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Abstract: Poorly differentiated sinonasal carcinomas (PDCs) are tumors that have a poor prognosis
despite advances in classical treatment. Predictive and prognostic markers and new personalized
treatments could improve the oncological outcomes of patients. In this study, we analyzed SOX2
and βIII-tubulin as biomarkers that could have prognostic and therapeutic impacts on these tumors.
The cohort included 57 cases of PDCs: 36 sinonasal undifferentiated carcinoma (SNUC) cases,
13 olfactory neuroblastoma (ONB) cases, and 8 sinonasal neuroendocrine carcinoma (SNEC) cases.
Clinical follow-up data were available for 26 of these cases. Sox2 expression was detected using
immunohistochemistry in 6 (75%) SNEC cases, 19 (53%) SNUC cases, and 6 (46%) ONB cases. The
absence of Sox2 staining correlated with a higher rate of recurrence (p = 0.015), especially distant
recurrence. The majority of cases showed βIII-tubulin expression, with strong positivity in 85%,
75%, and 64% of SNEC, ONB, and SNUC cases, respectively. Tumors with stronger βIII-tubulin
expression demonstrated longer disease-free survival than those with no expression or low expression
(p = 0.049). Sox2 and βIII-tubulin expression is common in poorly differentiated sinonasal tumors
and has prognostic and therapeutic utility.

Keywords: poorly differentiated sinonasal carcinomas (PDCs); sinonasal undifferentiated carcinoma
(SNUC); olfactory neuroblastoma (ONB); sinonasal neuroendocrine carcinoma (SNEC); SOX2; βIII-
tubulin; prognostic biomarker

1. Introduction

Poorly differentiated sinonasal carcinomas (PDCs) are a heterogeneous group of neo-
plasms that can be divided into several subtypes. Tumors with a neuroectodermal origin,
like olfactory neuroblastoma (ONB), and those with an epithelial origin, like sinonasal neu-
roendocrine carcinomas (SNECs) and sinonasal undifferentiated carcinomas (SNUCs), are
included in the PDC group [1,2]. However, the classification of PDCs is often difficult due
to overlapping histological features [3]; for example, the term “olfactory carcinoma” was
recently created in order to classify a high-grade tumor that presents both neuroendocrine
and epithelial characteristics [4]. In addition, the fifth edition of the WHO classification
considers SNEC as equal to other poorly differentiated neuroendocrine tumors located in
other anatomic regions [3,5]. Furthermore, new tumor subtypes are defined by characteris-
tic molecular genetic changes affecting IDH2, NUT, or genes in the SWI/SNF pathway in
SNUC, which may also have therapeutic implications [3,6,7]. Investigations into molecular
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profiling continue to improve and refine classification and discover optimal therapeutical
approaches for each of them [8,9].

In clinical terms, PDCs have moderate-to-poor outcomes owing to aggressive tumor
biology. Although multimodal treatment is recognized as the most effective, patients treated
with surgery, chemotherapy (CT), and radiotherapy (RT) frequently experience tumor
progression and poor survival [10–13]. PDCs arise in the tops of the nasal cavities, with
anatomical and radiological evidence supporting their origin in the olfactory epithelium. A
recent study yielded the first molecular evidence demonstrating that ONB derives from
the globose stem cells of the olfactory epithelium [4]. These progenitor cells are located in
the basal layer, and during their differentiation process, the expression patterns of various
proteins change [4,14]. Aside from their roles as cancer-related genes, both SOX2 and
TUBB3, encoding Sox2 (Sex-determining region Y-box 2) and βIII-tubulin, respectively, play
a role in the differentiation from basal cells to committed progenitor cells and, finally, adult
cells [4,15].

