feature map size is not reduced in the network for classification; fewer pooling layers are
used, and a large feature size helps restore the minor classes’ information. The direct,
outer, dense-connectivity feature concatenation causes direct information transfer, enabling
CardioNet to converge faster, as seen in the training accuracy and loss curves. In our work,
the proposed CardioNet automatically detects the boundaries of the lungs and heart to
accurately calculate the CTR. Multiple cardiac and lung diseases can be diagnosed using
the CTR.
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