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Abstract: Multiple sclerosis (MS) is a neurodegenerative disease of the central nervous system that
can lead to long-term disability. The diagnosis of MS is not simple and requires many instrumental
and clinical tests. Sampling easily collected biofluids using spectroscopic approaches is becoming
of increasing interest in the medical field to integrate and improve diagnostic procedures. Here we
present a statistical approach where we combine a number of spectral biomarkers derived from the
ATR-FTIR spectra of blood plasma samples of healthy control subjects and MS patients, to obtain
a linear predictor useful for discriminating between the two groups of individuals. This predictor
provides a simple tool in which the contribution of different molecular components is summarized
and, as a result, the sensitivity (80%) and specificity (93%) of the identification are significantly
improved compared to those obtained with typical classification algorithms. The strategy proposed
can be very helpful when applied to the diagnosis of diseases whose presence is reflected in a
minimal way in the analyzed biofluids (blood and its derivatives), as it is for MS as well as for other
neurological disorders.

Keywords: multiple sclerosis; plasma; ATR-FTIR; multivariate analysis; discrimination; logistic
regression

1. Introduction

Multiple sclerosis (MS) is an immune-mediated demyelinating and inflammation
disorder of the central nervous system (CNS) and is the major cause of non-traumatic
neurological disability in young adults. The latest update on the prevalence of the disease
reports that there are about 2.9 million people living with MS worldwide, with a higher
prevalence in higher income areas [1,2]. Risk factors are not well defined and involve
interplay between genetic, lifestyle and environmental factors [3]. There is a gender
prevalence in MS, and women are more affected than men in a 3 to 1 ratio. An important
feature of this disease is that the clinical course can be highly variable and heterogeneous
in the type of clinical manifestations, course of the disease, and degree of disability [4]. The
disability level is generally quantified via the expanded disability status scale (EDSS), a
numeric index which ranges from 0 (normal status) to 10, with a variation step of 0.5. It
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is assigned by a neurologist using an empirical assessment, and evaluates neurological
findings in eight functional systems, as well as the walking ability of the patient [5].

MS diagnosis is not very easy, as the initial symptoms of the disease may be generic
and nonspecific, including changes in vision, mobility, and cognitive abilities [6]. There is
no single test for the diagnosis, but diagnostic criteria have been validated (namely, the
McDonald criteria revised in 2017), based on clinical observation of the patient, as well
as laboratory and instrumental tests such as magnetic resonance imaging and oligoclonal
bands in the cerebrospinal fluid (CSF) [7]. In particular, evidence of neurological damage
disseminated in time and space in multiple regions of the CNS should be seen. Blood
tests are generally used to rule out diseases that resemble MS and might be confused
with it. The overall protocol requires long time for the tests and evaluations to take place,
which are certainly not pleasant for the patients. The ultimate goal is to make an early
and accurate diagnosis in order to provide effective drug treatment to control the disease,
which currently remains incurable.

Recently, the application of analytical and spectroscopic methods to analyze human
biofluids (e.g., plasma, serum, saliva, urine, bile), searching for biomarkers or even aim-
ing at early stage disease detection, is becoming an important issue in the biomedical
research field. Such methods include nuclear magnetic resonance (NMR) [8,9], mass
spectrometry [10], differential scanning calorimetry [11–13], and Raman and infrared
spectroscopy [14–16]. These experimental methods are often supported by a number of
multivariate statistical approaches in the analysis of their data. Vibrational spectroscopy
can be applied in different modalities and has shown great potential to classify, either
as healthy or pathological, a number of biological materials, such as cells, tissues, blood,
saliva, and for many different diseases [17]. The samples’ preparation requires minimal or
no treatment, and experiments are rapid and label-free. These advantages have contributed
to a wide range of applications, and studies for diagnostic purposes have been reported for
different forms of cancer [18,19], COVID-19 [20–22], systemic amyloidosis [23], as well as
neurodegenerative diseases [24,25]. Despite infrared spectroscopy having demonstrated
its potential as a diagnostic tool, the translation of these experimental and computational
techniques into clinical practice does not seem so straightforward. Standardized protocols
should be implemented and established at different steps, including sample acquisition
and storage, condition measurements, data correction, and analysis [17,26,27].