Sox2 is a transcription factor expressed in pluripotent cells during embryonic de-
velopment as well as in somatic stem cells in adult tissue, including the olfactory epithe-
lium [15–17]. It regulates, in association with other factors, the reprogramming of terminally
differentiated somatic cells back to a pluripotent stem cell state when co-expressed with
other embryonic stem cell factors [18–20]. In addition, SOX2 also plays an important role
as an oncogene involved in the growth capacity of tumor stem cells. The loss of expression
of Sox2 significantly reduces the ability of tumor cells to grow and expand. Conversely,
the overexpression of Sox2 results in a greater capacity for tumor progression [21]. Sox2
expression has been shown in several tumor types, such as lung, esophagus, breast, skin,
prostate, and ovarian tumors, as well as in squamous carcinomas of various localizations
and sarcomas [21–29]. In the head and neck region, Sox2 expression and gene amplification
have been identified as common events [30,31]. Among the tumors that originate in the
sinonasal cavities, the amplification and/or overexpression of Sox2 was demonstrated in
squamous sinonasal carcinoma (SNSCC), SNUC, adenoid cystic carcinomas (ACCs), and
ITAC [29,32]. The relation of Sox2 expression (and SOX2 gene copy number gain) with
clinical outcomes is still a matter of debate, suggesting distinct roles for SOX2 depending
on the tumor localization and histology. However, in a recent meta-analysis [33], a high
expression level of Sox2 was significantly associated with poor outcomes in patients with
solid tumors, which is consistent with a role as a transcription factor that induces stem-
ness [34]. Sox2 expression is also associated with resistance to chemotherapy through a
plethora of mechanisms and, as such, is a promising target for anticancer therapy [17,34].

Microtubules are multifunctional cytoskeletal proteins involved in critical cellular pro-
cesses, such as mitosis, cell motility, and intracellular transport. Microtubules are composed
of polymers of α- and β-tubulin heterodimers. Class III β-tubulin (βIII-tubulin) is one kind
of β-tubulin and is typically expressed in cells of neuronal origin [15]. It contributes to
the formation of dynamic microtubules essential for neurite formation and maintenance.
An abnormal βIII-tubulin content may also be relevant in the development of chromo-
somal instability, as it is believed to contribute to centrosomal amplification, multipolar
spindle poles, and the missegregation of chromosomes [35]. This is why several lines of
evidence suggest that βIII-tubulin plays a role in tumor development. The overexpression
of βIII-tubulin has been associated with adverse clinical features and poor outcomes in
many epithelial tumor types, such as non-small-cell lung, gastric, breast, colon, bladder,
prostate, and ovarian cancers [36–42]. This is also true for head and neck cancer, where
βIII-tubulin overexpression has been linked to a shortened survival of patients [43,44]. Nev-
ertheless, some studies have found a high prevalence of βIII-tubulin expression without an
association with clinical outcomes [45].

The effects of βIII-tubulin overexpression on taxane and other anti-microtubule agent
(MTA)-based chemotherapies have been investigated in various tumors [46]. A recent
study by Topcagic et al. demonstrated an association between high βIII-tubulin expression
and resistance to vincristine in ONB [47]. This could be related to the fact that most
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anti-microtubule agents act by binding to the β-subunit [48]. New strategies to target
βIII-tubulin that comprise inhibiting its expression using small molecules and using MTAs
that evade drug efflux pumps or bind the colchicine site of tubulin instead of the taxane
site are under investigation [35].

To better understand their role as prognostic or therapy-response-predictive factors in
PDCs, we studied Sox2 and βIII-tubulin protein expression in a series of 57 tumors of three
different histologies, namely, SNUC, ONB, and SNEC, and we correlated the results with
clinicopathological and follow-up data. In addition, we discuss the role of these markers in
the response to CT.

