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Abstract: Machine learning and digital health sensing data have led to numerous research achieve-
ments aimed at improving digital health technology. However, using machine learning in digital
health poses challenges related to data availability, such as incomplete, unstructured, and fragmented
data, as well as issues related to data privacy, security, and data format standardization. Furthermore,
there is a risk of bias and discrimination in machine learning models. Thus, developing an accurate
prediction model from scratch can be an expensive and complicated task that often requires extensive
experiments and complex computations. Transfer learning methods have emerged as a feasible
solution to address these issues by transferring knowledge from a previously trained task to develop
high-performance prediction models for a new task. This survey paper provides a comprehensive
study of the effectiveness of transfer learning for digital health applications to enhance the accuracy
and efficiency of diagnoses and prognoses, as well as to improve healthcare services. The first part of
this survey paper presents and discusses the most common digital health sensing technologies as
valuable data resources for machine learning applications, including transfer learning. The second
part discusses the meaning of transfer learning, clarifying the categories and types of knowledge
transfer. It also explains transfer learning methods and strategies, and their role in addressing the
challenges in developing accurate machine learning models, specifically on digital health sensing
data. These methods include feature extraction, fine-tuning, domain adaptation, multitask learning,
federated learning, and few-/single-/zero-shot learning. This survey paper highlights the key fea-
tures of each transfer learning method and strategy, and discusses the limitations and challenges
of using transfer learning for digital health applications. Overall, this paper is a comprehensive
survey of transfer learning methods on digital health sensing data which aims to inspire researchers
to gain knowledge of transfer learning approaches and their applications in digital health, enhance
the current transfer learning approaches in digital health, develop new transfer learning strategies to
overcome the current limitations, and apply them to a variety of digital health technologies.

Keywords: digital health; domain adaptation; feature extraction; federated learning; fine-tune;
inductive transfer learning; portable devices; transductive transfer learning; transfer learning;
wearable devices

1. Introduction

Digital health (DH) refers to the use of information and communication technolo-
gies in healthcare and medicine to enhance healthcare services and outcomes [1,2]. DH
technologies encompass both hardware and software services and applications, including
telemedicine, wearable devices, and augmented /virtual reality [3]. Hardware components
include: (a) sensors for measuring vital signs and detecting physiological events, (b) communi-
cation and network tools for transmitting and exchanging information between patients /users
and healthcare providers, and (c) mobile devices (such as computers and smartphones) for
storing, displaying, and processing collected and transmitted information [3].
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In healthcare, a multitude of technologies have been developed to enhance diagnosis
and prognosis outcomes, as well as to support decision-making and treatment plan selec-
tions. The primary objectives of DH are centered on improving the accuracy of diagnosis
and predictions, expediting the diagnosis process, and reducing diagnosis and treatment
costs [1-3]. Additionally, DH technologies aim to empower users, including patients, to
track their health status and wellness, while simultaneously enhancing the overall health-
care experience for both providers and patients [2]. Furthermore, DH provides continuous,
automatic, and mobile health monitoring, which have the potential to significantly improve
patients’ quality of life [3].

Embedded and integrated sensors found in portable and wearable devices are central
to the DH system, particularly in the new telemedicine paradigm developed to enhance
the quality of healthcare services [4,5]. These devices benefit from the integration of
Artificial Intelligence technology (Al). The latter aims for providing sophisticated end-to-
end solutions that are technologically intensive and cost-efficient [6]. By combining these
technologies, healthcare providers can receive comprehensive and accurate information of
patient health, and provide personalized treatment plans and diagnoses, thus leading to
improving patients” outcomes and the more efficient use of healthcare resources [7].