In a previous study, we applied attenuated total reflection Fourier transform IR (ATR-
FTIR) spectroscopy to the plasma of 85 subjects: 45 MS patients with different clinical
records in terms of disability level and time duration of the disease and 40 healthy controls
(HC) with no inflammatory or autoimmune disease diagnosis [28]. Although CSF may
be the ideal source of biomarkers for MS, it is not an easy biofluid to be collected, and
the availability of healthy samples for comparison is also a limiting factor. In contrast,
blood can be routinely collected; it perfuses all body organs, and also exchanges molecules
(potential biomarkers) with the CSF.

The analysis of our experimental data showed that the spectral features of absorbance
spectra for HC and MS are similar to each other, with the latter having a slightly higher
variability [28]. Using univariate and multivariate statistical approaches on the ATR-FTIR
spectra, it was found that: i) MS patients were characterized by a higher lipid/protein
ratio compared to HC individuals; and ii) a random forest algorithm was able to select
regions for discriminating the disease occurrence with a good degree of accuracy (sensitivity
78%; specificity 83%) with respect to other two classification algorithms (PCA-LDA and
PLS-DA).

In this work, we have proposed a new data analysis based on a linear combination of
a number of spectral biomarkers, derived from those experimental spectra, including some
previously selected. We showed that the predictive model obtained with this approach
significantly improves the performance of the classification, especially for the specificity
index. The advantage of using this model is that it combines the most important spectral
indicators that jointly contribute to the samples’ classification, through a simple expression
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giving a single score value, and can be easily used to establish whether the subject may
likely belong to the class of healthy or diseased individuals.

2. Materials and Methods
2.1. Biological Samples and Spectral Acquisition

Blood samples of 45 MS patients with a confirmed diagnosis according to the McDon-
ald criteria [7] were collected at the Annunziata Hospital in Cosenza (Italy). The criteria
of inclusion and the degree of disease progression were established by the neurologist.
A more detailed description of the clinical and personal information of the patients can
be found in ref. [28]. Briefly, the data included: age (average 42.7, range 22–69), gender
(31 females, 14 males), disease phenotype/form (38 relapsing-remitting multiple sclerosis,
RRMS; 7 secondary-progressive multiple sclerosis, SPMS), disease duration (from 1 to
47 years), disability degree expressed in terms of EDSS (range 0.5–7.0). Most of the MS
patients (32/45, 71%) had a mild score (EDSS ≤ 3.0) and the others (13/45, 29%) had a
moderate/severe level of disease (EDSS ≥ 3.5).

HC subjects (n. 40) were recruited at the same Annunziata Hospital (n. 21) and
among the blood donors at the Health Center of the University of Calabria (n. 19). The
gender distribution was 21 females and 19 males, with an average age of 37.3 years (range
24–60 years, one outlier of 71 years). For all of them there was no evidence of neurological
or inflammatory disease.

All the participants were fully informed about the study and provided their written
consent. The study was approved by the Ethics Committee of the northern area of the
Calabria region (protocol code n. 50, 14 February 2017).

ATR-FTIR experiments were performed as reported in ref. [28]. For each plasma sam-
ple, up to five replicate spectra were acquired and then averaged to obtain the absorbance
spectrum of each individual. The regions selected for the statistical data analysis were the
fingerprint region (1800–900 cm−1) and high region (3050–2800 cm−1).

2.2. Computational Analysis

Statistical differences in the vector normalized absorbance spectra of MS and HC
groups were assessed using a two-tailed parametric t-test. A p-value ≤ 0.05 was considered
significant in all statistical tests.

A number of spectral indicators were selected from the absorbance spectra based on
their biological significance in this specific study, and also considering those commonly
identified in the FTIR spectra of biofluids [25,28–31]. The considered spectral biomarkers
are listed in Table 1, and are used to construct the final linear predictor for distinguishing
between healthy controls and patients. To this end, a generalized linear model (see, for
example, the data analysis of Agresti [32]) is considered to relate the p spectral biomarkers
x =

(
x1, . . . , xp

)
to the probability π(x) of having the disease. In particular, a logit link

function is considered, as the response is a binary variable, and the resulting logistic
regression model can be expressed as follows:

π(x) =
exp

(
β0 + ∑

p
j=1 β jxj

)
1 + exp

(
β0 + ∑

p
j=1 β jxj

) (1)

or, alternatively:

logit[π(x)] = β0 +
p

∑
j=1

β jxj (2)

where β0 represents the intercept of the model.
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ACH2asym/AHR 0.4423 ± 0.0059 0.4402 ± 0.0097 0.230 [29] 
AOlefinic/AHR 0.0110 ± 0.0012 0.0115 ± 0.0015 0.106 [29] 