2. Materials and Methods
2.1. Patients and Methods

A total of 57 cases (36 SNUC cases, 13 ONB cases, and 8 SNEC cases) treated between
1998 and 2017 were included in our study after receiving informed consent and approval
by the Ethics Committee of the Hospital Universitario Central de Asturias Hospital. This
study was conducted according to the guidelines of the Declaration of Helsinki. Tumors of
similar lineages such as NUT carcinoma and SMARCA4-deficient and SMARCB1-deficient
carcinoma were excluded from this study. All patients had a single primary tumor and had
received no treatment prior to surgery. The clinical features of the three groups of patients
are shown in Table 1. Most tumors were located in the ethmoid sinus (89%). According to
the 8th edition of the International Union Against Cancer TNM classification [48], 75% of
the cases were in the advanced stages (stages III and IV). No patient had distant metastases
at the time of diagnosis. Ninety-five percent (54/57) of the patients received postoperative
RT. Follow-up information was obtained for 26 patients until the last occurrence for patients
still alive, until the time of death, or until the time of lost contact. The median follow-up
time for the entire group was 16 months (range: 1–172).

Table 1. Clinical data of patients according to tumor histology.

SNUC SNEC ONB

Total Patients 36 8 13
Gender

Male 19 3 4
Female 17 5 9

Age
Average 57 58 47
Range 31–85 40–77 20–69

Location
Maxillary sinus 6 0 0
Ethmoid sinus 30 8 13
T classification

T2 14 4 6
T3 2 1 2
T4a 19 2 5
T4b 1 1 0

Disease stage
I-II 14 4 6

III-IV 32 4 7
Radiotherapy

No 3 0 0
Yes 33 8 13

Follow-up
Mean 29 22 56

Median 13 25 29
Range 1–97 15–26 1–172
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Table 1. Cont.

SNUC SNEC ONB

Local Recurrence
No 11 1 4
Yes 5 2 3

Distant metastasis
No 11 0 4
Yes 5 3 3

Patient status
Alive 8 1 6

Died of disease 6 2 1
Died of other causes 2 0 0

Lost 20 5 6

2.2. Histological Classification of Sinonasal Tumors

As the cases were collected over a long period of time and at different institutions,
the initial diagnoses were reviewed by two experienced pathologists (BV and VBL). All
available slides were reviewed in each case, and tumors were diagnosed according to
the diagnostic criteria of the 5th edition of the WHO classification [49]. Additional im-
munohistochemical staining of cytokeratin 5/6, p40, p16, synaptophysin, chromogranin,
NUT, SMARCB1, and SMARCA4 were applied when necessary. Cases positive for p16
were further tested for HPV using DNA-PCR (see below). As a result of these diagnostic
analyses, none of the cases were reclassified as NUT carcinoma or SMARCB1-deficient or
SMARCA4-deficient carcinoma, and all tumors with diffuse and nuclear p16 staining were
found to be HPV-negative. The immunohistochemical and genetic diagnostic results are
included in Table 2. Representative H&E staining images of the three tumor types (SNUC,
ONB, and SNEC) are shown in Figure 1.

J. Pers. Med. 2023, 13, x FOR PEER REVIEW 5 of 15 
 

 

 
Figure 1. H&E, Sox2, and βIII-tubulin staining images of one representative case each of sinonasal 
undifferentiated carcinoma (A,D,G), olfactory neuroblastoma (B,E,H), and sinonasal neuroendo-
crine carcinoma (C,F,I). Sox2 was positive in all three cases, while βIII-tubulin was determined to be 
moderate in G and I and strong in H. All images show 20× magnification. 

2.3. Immunohistochemistry 
Tissue microarray (TMA) blocks were prepared from formalin-fixed, paraffin-embed-

ded tumor tissues using a Beecher Tissue Microarray (Beecher Instruments, Silver Spring, 
MD, USA). The TMA blocks contained three 1 mm cores from different areas of each tu-
mor. Normal sinonasal mucosa samples were included in each block as an internal con-
trol. Tumors not included in the TMAs were stained separately. Immunohistochemistry 
was performed with an automated staining workstation (Dako Autostainer Plus; DakoCy-
tomation, Glostrup, Denmark) with antigen retrieval using EnVision FLEX + Mouse 
(DakoCytomation, Glostrup, Denmark) for 20 min.  