The portable mobile monitoring technology can be classified into three main cate-
gories based on the number of embedded sensers: homogenous-based technology, dual-based
technology, and heterogenous-based technology [8]. Homogenous-based technology consists of
a single type of sensor, such as electrocardiography (ECG), electroencephalography (EEG),
electromyography (EMG), the global positioning system (GPS), photoplethysmography
(PPG), or an accelerometer. Dual-based technology employs two different types of sen-
sors for various forms of health monitoring to increase the reliability and accuracy, such
as the accelerometer and gyroscope, the accelerometer and PPG, ECG and PPG, blood
pressure and temperature, and ECG and EEG. Heterogenous-based technology embeds
multiple sensors in a single device to provide multifunction monitoring services, as well
as to improve the quality and precision of disease diagnosis. Anikwe et al. presented
and discussed various DH applications based on the above three technologies [8]. Most
heterogenous-based technology applications utilize Internet of Things (IoT) technology to
provide multidimensional features and real-time services in mobile health (mHealth) [3,9].
Involving IoT for medical applications and services is generally called the Internet of
Medical Things (IoMT) and refers to a network of Internet-connected medical devices,
sensors, and software apps that provide online, flexible analysis and monitoring services.
There are various IoMT applications based on their purpose and location of use, such as
in-home IoMT, on-body IoMT, community IoMT, and in-hospital IoMT. For example, a
smart health monitoring system was developed using Internet of Things (IoT) technology
as a contactless tracing and treatment method for patients with COVID-19 to monitor blood
pressure, heart rate, oxygen level, and temperature [10].

Wearable devices can be classified, according to the worn/mounted location, into the
following groups: (a) wrist-mounted devices, (b) head-mounted devices, (c) E-textiles, and
(d) smart jewelry and accessories [11]. Figure 1 presents examples of wearable and attach-
able technologies in digital healthcare. Wrist-mounted devices, such as fitness bands, smart
watches, and stretchable patches, are noninvasive monitoring devices that are developed
for physiological monitoring [11]. For example, wrist bands, watches, and arm-mounted
stretchable patches are used for monitoring cardiovascular signals (such as heart rate
and blood pressure) and sweat biomarkers (such as glucose, sodium, uric acid, lactate,
etc.) [8,11]. The most popular wearable devices for health monitoring and tracking are
the digital electrocardiogram (ECG) devices that are featured in smart watches and other
fitness trackers, as well as wearable patches and chest straps. Head-mounted devices,
such as mouthguards, are used for salivary-content monitoring (lactate, uric acid, and
glucose) [12-15], while eyeglasses are used for sweat-content monitoring (lactate and potas-
sium), as well as for cardiovascular signal monitoring (heart rate) [16,17]. Smart glasses
based on pulse-sensing were used to continuously monitor the heart rate by a photo-
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plethysmography (PPG) sensor placed on the nose pad [18]. E-textiles include textiles with
electrodes which are used for sweat-content monitoring (glucose and lactate) [19], those
worn on the calf for cardiovascular signal monitoring (heart rate and temperature) [11], and
footwear for physical activity monitoring (foot motion) [20]. Smart jewelry and accessories,
such as rings, necklaces, and clips, are used for physical activity monitoring (sleep, daily
activity) [11], and belts worn on waist and chest are used for physical activity monitoring
(step count and sitting time), as well as for physiological signal monitoring (ECG and
direct current) [11,21]. Most ECG devices in smartphones and fitness trackers are based
on a single-lead ECG and are connected with apps to store the ECG tracing. The sensors
that adhere to the skin, such as patches, are mostly wireless and water-resistant; they can
monitor and collect large amounts of continuous data for cardiologists for up to 30 days.
Smart continuous glucose monitoring (CGM) systems are common portable devices that
allow patients to measure the glucose levels in their blood [22]. This smart device is small
in size and can be connected to a smartphone to monitor blood sugar levels over time,
and have the ability to share the information with healthcare providers [22]. There are
three CGM modalities based on the method of placing the sensors: non-invasive (based
on optical sensors, such as contact lenses that do not require skin puncture), minimally
invasive (based on a microneedle-type sensor), and invasive (based on an implantable
sensor that is inserted under the skin) [22,23].

Head mounted devices
head bands
smart lens
smart glasses

smart mouthguards

E-textiles Wrist-mounted

devices
smart clothes
7 ‘ smart watches
smart sockes . ;
fitness bands

h
smart shoes strechable patches

Smart jewelry and
accessories

smart rings
smart belts

smart necklace

Figure 1. Wearable and attachable technologies for health monitoring based on the worn/mounted
location.