Aamide I/Aamide II 0.7250 ± 0.0165 0.7115 ± 0.0136 <0.001 [29] 
I1453/I1650 0.3719 ± 0.0166 0.3834 ± 0.0148 0.001 [25,28] 
I1739/I1468 0.0702 ± 0.0158 0.0796 ± 0.0229 0.034 [28] 

BandwidthC=O 16.0404 ± 1.1338 15.9344 ± 1.0337 0.653 [28] 
Bandwidthamide I 36.5558 ± 0.7052 36.3905 ± 0.7795 0.310 [28] 

I1320 0.0342 ± 0.0012 0.0349 ± 0.0010 0.003 [28] 
I1510 0.0559 ± 0.0010 0.0563 ± 0.0008 0.024 [25,28] 
I2860 0.0597 ± 0.0030 0.0616 ± 0.0031 0.004 [28] 
I3016 0.0120 ± 0.0013 0.0128 ± 0.0016 0.016 [28] 

 
Figure 1. ATR-FTIR spectra of plasma of HC and MS patients in the high region (left panels) and 
fingerprint region (right panels). Pre-processing spectral analysis includes cut, rubberband baseline 
subtraction, and vector normalization. The stretching vibration of specific functional groups and 
peaks of interest are also shown (see text for details). 

To select the relevant covariates, a backward stepwise selection approach was used 
for removing the weakest related variables, based on the probability of the Wald statistic. 

Figure 1. ATR-FTIR spectra of plasma of HC and MS patients in the high region (left panels) and
fingerprint region (right panels). Pre-processing spectral analysis includes cut, rubberband baseline
subtraction, and vector normalization. The stretching vibration of specific functional groups and
peaks of interest are also shown (see text for details).

Table 1. Spectral indicators derived from data in Figure 1, indicating the area ratios of the
lipid/protein components, intensity ratio of specific peaks; bandwidth of the ester C=O at 1739 cm−1

and of the amide I peak; intensity values in the fingerprint region (1320 and 1510 cm−1) and in the
high region (2860 and 3016 cm−1). Values are given as average ± standard deviation. The p-value is
obtained via unpaired t-test. The last column refers to studies with a similar choice of the indicated
spectral regions and wavenumber of functional groups.

HC MS p-Value Refs

AHR/Aamide I + amide II 1.0552 ± 0.0107 1.0621 ± 0.0114 0.005 [25,28,31]
AC=O/AHR 0.0036 ± 0.0009 0.0042 ± 0.0013 0.028 [29]
AC=O/A1453 0.0341 ± 0.0080 0.0388 ± 0.0120 0.038 [28]

AHR+C=O/Aamide I + amide II 1.0591 ± 0.0112 1.0666 ± 0.0122 0.004 [29]
ACH2asym/ACH2sym + CH2asym 0.8750 ± 0.0068 0.8744 ± 0.0101 0.776 [31]

ACH2asym/AHR 0.4423 ± 0.0059 0.4402 ± 0.0097 0.230 [29]
AOlefinic/AHR 0.0110 ± 0.0012 0.0115 ± 0.0015 0.106 [29]

Aamide I/Aamide II 0.7250 ± 0.0165 0.7115 ± 0.0136 <0.001 [29]
I1453/I1650 0.3719 ± 0.0166 0.3834 ± 0.0148 0.001 [25,28]
I1739/I1468 0.0702 ± 0.0158 0.0796 ± 0.0229 0.034 [28]

BandwidthC=O 16.0404 ± 1.1338 15.9344 ± 1.0337 0.653 [28]
Bandwidthamide I 36.5558 ± 0.7052 36.3905 ± 0.7795 0.310 [28]

I1320 0.0342 ± 0.0012 0.0349 ± 0.0010 0.003 [28]
I1510 0.0559 ± 0.0010 0.0563 ± 0.0008 0.024 [25,28]
I2860 0.0597 ± 0.0030 0.0616 ± 0.0031 0.004 [28]
I3016 0.0120 ± 0.0013 0.0128 ± 0.0016 0.016 [28]

To select the relevant covariates, a backward stepwise selection approach was used
for removing the weakest related variables, based on the probability of the Wald statistic.
The maximum likelihood estimation method was considered to obtain the regression
coefficients, β j (j = 0, . . . p), and the Wald test was used to assess their significance.
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The obtained estimated linear predictor can be used to classify each subject as diseased
or healthy, according to whether it assumes a positive or a negative value or, equivalently,
whether the corresponding estimated probability is higher or lower than the cutoff of 0.5.

