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Abstract: A personalized approach is strongly advocated for treatment selection in Multiple Sclerosis
patients due to the high number of available drugs. Machine learning methods proved to be valuable
tools in the context of precision medicine. In the present work, we applied machine learning methods
to identify a combined clinical and genetic signature of response to fingolimod that could support
the prediction of drug response. Two cohorts of fingolimod-treated patients from Italy and France
were enrolled and divided into training, validation, and test set. Random forest training and robust
feature selection were performed in the first two sets respectively, and the independent test set
was used to evaluate model performance. A genetic-only model and a combined clinical–genetic
model were obtained. Overall, 381 patients were classified according to the NEDA-3 criterion at
2 years; we identified a genetic model, including 123 SNPs, that was able to predict fingolimod
response with an AUROC= 0.65 in the independent test set. When combining clinical data, the model
accuracy increased to an AUROC= 0.71. Integrating clinical and genetic data by means of machine
learning methods can help in the prediction of response to fingolimod, even though further studies
are required to definitely extend this approach to clinical applications

Keywords: multiple sclerosis; fingolimod; machine learning; predictive model; genetic markers;
precision medicine

1. Introduction
1.1. Background

Multiple Sclerosis (MS) is a chronic inflammatory disease of the central nervous system
with a complex etiology and a high heterogeneity in terms of clinical presentation and
treatment response [1]. In the last decade, the therapeutic opportunities for Relapsing
Remitting MS (RRMS) have dramatically expanded, increasing the complexity in disease
management and prompting the need for a more individualized approach that takes into
account patients’ specific features [2].
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1.2. Rationale

The existence of genetic factors predisposing to MS has been demonstrated by large
genome-wide association studies [3], whereas fewer, smaller studies suggested a possible
influence of genetic factors in determining disease severity [4–6] and modulating response
to first-line treatments like interferon and glatiramer acetate [7–13]. Fewer data are available
on genetic markers associated with response to second-line drugs [14,15] and, to the best
of our knowledge, no studies have investigated genetic factors associated with response
to fingolimod.

Fingolimod (FTY) is a highly effective second-line drug approved for RRMS; nonethe-
less, some subjects show persistent disease activity during FTY treatment and the early
detection of these non-responder individuals is essential to promptly address them to more
effective therapies [16], given the increasing number of drugs currently available.

Machine learning (ML) algorithms, which can better accommodate the complexities
of the relations among variables than the traditional regression methods, are becoming
increasingly valuable tools for precision medicine [17,18].

1.3. Objective

In the present study, we applied ML methods to investigate the presence of a ge-
netic signature of response to FTY that, in combination with clinical and demographic
characteristics, could support the prediction of drug response.

2. Materials and Methods

We collected two cohorts of RRMS patients treated with FTY for whom genetic and
clinical data during therapy were available. The first cohort (OSR) included 364 patients
who started FTY at San Raffaele Hospital MS center in Milan, Italy; the second cohort
(CHUT) included 108 FTY-treated RRMS patients from the Centre Hospitalier Universitaire
de Toulouse, France.

Baseline and follow-up clinical data during the first 2 years of FTY therapy were
obtained; specifically, the following variables were collected: gender, age at onset (AAO),
disease duration at treatment start (DD), annualized relapse rate (ARR) in the 2 years prior
to FTY start, previous disease modifying treatment, EDSS score at treatment start and at
2 years, number of relapses, and presence of new/enlarging T2-lesions and Gd-enhancing
lesions at brain MRI during therapy. Patients treated with natalizumab (NTZ) in the
9 months prior to FTY were excluded due to the known possible “rebound” effect occurring
after NTZ discontinuation [19,20] in order to avoid potential misclassification.

Treatment response was assessed at 2 years using the NEDA-3 criterion (No evidence
of disease activity [21]), defined as absence of relapses, active MRI lesions, and disease
progression. The Ethical Committee at San Raffaele Hospital, Milan, Italy approved the
study and all patients signed the informed consent.