The following antibodies were applied when necessary for tumor classification: 
mouse anti-Cytokeratin clone AE1/AE3, mouse anti-Synaptophysin clone SY38, mouse 
anti-Chromogranin A clone DAK-A3, mouse anti-CK 5/6 clone D5/16 B4, mouse anti-p63 
clone DAK-p63 (DAKO, Glostrup, Denmark), mouse anti-p40 clone BC-28, mouse 
CINtec® anti-p16 clone E6H4 (Roche, Mannheim, Germany), rabbit anti-BRG1 clone 
ab70558 (Abcam, Cambridge, UK), rabbit anti-SMARCB1/BAF47 clone D8M1X, and rabbit 
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Figure 1. H&E, Sox2, and βIII-tubulin staining images of one representative case each of sinonasal
undifferentiated carcinoma (A,D,G), olfactory neuroblastoma (B,E,H), and sinonasal neuroendocrine
carcinoma (C,F,I). Sox2 was positive in all three cases, while βIII-tubulin was determined to be
moderate in (G,I) and strong in (H). All images show 20×magnification.
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Table 2. Diagnostic immunohistochemical staining results.

SNUC SNEC ONB

n = 36 n = 8 n = 13

Pancytokeratin 97% 100% 38%
CK 5/6 0% ND ND

P40 0% ND ND
P16 27% 0% 0%

HPV 0% 0% 0%
Synaptophysin/Chromogranin 39% 100% 100%

NUT 3% 0% 0%
SMARCB1 (INI-1) 3% 0% 0%
SMARCA4 (BRG1) 0% 12.5% 0%

IDH2 mut 28% 25% 0%

2.3. Immunohistochemistry

Tissue microarray (TMA) blocks were prepared from formalin-fixed, paraffin-embedded
tumor tissues using a Beecher Tissue Microarray (Beecher Instruments, Silver Spring, MD,
USA). The TMA blocks contained three 1 mm cores from different areas of each tumor. Normal
sinonasal mucosa samples were included in each block as an internal control. Tumors not
included in the TMAs were stained separately. Immunohistochemistry was performed with
an automated staining workstation (Dako Autostainer Plus; DakoCytomation, Glostrup,
Denmark) with antigen retrieval using EnVision FLEX + Mouse (DakoCytomation, Glostrup,
Denmark) for 20 min.

The following antibodies were applied when necessary for tumor classification: mouse
anti-Cytokeratin clone AE1/AE3, mouse anti-Synaptophysin clone SY38, mouse anti-
Chromogranin A clone DAK-A3, mouse anti-CK 5/6 clone D5/16 B4, mouse anti-p63 clone
DAK-p63 (DAKO, Glostrup, Denmark), mouse anti-p40 clone BC-28, mouse CINtec® anti-
p16 clone E6H4 (Roche, Mannheim, Germany), rabbit anti-BRG1 clone ab70558 (Abcam,
Cambridge, UK), rabbit anti-SMARCB1/BAF47 clone D8M1X, and rabbit anti-NUT clone
C52B1 (Cell Signaling Technology, MA, USA).

The antibodies for the Sox2 and βIII-tubulin expression analysis were rabbit anti-Sox2
AB5603 (Millipore Ibérica SA Madrid, Spain) and mouse anti-Btub-III G712A (Promega,
Madison, WI, USA), both applied at a dilution of 1:1000, with an antigen retrieval incubation
time of 20 min at 95 ◦C in a citrate buffer (pH 9.0). Negative controls were prepared by omit-
ting the primary antibody. The immunohistochemical results were evaluated independently
by three observers (L.F-V., B.V., and V.B.L.) without knowledge of the clinicopathological
outcomes of the patients. In samples where there were discrepancies, they were solved
afterwards by looking together using a multi-head microscope, and a consensus was
reached. Sox2 expression was scored as positive when >5% of cells showed nuclear expres-
sion [50–52]. βIII-tubulin was scored by intensity (0, 1, 2, or 3) and percentage of positivity
(1 as <30%, 2 as 30–70%, and 3 as >70%); the multiplication factor of both scores produced
negative staining when 0, weak staining when 1–2, moderate staining when 3–4, and strong
staining when 6–9 [40]. Representative Sox2 and βIII-tubulin staining images of the three
tumor types (SNUC, ONB, and SNEC) are shown in Figure 1.