The performance of the final model in predicting MS diagnosis was evaluated through
the usual metrics, namely sensitivity, specificity, and accuracy. Furthermore, the receiver
operating characteristic (ROC) curve was obtained and the area under the curve (AUC) is
considered a measure of the predictive power of the method. Finally, a bootstrap method
was used to test the difference in the AUC of the ROC curves among patients with different
EDSS scores or disease duration.

3. Results
3.1. ATR-FTIR Spectra of MS and HC Plasma Samples: Identification of the Spectral Biomarkers

Figure 1 shows the ATR-FTIR spectra of MS patients and HC in the two most significant
regions: 3050–2800 cm−1, containing the symmetric and asymmetric stretching vibrations
of CH2 and CH3, and the fingerprint region in the 1800–900 cm−1 range, where the most
prominent peaks are the amide I and amide II peaks that are due to the absorption band of
proteins.

The visual inspection of the spectra does not provide any information about key spe-
cific features of MS disease. To reveal the differences between the two groups of individuals,
we can determine a number of spectral indicators correlated both with the molecular com-
ponents present in the plasma and with specific peaks associated with molecular functional
groups. To this end, in the present analysis, we consider several spectral indicators (see
Table 1), some of them previously derived [28] and others determined in the current analy-
sis using the same experimental spectra. Similar indicators were considered in previous
studies (see the references in Table 1) and describe (1) the area ratios of molecular com-
ponents such as lipid/proteins determined as the area, AHR, corresponding to the region
between 3050 and 2800 cm−1 and the area corresponding to the amide I and amide II peak,
AHR/AamideI+amideII, the area of the olefinic C=CH peak over AHR, Aolefinic/AHR, the area
of the asymmetric stretching vibration peak of CH2, ACH2as/AHR, and Aamide I/Aamide II;
(2) the intensity ratio of specific peaks of functional groups, I1453/I1650, I1739/I1468; (3) the
bandwidth of amide I and of the ester C=O peak at 1739 cm−1; and (4) the intensity at 1320,
1510, 2860, and 3016 cm−1, selected as important wavenumbers for the discrimination of
MS from HC according to the random forest classification algorithm. Bandwidth values
were determined at 75% of the height of the maximum peak intensity from the baseline.

As a preliminary statistical evaluation, we determined the average and standard
deviation of these spectral indicators, and assessed the mean differences between MS and
HC using two-tailed t-test. The p-values reported in Table 1 show that most of the spectral
parameters have a statistical significance (p < 0.05), but for five of them the difference
between the two groups of subjects is not significant. In Figure 2 the box-plots of each
individual parameter are reported.

3.2. Linear Predictor for Classification

As a further step, our goal was to simultaneously select and combine the most sig-
nificant spectral indicators described in the above section into a concise predictive tool
for diagnostic purposes. In this respect, as described in Section 2.2, we started from the
full model containing all the spectral indicators reported in Table 1, and obtained the final
model via a backward stepwise selection to remove the irrelevant indicators. The remaining
variables, which mainly contributed to the classification of the two groups of subjects, are
the six indicators reported in Table 2. In the same table, the fitted coefficients of the linear
combination described in Equation (2) are given, together with their standard error and the
corresponding results from the Wald test.
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Figure 2. Box-plot of the spectral parameters derived from the analysis of the ATR-FTIR absorption
spectra, illustrating the distribution of their values in the HC and MS groups. The p-value is indicated
as * (p < 0.05); ** (p < 0.01); *** (p < 0.001).

Table 2. Fitted coefficients β̂ j for the indicators in the final model, corresponding standard errors,
and results from the Wald test.