2.1. Genotyping and Quality Checks

Genetic data for OSR and CHUT cohorts were obtained with the Illumina®Human-
OmniExpress Kit. Standard quality control (QC) steps were applied using Plink v1.9beta [22]:
per-SNPs QC included removing variants with minor allele frequency (MAF) < 0.01, geno-
typing rate < 0.97, and deviation from Hardy-Weinberg equilibrium (p < 10−4). Per-sample
QC was performed removing subjects with call rate < 0.95, excess relatedness, sex mismatch,
or that were ancestry outliers according to a multidimensional scaling analysis.

The two datasets were merged and SNPs were pruned, discarding those in linkage
disequilibrium (LD) (r2 > 0.2), in order to remove redundancies in the set of markers, thus
reducing the dimensionality of the analyses. Genotypes were coded in discrete additive
dosages of minor alleles for ML modeling.
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2.2. Predictive Models
2.2.1. Genetic Model

In order to avoid selection bias [23] and model overfitting, after combining the
two cohorts, we created three subsets called training set (TRset), validation set (Vset),
and test set (TEset), including 40%, 40%, and 20% of studied subjects, respectively. The
three groups were generated maintaining the proportion between OSR and CHUT cohorts,
as well as the EDA/NEDA ratio within each group.

Our preliminary experiments showed that Random Forests (RFs) achieved more
stable and accurate results compared to other models (Support Vector Machines, K-nearest-
neighbours, decision trees, bagging and boosting) confirming previous ML results on
genetic data [24,25]. For this reason, we used RFs to predict response to FTY based on
genetic and clinical features.

The TRset was used to train the RFs, whereas the Vset was used to select the group of
SNPs (signature) to be included in the predictive model, starting from a dataset of about
113,000 LD-pruned SNPs. Feature selection was performed using a robust cross-validated
selection method, based on the stability of the SNPs to be selected. We designed a feature
selection algorithm to detect the SNPs that most steadily correlate, according to Pearson
coefficient, with the response status across multiple samples of the data. Specifically, we
repeated a cross-validation procedure 100 times, storing at each repetition the k top-ranked
SNPs in each fold of the cross-validation. Then, the algorithm chose only the SNPs selected
with at least a relative frequency f across the repeated cross-validations.

Of note, we used the Vset to select the SNP signature, distinct from both the TRset
and TEset, thus avoiding the selection bias and reducing the overfitting of the trained
model [23]. Finally, the TEset was used to test the models trained using the selected
SNP signature.

We performed an extensive model selection by comparing the results of about
2000 models resulting from different combinations of the learning parameters of the RFs by
varying the number of decision trees of the ensemble between 10 and 100, the maximum
number of nodes for each decision tree from 1 to 100, the minimum number of examples
stored in each leaf node from 1 to 10, and of the robust cross-validated feature selection
method by varying the minimum relative frequency f of each feature between 0.05 and 1,
and the number k of top features to be considered at each iteration of the cross-validation
between 50 and 1000. It is easy to see that for a fixed k, large values of f (close to 1) lead to
small sets f of selected SNPs, whereas small values lead to larger SNP signatures.

The best models were selected and evaluated on the TEset as measured by the
area under the receiver operating characteristic curve (AUROC); the Area Under the
Precision-Recall Curve (AUPRC), F-score, and accuracy were also calculated to evaluate
models performance.

The analyses were performed using R statistical environment, version 3.6.3; specifically,
the “randomForest”, “caret” and “precrec” R packages were used, as well as a set of
functions designed specifically for the present analyses that are available upon request.

2.2.2. Combined Clinical and Genetic Model

As for the genetic model, we trained the RFs separately on the clinical data and selected
four signatures through which we achieved the best results on the Vset, starting from
17 clinical parameters (gender, AAO, age at treatment start, DD, ARR in the 2 years before
FTY, baseline EDSS, presence of new T2-lesions and Gd+-lesions at baseline MRI plus other
nine binary features derived from the categorization of previous treatments). We ran about
2000 different models and selected the top four models according to their performance.