2.4. HPV DNA and IDH2 Mutation Detection

The quality of the extracted DNA was checked via PCR amplification of β-globin (for-
ward primer 5′-ACACAACTTGTGTGTTCACTAGC-3′ and reverse primer 5′-CAAACTTC
ATCCACGTTCACC-3′). PCR with MY11/GP6+ primers (site-directed L1 fragment of HPV)
was performed on 9 cases of p16-positive SNUC in order to detect a broad spectrum of HPV
genotypes [53]. Briefly, the PCR was performed in 25 µL of a reaction mixture containing
1x PCR buffer, 2 mmol/L MgCl2, 50 µmol/L of each deoxynucleoside, 0.5 µmol/L of sense
and antisense primers, 10 µL of a DNA sample, and 1 U of Taq DNA polymerase (Promega
Biotech Iberica S.L., Madrid, Spain) with a thermal profile of 35 cycles of denaturation at
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94 ◦C for 30 sec, annealing at 55 ◦C for 30 sec, and extension at 72 ◦C for 1 min, with an
initial denaturation at 94 ◦C for 5 min and a final extension at 72 ◦C for 10 min. Amplified
DNA fragments of approximately 200 bp were identified via electrophoresis in 1.5% agarose
gel with ethidium bromide.

IDH2 mutations in SNUC identified via Sanger PCR sequencing and immunohisto-
chemistry with the multi-specific antibody mouse anti-IDH1/2 mutant R132/172 clone
MsMab-1 at a 1:100 dilution (Millipore, Darmstadt, Germany) were studied previously [53].

2.5. Statistical Analysis

A univariate analysis using Pearson χ2 and Fisher’s exact tests was used for com-
parisons between categorical variables using SPSS 19.0 software for Windows (SPSS Inc.,
Chicago, IL, USA). For the time-to-event analysis, Kaplan–Meier curves were plotted.
Differences between survival times were analyzed using the log-rank method. Values of
p ≤ 0.05 were considered statistically significant.

3. Results
3.1. Clinicopathological Data and Follow-Up

Follow-up information, including local recurrence and patient status, was available
for 26 cases (Table 1). Local recurrence was found in 5/16 (31%) SNUC patients, 3/7 (43%)
ONB patients, and 2/3 (67%) SNEC patients. Distant metastasis occurred in 5/16 (31%)
SNUC patients, 3/7 (43%) ONB patients, and 3/3 (100%) SNEC patients. Six patients (three
SNUC patients, two SNEC patients, and one ONB patient) presented local recurrence as
well as distant metastasis.

The 5-year overall survival (5-yr OS) rates were 86%, 40%, and 0% for all ONB, SNUC,
and SNEC cancer patients, respectively (Figure 2). Similar figures were observed for the
5-year disease-specific survival (5-yr DSS) (Figure 2). The median disease-free times were
14 months (95% CI: 7–21) for ONB, 16 months (95% CI: 1–40) for SNEC, and 48 months
(95% CI: 1–104) for SNUC. The 5-year disease-free survival (5-yr DFS) rates were 34%,
48%, and 0% for all ONB, SNUC, and SNEC patients, respectively (Figure 2). The main
causes of death were local recurrences and distant metastases. At the time of writing, a
total of 15 of 26 patients (57%) remained alive without disease. We observed no significant
relations between OS, DSS, or DFS and clinical parameters such as gender, age, location, or
tumor stage.
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Figure 2. Kaplan–Meier overall (A), disease-specific (B), and disease-free (C) survival curves accord-
ing to tumor type.