^
βj

S.E. z p-Value

ACH2asym/ACH2sym + CH2asym 659.218 177.363 13.814 <0.001
Aamide I/Aamide II −200.233 53.352 14.086 <0.001

I1453/I1650 58.460 24.677 5.612 0.018
I1320 −1897.473 710.464 7.133 0.008
I1510 −2128.135 670.065 9.821 0.002
I2860 1618.604 498.808 19.530 0.001

Constant −367.473 139.994 6.890 0.009

Considering the obtained values for the selected indicators, a classification for each
subject can be obtained and compared with their real health status, to assess the capability of
the model in distinguishing between patients and controls. A comparison of the predicted
probability distributions within the HC and MS groups is shown in Figure 3. The plot
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clearly shows a very good performance of the model, with the clustering of the HC subjects
on the left and the MS on the right of the cutoff dashed line at 0.5. The misclassified subjects
in both groups are only a few samples and these are located, respectively, to the right and
to the left of the threshold value.
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Figure 3. Distribution of the predicted probability for HC (upper panel) and MS (bottom panel)
individuals. The dashed vertical line indicates the 0.5 score threshold. Score values ≤0.5 indicate
subjects classified as healthy, score values ≥0.5 indicate subjects classified as diseased.

In Table 3, the values for sensitivity, specificity, accuracy, and AUC are reported
for both the whole MS group and separated in subgroups according to EDSS values or
disease duration. In all cases, the indicators show the good capability of the fitted model to
distinguish between MS and HC, with an accuracy and an AUC higher, respectively, than
85% and 87%. The accuracy of the model is also reflected in the global ROC curve, which is
characterized by an AUC value of 0.9 (Figure 4). Moreover, no difference in the AUC of the
ROC curves is found when patients with different EDSS scores (p-value = 0.833) or disease
duration (p = 0.265) are compared.

Table 3. Performance of the fitted linear predictor in distinguishing HC from MS, considered either
as a whole group or divided in subgroups according to disability level and disease duration.

Sensitivity (%) Specificity (%) Accuracy (%) AUC

80.00 92.50 85.88 0.90

EDSS
0.5–3.0 81.25 92.50 87.50 0.90
3.5–7.0 76.90 92.50 88.70 0.89

Disease
Duration

≤10y 81.50 92.50 88.10 0.87
>10y 77.70 92.50 87.90 0.94

Tests of the statistical significance of the classification score values were performed in
the HC and MS groups according to age and gender. No significant correlation was found
between the linear predictor values and age in the MS (p-value = 0.521) or control group
(p-value = 0.610), and no difference in the scores’ distribution was observed between males
and females (MS: p-value = 0.983; HC: p-value = 0.529).
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4. Discussion

The diagnosis of MS, and in general of neurodegenerative diseases, may be very
complex, as there is no clinically validated single test available. The need for new diag-
nostic tools based on advanced experimental and computational techniques could be of
considerable support to neurologists, and allow patients to be treated early with therapies
to control these currently incurable diseases. In particular, biofluid spectroscopy is relevant
in the field of liquid biopsy for searching and identifying diagnostic biomarkers, with the
additional support of multivariate analysis [17,33].

For our investigation, we used ATR-FTIR spectroscopic data obtained from plasma
samples collected during the routine clinical observation of MS patients. The FTIR ab-
sorbance spectra recorded for the diseased subjects showed similar spectral features com-
pared to those registered for the healthy subjects, both in the high region (3100–2800 cm−1)
and in the fingerprint region (1800–900 cm−1) of the spectra. This similarity has been found
in other FTIR studies on plasma [19,20,30], and accounts for the similarity of the molecular
components. To highlight subtle spectral differences between the two classes of subjects,
several indicators related to the two most representative molecular components, lipids
and proteins, were selected. Almost all of these bioindicators (Table 1) show statistical
significance, reveal specific biochemical changes, and, therefore, are good candidates for
sample differentiation. In particular, the lipid/protein ratio in the MS group is higher than
the HC group’s. The increase of the lipid level is observed in the plasma of MS patients
and, in parallel, the protein level decreases, as it can be evidenced, for example, by the
Aamide I/Aamide II ratio. The trend of these molecular components is an important signature
for MS disease and depends on the biofluids interrogated. In fact, our results agree very
well with previous FTIR studies on the serum of MS patients, where a total protein content
decrease and a lipid content increase, with respect to controls, was also observed [30].
On the contrary, in the CSF this ratio is reversed [29]. The altered lipid content is a direct
consequence of the demyelination process that is a hallmark of MS. Within the lipid analysis
it can be also noted that the intensity of the C=O band increases in MS, possibly due to the
presence of oxidized lipids produced by free radicals whose concentration increases during
inflammatory states [34,35]. Similarly, concerning the protein content in plasma, where
albumin and immunoglobulin G (IgG) are the two most abundant proteins, the observed
decrease may result from the extravasation of plasma components through damaged ves-
sels. Interestingly, the albumin and IgG quotients, related to their concentration in the
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serum and CSF, are a measure of the blood–CSF dysfunction and have been used as an
indicator of blood–brain barrier (BBB) integrity [36,37].