Finally, we combined the genetic and clinical models by means of multi-view random
forests, where each decision tree was separately trained on a different bootstrap sample of
either genetic or clinical data. The predictions of the resulting decision trees were finally
combined to obtain the consensus multi-view prediction of the RF ensemble [26].
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2.2.3. Predictive Performance of the Genetic Model in Patients Treated with Other
Immunomodulatory Drugs

In order to assess whether the set of SNPs predicted as associated to a better response
were rather markers of a mild disease activity, we considered two independent cohorts of
patients treated with glatiramer acetate (GA, n = 273) and beta-interferons (IFN, n = 304),
enrolled at San Raffaele Hospital MS center, with available genetic data. For these subjects,
the same clinical information previously mentioned was collected during treatment, and
response was assessed at 2 years using the NEDA-3 criterion. The genetic model selected
in FTY-treated patients was applied to GA and IFN-treated subjects, and the AUROC was
calculated to assess whether it was specific for FTY response or if it was more generally
associated to disease activity.

2.2.4. Classification Performance of the Combined Model

In order to test the ability of the selected model to identify patients that respond to
FTY, we considered the predicted probability of non-response to FTY as calculated on the
independent TEset by the selected clinical and genetic model, and we divided these values
into tertiles; the highest tertile included the patients that the model predicted with higher
likelihood as being non-responders to FTY (PrNR), whereas the lowest tertile grouped
patients more likely to respond to treatment (PrR). We then compared the lowest and
highest tertiles in terms of disease activity during FTY treatment; specifically, we compared
the number of new and/or enlarging T2 lesions and the number of relapses between
the two groups by means of the non parametric Mann–Whitney test; we then compared
the proportion of patients free from MRI activity and free from clinical activity and the
proportion of patients achieving the NEDA outcome by means of a chi-square test.

3. Results
3.1. Summary of Results

In the present study we identified a genetic signature of 123 SNPs that was able to
predict FTY response with an area under the receiver operating characteristic
(AUROC) = 0.65 and the model accuracy further increased when considering also clinical
data (AUROC = 0.71). Even though the model predictivity is not enough for implementa-
tion in clinical practice, our findings suggest that the combination of clinical and genetic
data by means of machine learning methods can support in the prediction of response
to FTY.

3.2. Detailed Results

We applied the genetic and the combined clinical–genetic model to the prediction of the
EDA/NEDA status using the OSR/CHUT combined cohort according to the experimental
set-up described in Section 2.

More precisiely, 342 FTY-treated RRMS patients from the OSR cohort and 78 from the
CHUT dataset were considered for the following steps, after removal of patients treated
with NTZ in the previous nine months and genetic QCs.

Among them, 17 and 22 patients in the CHUT and OSR cohort, respectively, were
excluded because we were not able to correctly classify them according to the NEDA-3
criterion due to missing clinical data.

The final analysis was performed on 381 patients, of whom 197 showed evidence
of disease activity (EDA) and 184 were NEDA during the two-year follow-up. Among
them, 152 entered the TRset, 152 the Vset, and 77 the independent TEset. Clinical and
demographic characteristics of the included patients, stratified according to the three sets,
are described in Table 1.
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Table 1. Clinical and demographic characteristics of included patients, stratified according to TRset,
Vset, and TEset.

Whole
Cohort
(n: 381)

TRset
(n: 152)

Vset
(n: 152)

TEset
(n: 77) p-Value

F:M ratio 270:111 101:51 119:33 50:27 0.03

Age at disease onset,
mean ± SD 29 ± 9.5 28.3 ± 9.2 29.1 ± 9.7 30.2 ± 9.6 n.s.

Age at FTY start,
mean ± SD 39.5 ± 9.5 38.8 ± 9.1 39.6 ± 9.7 40.4 ± 9.8 n.s.

Disease duration (yrs),
mean ± SD 10.5 ± 7.6 10.5 ± 7.1 10.5 ± 8.2 10.2 ± 7.1 n.s.

ARR in the 2 years prior
FTY, mean ±SD 0.82 ± 0.84 0.74 ± 0.83 0.93 ± 0.90 0.78 ± 0.73 n.s.