Machine Learning (ML), including Deep Learning (DL), methods have been widely
employed across diverse domains, particularly in healthcare, to enhance the well-being
and safety of individuals. The influence of these methods within DH has been substantial,
revolutionizing the analysis and utilization of patient data. As a result, there has been a
notable improvement in the precision and efficiency of diagnoses, anomaly detection, and
the prediction of potential health concerns [24-26]. ML methods include both traditional
ML algorithms (such as the decision tree (DT), support vector machine (SVM), K-nearest
neighbor (KNN), and artificial neural network (ANN)) and DL models, which are just
ANN’s with a hierarchical deep structure of multiple layers. These algorithms are trained



J. Pers. Med. 2023, 13, 1703

4 0f 53

using sufficient data to develop reliable automatic prediction models. By training on
vast amounts of electronic health records, medical images, sensor data, and genomic
data, ML/DL can develop high-performance predictive models for accurate diagnoses
and prognoses, and personalized patient care, thereby lowering healthcare costs [26-28].
Powered by ML/DL, DH will further revolutionize healthcare services [27,29].

The application of robust and effective ML/DL algorithms demands substantial
amounts of high-quality data collected and processed by experts [24,30], and the suffi-
ciency of the data depends on the adequate size of the data in terms of the number of
samples (i.e., the number of control and patient subjects), meaningful descriptors in each
sample, and/or accurate annotations. Processing the data is commonly performed at the
preprocessing stage to provide high-quality data that contain meaningful attributes, and it
is therefore essential to develop reliable ML /DL models. The most common preprocessing
data methods are: data transmission, data storing, data cleaning/denoising, data transfor-
mation, as well as data fusion. Data-transformation methods include sampling/resampling,
rescaling, augmentation, feature selection, and feature extraction. These methods are impor-
tant to develop robust attributes from the raw data, improve the prediction accuracy, as well
as to speed up the learning performance. Information fusion is also widely used to develop
accurate ML models, which includes: (1) data fusion or multimodal data from various
sensors and resources, for example, using medical imaging data as well as wearable-based
sensor data to; (2) feature fusion, which includes combining various types of features
that can be extracted from the data, such as texture, shape, histogram, and DL features;
(3) decision fusion, performed as a postprocessing step to increase the performance and
reduce the prediction error rate. The effectiveness of the complex computations in ML /DL
methods depends on the number of samples, the sample size, the type of data, and the size
and type of hardware (i.e., physical and cloud memory to store data and perform complex
computations) [24,30,31]. Although the accuracy of DL methods outperforms traditional
ML methods, most DL methods require big data and a huge amount of physical or cloud
memory to deal with the complex and deep architectures that are required of the expensive
computations, as shown in Figure 2. Using traditional ML methods is the ideal choice when
the memory size is small and/or the data size is small in terms of the number of samples.
However, traditional ML methods require robust features to overcome the small data size,
a common situation in healthcare. Extracting meaningful features is a time-consuming
and complex process that might require conducting extensive experiments to produce
the best model configuration. The state-of-the-art ML models are frequently used across
various domains; however, they do not necessarily produce high-quality outcomes due to
the differences in the tasks and/or the domains that make the same model less efficient
when adopted [32-34].

Transfer learning (TL) is a ML approach that has been developed for leveraging
previously acquired knowledge in one domain to enhance the performance in a different
but related domain [32-34]. TL relies on generalization theory, which posits that individuals
can apply their knowledge and skills to new contexts by recognizing the underlying
relatedness [34]. In general, TL methods are employed as an ML optimization tool to
improve the performance, provide better generalization, reduce overfitting, and mitigate
bias [32]. Suppose that a DL model was developed and trained on a large dataset of colored
images containing thousands of instances from four groups: car, bike, ship, and airplane.
The purpose was to automatically classify images into one of these four groups. Now,
consider a research group with 200 MRI images containing tumors (benign or malignant).
They aim to develop an automatic classification DL model, but the limited number of
medical images (200 samples) is insufficient for creating an accurate model. Instead, the
researchers can utilize transfer knowledge from a well-trained model, such as the one
developed for colored images, to create a new model for a healthcare task; for instance,
they can classify MRI images into benign or malignant tumors. This can be done by using
the pretrained model, updating only the output layer to classify the images into two classes,
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and updating the pretrained model parameters by training it on the MRI data, as shown in

Figure 3.
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A neural network (NN) is a computational model comprising interconnected layers of nodes designed for information pro-
cessing. The network begins with an input layer (contains node X1-Xn), where each node corresponds to a feature in the input
data. Between the input and output layers, hidden layers (contains nodes N1-Nm) conduct computations, capturing intricate
patterns within the data. The output layer then generates the final results, tailored to the specific task, whether it's classification
or regression. Nodes in hidden and output layers apply activation functions to the weighted sum of inputs, introducing non-
linearity and complexity. Weights and biases associated with connections between nodes are dynamically adjusted during train-
ing, allowing the network to learn from data. Deep Neural Network (DNN) is just a NN with multiple of hidden layers that
required expensive computations. The single row — between layers in DNN means the connections between multiple nodes
of two layers as in NN.