3.2. SOX2 Expression

In normal sinonasal mucosa, nuclear Sox2 staining was found in stem cells in the basal
layer and especially in sustentacular cells in a layer closer to the surface of the mucosa, thus
creating a characteristic “sandwich” staining pattern. Examples of tumoral positive staining
for Sox2 are shown in Figure 1. SNEC showed more positive cases than SNUC and ONB,
at 6/8 (75%), 19/36 (53%), and 6/13 (46%), respectively (Table 3), but the difference was
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not significant (Fisher exact chi square test, p = 0.414). When all histological subtypes were
analyzed together, we found that the absence of Sox2 expression correlated significantly
with a higher rate of relapse (11/13 patients (85%) without expression versus 4/13 patients
(31%) with Sox2 expression; Fisher exact chi square test, p = 0.015). Accordingly, the 5-yr
DFS was higher in patients with Sox2 expression (68%) than in patients without Sox2
expression (13%) (log rank 6.022, p = 0.014) (Figure 3). In addition, patients without
Sox2 expression tended to develop more distant metastases (9/13 patients (70%) without
expression versus 2/13 patients (15%) with Sox2 expression; Fisher exact chi square test,
p = 0.015). Sox2 expression showed no correlation with local recurrences (10/13 patients
(77%) with expression versus 6/13 patients (46%) without Sox2 expression; Fisher exact
chi square test, p = 0.113). No correlations were observed with other clinicopathological
parameters, including localization and stage. We did not observe a significant correlation
between Sox2 expression levels and OS or DSS (respectively, p = 0.851 and p = 0.720). A
survival analysis for each tumor subtype was not feasible due to the low number of cases
with follow-up information.

Table 3. Sox2 and βIII-tubulin staining results.

SNUC SNEC ONB
n = 36 n = 8 n = 13

Sox2
nuclear 53% 75% 46%

βIII-tubulin
strong 64% 75% 85%

moderate 8% 12.5% 8%
weak 17% 12.5% 0%

negative 11% 0% 0%
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3.3. βIII-Tubulin Expression

The immunohistochemical staining of βIII-tubulin was exclusively positive in mature
and immature neurons present in normal olfactory mucosa but not in sinonasal respiratory
mucosa. Examples of tumoral staining for βIII-tubulin are shown in Figure 1. Positive
staining for βIII-tubulin was detected in 52/57 (91%) cases (Table 3). βIII-tubulin staining
in ONB was considered strong in 11/13 (85%) cases and moderate in 1/13 (8%) cases.
Strong, moderate, and weak βIII-tubulin staining were observed in 6/8 (75%), 1/8 (12%),
and 1/8 (12%) SNEC samples. In SNUC, staining for βIII-tubulin was rated strong in 23/36
(64%) samples, moderate in 3/36 (8%) samples, and weak in 6/36 (17%) samples (Table 3).
Thirty cases (58%) with positive staining for βIII-tubulin also showed Sox2 overexpression.
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Cases with moderate/strong βIII-tubulin staining demonstrated a significant asso-
ciation with longer DFS tumors (p = 0.010) (Figure 3). However, βIII-tubulin expression
did not correlate with the development of a recurrence or a distant metastasis during
follow-up. Advanced-stage tumors tended to have more frequent βIII-tubulin expression
(32/33 advanced-stage patients (97%) showed βIII-tubulin expression versus 20/24 early-
stage patients (93%); Fisher exact chi square test, p = 0.094). There were no significant
variations in OS or DSS regarding βIII-tubulin expression. No correlation was found when
analyzing each tumor type separately.

4. Discussion

Sinonasal tumors are among the most difficult malignancies to treat. As we are begin-
ning to know more of the molecular pathways involved, a new range of possibilities for
adjuvant treatments and conservative protocols is coming into view. In the present study,
we analyzed the expression of βIII-tubulin and Sox2 as potential biomarkers for prognosis
and treatment.