Previous DMT

n.s.

Naïve 30 (7.9%) 12 (7.9%) 13 (8.6%) 5 (6.5%)

No therapy 26 (6.8%) 12 (7.9%) 10 (6.6%) 4 (5.2%)

IFN 149 (39.1%) 59 (38.8%) 58 (38.2%) 32 (41.5%)

GA 104 (27.3%) 40 (26.3%) 40 (26.3%) 24 (31.2%)

DMF 13 (3.4%) 4 (2.6%) 6 (3.9%) 3 (3.9%)

Teriflunomide 11 (2.9%) 4 (2.6%) 3 (2%) 4 (5.2%)

Immunosuppressants 17 (4.5%) 6 (4.0%) 9 (5.8%) 2 (2.6%)

Natalizumab 29 (7.6%) 13 (8.6%) 13 (8.6%) 3 (3.9%)

Other 2 (0.5%) 2 (1.3%) 0 (0%) 0 (0%)

EDSS at FTY start,
median (range) 2.0 (0–7.0) 2 (0–6.0) 2 (0–7.0) 2 (0–6.0) n.s.

<Patients with
Gd+ lesions at baseline

brain MRI scan
33.5% 35.1% 31.7% 33.8% n.s.

Patients with
new/enlarged T2 lesions

at baseline brain MRI scan
49.1% 45.7% 54.5% 44.9% n.s.

FTY: fingolimod; ARR: annualized relapse rate; DMT: disease modifying treatment; IFN: interferon; GA: glatiramer
acetate; DMF: dimethyl fumarate; Gd+ lesions: gadolinium enhancing lesions. P-value refers to the comparison
between the 3 sets.

3.3. Genetic Model

We applied the robust cross-validation procedure introduced in Section 2.2.1 to select
the genotypic signatures predictive of the EDA/NEDA status. Using the training dataset
only to avoid the selection bias, we selected the top-f SNPs most steadily correlated with the
response status across ten-fold cross-validation repeated 100 times (Table 2). For instance,
in Table 2, the g2 model includes a signature with 123 SNPs (sign) selected using the first
500 top-ranked features (top-f ) with a frequency (min-fr) equal to 0.1 (i.e., SNPs selected at
least 10% of times across the repeated cross-validation procedure). Random forests were
trained on the training set using the SNP signatures, and their parameters were selected by
evaluating their AUROC, AUPRC, and F-score performance on the independent validation
set to limit overfitting (see Table 2 for details). Finally, the generalization performance of
the best models was evaluated on the independent test set (Table 2).
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Table 2. Best random forest models trained on the genotypic data.

Model Top-f Min-fr Sign Ntree Nodesize Maxn TR
AUROC

TR
AUPRC

TR
F

TR
Acc

TE
AUROC

TE
AUPRC

TE
F

TE
Acc

g1 500 0.05 1022 20 10 10 0.8493 0.8476 0.7973 0.796 0.65 0.6483 0.6837 0.5194
g2 500 0.1 123 10 10 30 0.8438 0.8496 0.7861 0.7565 0.6446 0.663 0.7142 0.5844
g3 500 0.05 1022 10 1 15 0.838 0.8671 0.7567 0.7631 0.5801 0.5907 0.745 0.6623
g4 500 0.15 8 10 2 60 0.858 0.8712 0.8 0.7828 0.6135 0.6176 0.7102 0.5974

The table shows the four best genetic models, named g1, g2, g3, and g4. Parameters of the feature selection
method: top-f stands for the number of the top-ranked selected features; min-fr is the minimum frequency of
the feature to be selected, sign is the number of selected features. Parameters of the random forests: ntree is the
number of trees; nodesize is the minimum size of each leaf of the tree; maxn is the maximum number of nodes for
each tree. TR_AUROC, TR_AUPRC, TR_F, TR_acc, TE_AUROC, TE_AUPRC, TE_F, TE_acc stand for AUROC,
AUPRC, F-score, and Accuracy, respectively, on the training and test set.