Figure 2. Examples of neural network and deep neural network architectures.
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Figure 3. Example of transferred knowledge from a color nonmedical image prediction model
(source) that was developed based on big data to the medical image prediction model (target) based
on small data.

There are several criteria have been used to categorize TL methods and strategies.
In [33], the TL methods were grouped into three main categories with respect to the data
annotation status, as shown in Figure 4: (a) inductive transfer learning, (b) transductive
transfer learning, and (c) unsupervised transfer learning. The domains of the source and
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target models in inductive TL are the same, and the tasks can be different but related. In
transductive transfer learning, the tasks are the same, and the domains can be different but
related. Domains and tasks are different but related in unsupervised learning. Zhuang et al.
discussed two different approaches to categorize the TL methods: data-based interpretation
and model-based interpretation [34]. The data-based interpretation approach is centered
around transferring knowledge through the adjustment and transformation of data. In
this approach, TL methods can be categorized into two distinct categories based on their
objectives and strategies. On the other hand, model-based interpretation focuses on the
development of accurate prediction models in the target task by transferring knowledge
based on the model control strategy, parameter control strategy, and model ensemble
strategy [34].

Transfer Learning
]
1 1 1
Inductive Unsupervised Transductive
Target domain labels Unlabled source and Only source domain
available target domains labeles avilable
|
| | | |
Multi-Task  Self-Taught Covariance Shift ~ DOmain Adaptation
Labeled Unlabled Same domain/task Different domains but
Source source related tasks

Figure 4. Transfer learning approaches in the perspective of the data labeling status in the source and
target domains.

There are various TL approaches that have been developed and examined to im-
prove healthcare services and patients” health, such as fine-tuning [35-40], feature ex-
traction [41-44], multitask learning [45,46], domain adaptation [40,47,48], federate learn-
ing [49-51], as well as meta learning methods (such as zero-shot [52], one-shot [53], and
few-shot learning [53,54]). In this paper, we discuss twenty-seven studies in detail, dis-
tributed as presented in Figure 5, to highlight the applications of TL to enhance healthcare
services and outcomes based on DH sensing data, as shown in Figure 6.

14%

M Features Extraction W Fine-Tuning
Multi-Task m Few/Single/Zero-Shot

Domain Adaptation
m Federated Learning

Figure 5. The distribution of the twenty-seven studies that are discussed and clarified in this paper
based on the following TL methods: feature extraction, fine-tuning, domain adaptation, multitask
learning, few-/single-/zero-shot learning, and federated learning.
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Figure 6. Applications of TL on DH sensing data to enhance healthcare services and outcomes.

This survey paper aims to present a comprehensive study of the applications of TL
techniques to enhance DH services and advance healthcare outcomes. The primary moti-
vation for this study stems from the necessity to address challenges, such as limited data
availability, data-sharing restrictions, and the high computational demands, within the
healthcare sector, all of which can hinder the development of effective ML prediction mod-
els. Furthermore, this survey paper explores a variety of DH sensing technologies that can
serve as abundant data sources for the development of automated and continuous health
monitoring and diagnostic methods, primarily based on ML and DL techniques. This study
is positioned to become a valuable resource for both practitioners and researchers in the
field of digital healthcare, offering insights and resources for researchers and practitioners
in the field of digital healthcare to the application of TL techniques for empowering digital
healthcare technologies. Our paper is primarily focused on demonstrating how to over-
come ML challenges using a TL approach. The literature included in this survey paper has
been sourced from diverse research databases, including, but not limited to, IEEE Xplore,
MDPI, PubMed, Google Scholar, ACM Digital Library, and others; in our search, we used
the included keywords in this survey paper, and more that are related to the applications of
TL on DH sensing data and DH sensing technologies, such as TL for brain tumor detection,
applications of multitask learning on medical imaging data, TL for sleep staging, TL for
mental health, applications of TL on wearable sensor data, attachable and wearable devices
for health monitoring, etc.