In addition to the univariate analysis of the spectral parameters that can potentially be
linked to disease-induced biochemical changes, we combined these indicators to construct
a new diagnostic index. The result of this procedure is a linear predictor in which only the
spectral parameters that jointly contribute most to the sample differentiation of the two
classes, HC and MS, are included (Table 2). The six spectral biomarkers that we established
in the final model belong to both the infrared regions considered, the high region and
the fingerprint region. It is interesting to note that the regression analysis reveals the
significant role of the ACH2asym/ACH2sym+CH2asym ratio in predicting the healthy status,
even if the mean difference between HC and MS patients appears not to be significant in
the univariate analysis. This is due to the correlation between the considered covariates
that, even if it does not pose a multicollinearity problem, acts in determining a suppressor
effect (see, for example, [38,39]). This simple predictive tool provides, for our cohort of
samples, a better classification in terms of sensitivity, specificity, and accuracy compared
to the previous analysis based on random forest, PCA-LDA, and PLS-DA algorithms [28].
In fact, sensitivity increased from 78 to 80% whereas specificity increased from 83 to
92.5%, and the AUC value was 0.9. Compared with the research data on the spectroscopic
analysis of biological samples for MS and other neurological diseases, the performance
values obtained for our model are, as far as we know, the most favorable. In fact, in MS
studies, an AUC value of 0.86 was obtained in a FTIR study on CSF aiming to separate
patients with clinically isolated syndrome from RRMS patients [29], whereas slightly lower
AUC values (0.82–0.83) were obtained from NMR data [40]. Finally, by using the random
forest model on FTIR fingerprint data, an overall precision of 83.3% was found when
distinguishing healthy from pathological (MS and amyotrophic lateral sclerosis) serum
samples [41]. Considering other neurological diseases, such as Alzheimer’s, Paraskevaidi
et al. [25] reported specificity and sensitivity values of 70% from the FTIR blood analysis
of the fingerprint region. These values increased to 86% when other clinical data were
included in the classification model. A high level of performance (≥90%) for classification
models have been generally reported for the spectroscopic analysis of biological fluids
(plasma, serum, saliva) for cancers [14,18,19] and COVID-19 [20,22] detection. Obviously,
when the biofluid used is in contact with the pathological region, it is more sensitive in
reporting disease-related information. However, peripheral blood and its constituents seem
to be the most convenient specimens for diagnostic and biomarker detection. In fact, the
challenge with liquid biopsy is the possibility of using readily available biofluids with little
or no invasiveness for the patients.

5. Conclusions

The results presented in this study have demonstrated that ATR-FTIR spectroscopy
applied to human plasma, supported by statistical regression methods, provides valuable
spectral biomarkers that can be used for further analysis to improve sample classification
in MS disease. A set of parameters was derived from univariate and multivariate statistical
analysis of the experimental infrared spectra representing the biochemical fingerprint of
the biofluid of HC and MS patients. These spectral biomarkers, characterized by a different
statistical significance value, were combined into a linear predictor representing a single,
simple diagnostic index whose value varied between 0 and 1. Through a backward stepwise
procedure, the irrelevant variables were removed, and only the six most important ones
were considered in the final model. Using this model, the predicted probability calculated
for our samples provides a better performance than that previously obtained by PCA-
LDA, PLS-DA, and RF classification algorithms. It is important to point out that the two
approaches are not alternative and, in fact, this new data analysis used spectral biomarker
data partially derived in previous work.

To create a more general validity, the logistic regression model should be applied
to different infrared spectra for sampling other diseases, in which a sub-optimal level of
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classification has been obtained. Moreover, it should be also made clear that the starting set
of parameters may be different from the ones we have used here and should be related to
the data set available and to the possible biochemical differences of the disease.

Finally, the study we presented, consisting of human plasma analysis with ATR-FTIR
spectroscopy, combined with suitable data analysis, is a very promising diagnostic tool for
MS, demonstrating that even for neurological diseases it is possible to obtain very effective
discrimination results.
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