The AUROC calculated on the independent TEset was close to 0.65, and F-scores and
AUPRC were even higher, suggesting that the NEDA classification can be learnt from
genetic data, although the accuracy of the prediction was not enough for application in
everyday clinical practice.

Due to the smaller number of variants included in the second model (g2)—that makes
it more appealing for a potential clinical application—and the very similar predictive
performance, we selected it for further analyses; the list of the 123 SNPs prioritized by the
analysis is reported in Supplementary Table S1.

In order to gain some biological insight from the detected signature associated with
the FTY response, we performed an enrichment analysis to identify the pathways in which
the selected variants were involved. First, we annotated the variants using the Ensembl
Variant Effect Predictor tool (VeP), then, we selected genes for which at least a moderate
impact was predicted and belonging to the biotypes “protein coding”, “processed tran-
script”, and “retained intron”. We then performed an over representation analysis with the
tool Webgestalt [27] using the KEGG pathway database as reference. Of the 73 annotated
genes, 30 were annotated to functional categories present in the database and, though no
pathway survived multiple testing correction, among the top enriched pathways (Table 3)
we found “Sphingolipid signaling pathway” (p-value: 0.008), “Sphingolipid metabolism”
(p-value: 0.011), “Cell adhesion molecules (CAMs)” (p-value: 0.013), and “Inflammatory
bowel disease (IBD)” (p-value: 0.021). These results suggest that our algorithm is in-
deed able to identify genes that play a role in modulating FTY mechanism of action and
therapeutic response.

Table 3. Over-representation analysis of the genes selected by the ML model.

Description Size Expected Enrichment p Value FDR

Renin secretion 65 0.23 13.26 0.001 0.42

Calcium signaling pathway 183 0.64 6.28 0.003 0.51

Sphingolipid signaling pathway 118 0.41 7.30 0.008 0.65

Sphingolipid metabolism 47 0.16 12.22 0.011 0.65

Cholesterol metabolism 50 0.17 11.49 0.013 0.65

Cell adhesion molecules (CAMs) 144 0.50 5.98 0.013 0.65

cGMP-PKG signaling pathway 163 0.57 5.29 0.018 0.67

Cortisol synthesis and secretion 64 0.22 8.98 0.021 0.67

Inflammatory bowel disease (IBD) 65 0.23 8.84 0.021 0.67

Long-term potentiation 67 0.23 8.58 0.022 0.67
Size: gene set size; Expected: n◦ of predicted overlap; Enrichment ratio: ratio between the observed and expected
overlap; FDR: false discovery rate.
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3.4. Combined Clinical and Genetic Model

We then applied the same algorithm to the clinical data: interestingly, among the
clinical features steadily selected for inclusion in the model, there were age at treatment
start, ARR in the 2 years before FTY start, and presence of new T2 and Gd+ lesions
at baseline, which are already known to be associated with disease activity upon FTY
treatment [19].

Table 4 reports the four best models trained on the clinical data that performed slightly
better in terms of AUROC (0.69) and AUPRC (0.67), compared to the genetic model.

Table 4. Best Random forest models trained on the clinical data.

Model Top-f Min-fr Sign Mtry N
Tree

Node
Size Maxn TR

AUROC
TR

AUPRC
TR
F

TR
acc

TE
AUROC

TE
AUPRC

TE
F

TE
acc

c1 8 0.5 9 10 100 2 100 1 1 1 1 0.6895 0.6709 0.7339 0.6494
c2 8 0.5 9 4 20 2 100 0.9785 0.9803 0.9255 0.9211 0.6405 0.7320 0.7091 0.6364
c3 8 0.5 9 10 20 2 30 0.9152 0.9281 0.8434 0.8289 0.623 0.6422 0.7379 0.6494
c4 2 0.05 14 3 10 1 100 0.9971 0.9974 0.9684 1 0.6895 0.6709 0.7339 0.6494

The table shows the four best clinical models, named c1, c2, c3 and c4. Parameters of the feature selection
method: top-f stands for the number of the k top-ranked selected features; min-fr is the minimum frequency f
of the features to be selected. Sign is the cardinality of the clinical signature. Parameters of the random forests:
mtry is the number of the randomly selected features at each node of the decision trees, ntree is the number of
trees; nodesize is the minimum size of each leaf of the tree; maxn is the maximum number of nodes for each tree.
TR_AUROC, TR_AUPRC, TR_F, TR_acc, TE_AUROC, TE_AUPRC, TE_F, TE_acc stand for AUROC, AUPRC,
F-score, and Accuracy, respectively, on the training and test set.