Sox2 is a critical transcription regulator and has been postulated as a driver onco-
gene [54,55]. Although epigenetic silencing has been observed [56], several publications
have reported overexpression of Sox2, supporting its role as an oncogene [57,58]. Our find-
ings demonstrate that Sox2 expression is a frequent event in PDC tumorigenesis (54% of
samples). Schröck et al. [32] assessed SOX2 gene amplification and protein expression using
fluorescence in situ hybridization and immunohistochemistry, respectively, in 159 sinonasal
tumors, including 59 squamous cell carcinomas (SCCs), 18 SNUCs, 10 carcinomas asso-
ciated with an inverted papilloma (INVCs), 19 adenocarcinomas, and 13 adenoid cystic
carcinomas. They found SOX2 amplifications and its associated overexpression in more
than a third of all SCCs, SNUCs, and INVCs. Hence, Sox2 expression appears to be a
frequent event in sinonasal tumors. Most studies on SOX2 have concluded that protein
overexpression is significantly correlated with tumor recurrence and poor prognosis [59,60],
which is compatible with its function as a transcription factor linked to stemness [34].
However, the role of SOX2 is still controversial, as there have been other studies that did
not reach the same conclusions [22,29]. Specifically in sinonasal tumors, the results are less
convincing with respect to prognosis; a significant correlation between Sox2 expression
levels and tumor recurrence was not observed [29,32]. In contrast, our results showed that
positive expression of Sox2 was correlated with a lower rate of distant metastasis and better
DFS. These results are similar to those reported by Bayo et al. in head and neck squamous
cell carcinoma. They hypothesized that Sox2 inhibits tumor cell motility in cancer cells
and that low Sox2 expression serves as a prognosticator to identify patients at high risk of
relapse [61]. It is also possible that these contradictory results are related to methodological
differences in Sox2 immunoscoring; three different approaches have been used in the
literature to evaluate its staining [29]. Another explanation for these contradictory results
may be that SOX2 expression is an early tumor-initiating event and is therefore important
for tumor development but is not involved in conveying an aggressive or metastasizing
phenotype [30].

βIII-tubulin upregulation is a common feature that occurs with different frequencies
in almost every type of cancer [62]. To our knowledge, this is the first study of βIII-tubulin
expression in PDC. A high expression of βIII-tubulin was observed in most of our samples
(91%). Nienstedt et al. studied the expression of βIII-tubulin in samples from 667 cancers
of the oral cavity, oro- and hypopharynx, and larynx, and over 90% of the analyzed cancers
showed cytoplasmic βIII-tubulin expression [45]. Thus, PDC shares this characteristic
with head and neck tumors. βIII-tubulin may have an important role in oncogenesis
due to its function as a part of the microtubules. However, the role of βIII-tubulin as a
prognostic marker is not well established. While increased βIII-tubulin has been associated
with aggressiveness, resistance to chemotherapy, and poor clinical outcomes in some
solid tumors [38,44,63,64], other studies have failed to identify an association between
βIII-tubulin expression and clinicopathological data [37,45]. In our study, no significant
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correlations between βIII-tubulin and clinicopathological parameters were observed, in
spite of high expression levels. We did observe a significant association between higher
βIII-tubulin expression and longer DFS, similar to Lobert et al. [65], who reported a trend of
increased βIII-tubulin mRNA in cases with longer DFS. The controversial prognostic value
of βIII-tubulin has been pointed out by other authors, suggesting that βIII-tubulin is a pure
prognostic biomarker only when its expression is conditioned by a toxic microenvironment.
However, when its expression is driven by other factors, the role of βIII-tubulin can be
neutral or even opposite, acting as a marker of a more differentiated and less aggressive
disease [66]. On the other hand, the discrepant conclusions between studies could be due
to variances in methodology, study design, and patient selection or the small cohort sizes
of the studies.

CT is often used to treat PDC. Both βIII-tubulin and SOX2 have been implicated in
mechanisms of chemoresistance [44,67]. High levels of βIII-tubulin have been associated
with resistance to anti-microtubule agents, so testing for this marker could be helpful to
identify patients who might benefit the most from these treatments [47,64,68]. Nevertheless,
some authors state that βIII-tubulin overexpression does not affect anti-microtubule-based
CT [69]. Moreover, βIII-tubulin expression may present different biological characteristics
in different tumors. Our patient data did not include CT information, and further studies
are needed to clarify the role of this marker in chemotherapeutic resistance in PDC. Also,
SOX2 has been linked with chemoresistance. There are a plethora of different mechanisms
contributing to SOX2-induced resistance to therapy as part of its role in inducing stem-
ness [34,67]. Moreover, SOX2 can induce protective autophagy and repress apoptosis,
which are also linked to drug resistance. SOX2 is, therefore, an attractive therapeutic target
to overcome drug resistance. Because SOX2 is still an undruggable transcription factor, the
discovery of selective inhibitors is very limited, although some SOX2-targeting approaches
have been undertaken [67]. In addition to SOX2, other stemness-targeting factors [20] have
been associated with better responses to CT [70].