The remainder of this survey paper is organized as follows: Section 2 presents the
various sensing technologies that are currently available or that can be utilized in the
future for DH applications based on ML. These technologies provide efficient methods for
health monitoring and disease diagnosis, and they also generate sufficient data that can be
utilized for ML and DL applications; Section 3 explains the meaning of TL and illustrates
the categories; Section 4 presents the methods, strategies, and applications of TL on DH
sensing data to improve healthcare services and outcomes; Section 5 summarizes the use
of TL methods and strategies to address the challenges related to the developments of
accurate ML prediction models within the field of DH. In addition, it highlights potential
challenges that could result in negative transfer.

2. Digital Health Sensing Technologies

Sensing technologies play a critical role in DH, enabling the collection of various phys-
iological, behavioral, and environmental data to monitor and manage health conditions,
along with enhancing the diagnosis and prognosis outcomes [1-3,16]. These technologies
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include wearable sensors, biosensors, environmental sensors, and imaging sensors [8].
Wearable sensors are widely used in activity monitoring [8,36,47,48], sleep tracking [37-40],
fitness tracking [8,16], and health monitoring [8,11,22,23]. Biosensors, on the other hand,
can measure various biomarkers, such as glucose, cholesterol, blood pressure, and other
vital signs [12,15-17]. Environmental sensors can detect air quality, temperature, and
humidity levels, which can impact health conditions [16]. Imaging sensors can provide
a noninvasive way to visualize internal organs and diagnose various diseases. ML/DL
methods have been used widely to analyze patients’ data that have been collected from
DH sensing technologies to enhance diagnoses and prognoses by providing early disease
detection, automatic and fast diagnosis, personalized medicine, decision support, patient
monitoring, and user self-monitoring. In this paper, we classify the sensing technologies in
DH into two main categories: (a) portable technologies and (b) nonportable technologies.

2.1. Portable Sensing Technologies

Portable DH devices and technologies refer to the use of portable (at-home and in-
hospital) electronic devices and technologies that allow individuals to monitor and manage
their health and well-being, as well as the healthcare provider to diagnose and manage
individuals’ illnesses. The at-home devices can range from simple fitness trackers that
monitor the steps taken and calories burned to more complex medical devices that can
measure vital signs, such as blood pressure, heart rate, and blood glucose levels; these
technologies are designed to be easy to use and accessible to individuals in a variety of
settings, including at home, in the workplace, and on-the-go. The in-hospital portable
devices can be small or big size, and some of them require experts and trained people to
setup and use them. Below, we categorize the portable DH technologies into five groups.

2.1.1. Wearable and Attachable Sensing Technologies

With the advent of digital healthcare, wearable and attachable devices have gained
popularity as tools for health monitoring [8,16]. These devices offer a convenient and
easy method for individuals to monitor their health in real-time [8]. Most of these devices
provide the continuous and noninvasive monitoring of key biological parameters and
vital signs, such as blood pressure, heart rate, cholesterol, glucose level, and oxygen
saturation levels [8,13,17]. This real-time health data can help individuals identify potential
health problems before they become serious and take proactive steps to manage their
health. Wearable devices are electronic devices that are designed to be worn on the body;,
such as smart watches, fitness trackers, smart rings, smart shoes, and smart glasses [8].
One advantage of wearable devices is their convenience and ease of use. Some of these
devices are designed to be worn continuously, and often come equipped with sensors
that collect and transmit data about the wearer’s health and physical activity [8,11]. In
contrast, attachable devices are electronic devices that can be attached to the body [8],
such as heart rate monitors and blood glucose meters. These devices are typically used for
short periods and are designed to collect specific health information. They are designed to
be worn throughout the day, providing continuous health monitoring without requiring
any extra effort on the part of the user [11]. However, their continuous use can also be a
disadvantage, as they may require frequent charging and can sometimes be uncomfortable
to wear. Attachable devices, on the other hand, are generally more precise and accurate in
measuring specific health indicators. They are often used by healthcare professionals to
monitor patients with specific conditions, such as heart disease or diabetes [11]. However,
they may be less convenient for everyday use, as they require more effort to attach and
remove, and may not be suitable for long-term monitoring [55]. The patch is a major
attachable step towards the continuous, real-time, and noninvasive health monitoring of
chronic conditions, as well as early-warning signs of disease development [16]. Devices
capable of the noninvasive sensing of health status offer significant improvements in the
management of chronic conditions, such as diabetes and hypertension. Ultimately, the
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choice between wearable and attachable devices depends on the specific health needs and
preferences of the user [16].