We then combined the selected genotypic and clinical signatures using multi-view
random forests and obtained an increase in the predictive accuracy of the model, with an
AUROC of 0.71 and an AUPRC of 0.73 on the TEset (Table 5).

Table 5. Best multi-view random forest model trained on combined clinical and genetic data.

Model TR_AUROC TR_AUPRC TR_F TR_Acc TE_AUROC TE_AUPRC TE_F TE_acc

g2-c1 0.9997 0.9997 0.9933 0.9934 0.7095 0.7328 0.7328 0.6623

The model name g2-c1 refers to the single-layer models it derives from. TR_AUROC, TR_AUPRC, TR_F, TR_acc,
TE_AUROC, TE_AUPRC, TE_F, TE_Acc stand for AUROC, AUPRC, F-score, and Accuracy, respectively, on the
training and test set.

These results suggest that combining clinical and genetic data can help in predicting
response to FTY.

To further confirm this evidence, we considered the predicted probability of non-
response to FTY as calculated on the independent TEset by the combined model
g2-c1, and we considered the patients that the model predicted with higher likelihood
as being non-responders to FTY (PrNR) and those deemed more likely to respond to
treatment (PrR).

As expected, a significantly greater proportion of patients predicted with higher
likelihood as being non-responders had evidence of disease activity during the 2-year
follow-up, compared to the patients predicted with higher likelihood as being responders
(75% vs. 27%, p: 0.0019, Figure 1A). Moreover, PrNR patients also showed a higher
neuroradiological activity during FTY treatment, both in terms of number of active lesions
(2.1 vs. 0.61 on average in the PrNR and PrR group, respectively, p: 0.034 Figure 1B) and
of proportion of individuals with an active MRI scan (50% vs. 11.5% p: 0.005, Figure 1C).
The same direction of effect was also found when considering the level of clinical activity,
PrNR patients showing a higher number of relapses (0.25 vs. 0.15 p: 0.40, Figure 1D) and
a larger proportion of patients with a clinical reactivation (20.8% vs. 7.7% p: 0.24, Figure 1E)
compared to PrR, although not statistically significant.
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Figure 1. Comparison of disease activity levels between patients predicted to be non-responders to
FTY (PrNR) and patients likely to respond to treatment (PrR). (A) Proportion of patients with No
Evidence of Disease Activity (NEDA) and Evidence of Disease Activity (EDA) in the PrR and PrNR
groups. (B) Number of new and/or active lesions in the PrR and PrNR groups. (C) Proportion of
patients with or without MRI activity in the PrR and PrNR groups. (D) Number of clinical relapses in
the PrR and PrNR groups. (E) Proportion of patients with or without clinical activity in the PrR and
PrNR groups.

3.5. Evaluation of the Model in Independent Cohorts of Patients Treated with First-Line Drugs

Finally, to test whether our genetic model was specific for predicting FTY treatment
response or was a prognostic algorithm that more broadly predicts MS disease activity, we
tested it in patients treated with IFN and GA. In the IFN cohort, 110 patients had NEDA
and 189 EDA, whereas in the GA cohort, 93 had NEDA and 170 EDA. We then tested the
model trained on the FTY cohort on these 2 datasets and obtained an AUROC of 0.55 and
0.51, respectively, suggesting that the model holds specificity for FTY therapy and is not
able to predict response to IFN and GA. We did not test the clinical model on these cohorts,
given that the identified clinical predictors are mainly prognostic factors already known to
be associated to response to first-line treatment, so we do not expect the clinical model to
be specific to FTY-treated patients.