Another candidate treatment option for PDC is immunotherapy, although few studies
have studied immune checkpoint inhibitors in these tumors. Recent immunotherapeutic
biomarker studies have reported CD8+ TILs in up to 20% of ONBs, which were associ-
ated with a more favorable prognosis [71–73]. PD-L1 expression occurred in 14–20% of
ONBs. CD8+ TILs and PD-L1 expression have also been observed in 17% and 33% of
SNECs, respectively, and in 33% and 16% of SNUCs, respectively [73]. Other biomarkers
include the tumor mutation burden and microsatellite instability, but few data on PDC are
available. Using an immunohistochemical analysis of PMS2, MLH1, MSH2, and MSH6,
Villanueva et al. [73] identified MSI in 2/25 SNUCs, 2/6 SNECs, and 0/14 ONBs, while
in a large study of different sinonasal cancer types Hieggelke et al. [74] found MSI in only
4/125 squamous cell carcinomas but not in SNUCs or SNECs. These first studies indicate
that a considerable subset of PDC patients could benefit from immunotherapy.

Most PDCs arise in the top of the nasal fossa, near the area of the olfactory groove,
showing variable degrees of neuroendocrine differentiation [75]. Due to these features, we
hypothesize that they have a shared origin with different hits during their evolution that
would mark the differences in their histopathology and clinical behavior. Following injury,
quiescent olfactory stem cells rapidly shift to activated, transient states that are unique to
regeneration and are tailored to meet the demands of injury-induced repair. Multiple cell
fates, including renewed stem cells, committed differentiating progenitors, and cancer stem
cells, have been specified during this early window of activation [4,14,76]. Human neural
stem/progenitor cells derived from the olfactory epithelium express the protein markers
Sox2 and βIII-tubulin [77]. We found frequent Sox2 expression in a series of PDCs, possibly
in line with the role of Sox2 in cancer stem cells. SOX2 cross-talks with multiple signaling
pathways. The EGFR/MAPK/PI3K-mTOR-AKT and Wnt/β-catenin signaling pathways
are implicated in some sinonasal carcinomas [2,78]. Sox2 overexpression promotes cell
proliferation and migration by activating these pathways, which at the same time can affect
Sox2 expression [67]. Sox2 also induces the expression of some epithelium-specific genes,
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including βIII-tubulin [79]. In our study, 30/57 samples were Sox2+/βIII-tubulin+. Over
90% of our analyzed cancers showed cytoplasmic βIII-tubulin expression, and 70% showed
a strong staining intensity. The high and persistent expression of Sox2 and βIII-tubulin in
PDC support their common origin on a neural progenitor.

The limitations of our study include its small sample size and retrospective nature.
The limited number of patients and missing follow-up information may have affected the
significance of our results. We analyzed all histological subtypes together due to the small
number of individual cases with follow-up data. Thus, it remains to be seen whether the
value of βIII-tubulin and Sox2 expression in PDC can be validated in a prospective study.

5. Conclusions

The remarkable high prevalence of Sox2 and βIII-tubulin expression in PDC empha-
sizes the putative relevance of these markers in these tumors. The absence of significant
differences in the expression of these markers among different subtypes of PDC supports
the hypothesis of their common origin from a neural stem/progenitor cell. Sox2 overex-
pression correlated with longer DFS and less distant metastasis, while high βIII-tubulin
expression also correlated with longer DFS. More studies evaluating these markers in PDC
should be carried out to further determine their clinical potential.
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