4. Discussion

MS is a complex disorder, with substantial heterogeneity in terms of response to
treatments, that would greatly benefit from a more individualized management; indeed,
predicting the response of MS patients to therapies has been an open problem for many
years [28]. Recently, due to the advancements and the spreading of artificial intelligence
(AI) methodologies, several ML algorithms have been applied in the MS field; in particular,
AI has been applied to MRI data to perform lesion and tissue segmentation [29,30] and
to aid in the differential diagnosis with MS mimics [31–33]. A few studies also applied
AI to clinical data in order to predict disease course and progression [34,35] but, to our
knowledge, a single study applied ML methods to genetic data in order to predict treatment
response in patients treated with a first-line drug [36].
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In the present study, we applied a supervised ML algorithm to clinical and genetic
data in a cohort of MS patients treated with FTY in order to develop a predictive model
of response to the drug, and we identified a genetic signature of 123 SNPs that was
able to predict treatment response in an independent cohort, even though its predictive
accuracy is not enough for its use in clinical practice (AUROC = 0.65, AUPRC = 0.66).
When considering clinical data only, a similar performance was obtained (AUROC = 0.69,
AUPRC = 0.67), suggesting that clinical information can possibly add to the predictive
value of the model. Interestingly, among the clinical parameters that were retained by the
robust feature selection algorithm were the age at treatment start, the ARR in the 2 years
before FTY, and the presence of new T2 and Gd+ lesions at baseline MRI, variables that
have already been associated with disease activity and response to FTY treatment [19].
These results indicate that, even if the predictive power of the model is limited, our ML
approach is able to identify clinically significant predictors.

Similarly, when applying an over-representation analysis to the genetic hits selected by
the algorithm, we found that there was an enrichment of genes implicated in sphingolipid
metabolism and in cell-adhesion pathways, further supporting the ability of the model to
identify biologically meaningful signals implicated in response to FTY.

As expected, the highest accuracies were obtained when considering both clinical and
genetic data: in fact, the combined model yielded an AUC of 0.71 and an AUPRC of 0.73.
Such predictive performance, although insufficient to guide decision making in clinical
practice, suggests that ML methods have the potential to stratify patients for whom FTY is
a treatment option. Moreover, our results are in line, if not better, than those obtained by
a previous study on glatiramer acetate [36].

When analyzing only patients whose response state is predicted with higher or lower
likelihood as being non-responder to FTY, the algorithm was able to identify two categories
of patients that significantly differ in terms of disease activity during FTY treatment:
only 25% of PrR patients showed disease reactivation in the 2 years after treatment start
compared to 75% of PrNR. Similarly, PrNR patients have a significantly greater rate of MRI
activity and showed a modest trend towards more relapses compared to PrR.

Among the strengths of our work is the detailed clinical characterization that allowed
the improvement of the genetic-only model. Most importantly, our study design included
a validation step in an independent cohort that was completely blind to the model training
and to the features selection process; compared to internal cross-validation procedures,
the availability of an external independent population allows for an unbiased and not
overly-optimistic estimation of the generalizability of the model and reduces the risk of
model overfitting, thus increasing the reliability of our findings [23,37,38].

Moreover, our robust procedure to select informative SNP signatures, combined with
an unbiased evaluation of the experimental results using an integrated ML approach, offers
a methodological framework that can be applied to MS or also other complex human traits.

On the other hand, we are aware of some limitations of the present study, mainly
due to the modest sample size, especially in relation to the high dimensionality of genetic
data [39], with an independent test set of only 77 patients, and the relatively short follow-up.

5. Conclusions

Our study shows that ML methodologies hold potential to be applied to clinical and
genetic data towards a more personalized approach in MS and advocates for further studies
addressing the issue of predicting treatment response. In perspective, the availability of
larger cohorts and an effective combination of clinical, omics, and other types of data
(e.g., imaging data) through an integrated ML approach [40] (such as our proposed multi-
view RF ensembles) could lead to improved response predictions potentially applicable in
clinical practice.
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