Table A1 presents the most common wearable and attachable sensing technologies
in DH, and highlights their applications and features. Wearable/attachable sensing tech-
nology is divided into two main categories based on the number of embedded sensors:
homogenous-based sensors (containing only a single sensor) and heterogenous-based sen-
sors (containing multiple sensors) [8]. Wearable-based sensors include the EEG, EMG, PPG,
and GPSA. The EEG sensor is used to detect abnormalities in heart functions, irregular
heart rthythm, and cardiovascular disease [8]. The EEG sensor is used to continuously
measure and monitor the electrical activities of the human brain through scalp-wearable
devices, and they are commonly used to identify brain health issues, such as epileptic
seizures, brain injuries, antidepressant treatments, and sleep-stage analysis [8]. The EMG
sensor is widely used for measuring the electric signal from muscular activities to diagnose
neurological disorders. The global positioning system (GPS) sensor is used for activity
classifications by detecting the location and velocity of a subject, and it was utilized to
manage contact tracing to minimize the spread of COVID-19 [56,57]. The PPG sensor is an
optical sensor which is utilized to measure the volumetric variation in blood circulation
to study sleep disorders [58]. The accelerometer sensor measures the human acceleration
of force and dynamically assesses muscle movement, and it is used in human activity
identification studies, such as fall detections in the elderly [59,60].

A wearable heterogeneous-based sensor is a type of sensor that is integrated into a
wearable device with the purpose of measuring multiple physiological parameters simulta-
neously [8]. It can be utilized to monitor changes in vital signs, identify the early symptoms
of illness, and provide feedback on lifestyle choices, such as exercise and diet.

In the following, we present various attachable/wearable DH sensing technologies:

o  Blood-Pressure-Monitoring (BPM) Technology

BPM devices are used to monitor blood pressure. Wireless BPMs are highly portable
and utilize smart technology to record and monitor patients” blood pressure and send
the obtained information to the healthcare provider. There are two main types of out-of-
office BPMs: the arm-cuff and wrist-cuff. Other blood pressure devices used through a
finger (such as blood pressure monitors in smartphones) are less reliable. These wearable
devices are developed to be used as out-of-office blood pressure measures in order to
optimize the management of hypertensive individuals [61]. However, these devices mostly
accept a limited number of measurements to be recorded, and have discomfort limitations,
specifically at night [61]. The microelectromechanical system (MEMS) blood pressure
technology is a chip-based low-cost system with low-nonlinearity error and high-precision
inertial sensors [62]. The smartphone-based technology is an extension of the oscillometric
principle for cuffless blood pressure monitoring [63]; the smartphone is embedded with
a PPG and force transducers that are used as a blood pressure sensor to measure the
blood volume oscillations and applied pressure [63]. To activate the sensor, the user
presses her/his finger against the sensor location in the smartphone to increase the external
pressure of the underlying artery.

e  Cardiac Monitor Technology

The most popular wearable devices for health monitoring and tracking are digital
electrocardiogram (ECG) devices that are featured in smart watches and other fitness track-
ers, as well as wearable patches and chest straps. The ECG records the electrical signal
from the heart to detect abnormalities and different heart conditions. The ECG devices that
are used in hospitals and healthcare centers contain a standard 12-lead electrocardiogram,
which is a representation of the heart’s electrical activity recorded from the electrodes on
the body’s surface. There are many ECG attachable/attachable devices that are produced
to be worn or used by people as a flexible portable monitoring method. Most ECG devices
in smartphones and fitness trackers are based on a single-lead ECG and are connected with
apps to store the ECG tracing. Wearable ECG monitoring devices are used as low-cost
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devices to store and plot ECG data in real-time [64—66]. Some of these devices are adapted
with IoT remote monitoring technology to transmit the measured data online to healthcare
providers [67]. For cardiac monitoring, compact ECG patches are commonly used. The
Zio Patch, measuring 123 x 53 x 10.7 mm and weighing just 34 g, is water-resistant and
captures up to 14 days of continuous single-lead ECG data [68]. Technicians apply it to the
patient’s left pectoral region using a skin adhesive. Users can initiate monitoring with a but-
ton press, then send the device and diary to a data processing center for analysis, generating
a report for the ordering physician [68]. In [69], a patch-based mobile cardiac telemetry
system was developed for COVID-19 patients outside intensive care and telemetry units,
proving useful for in-patient management and arrhythmia detection.

e  Wearable Mental-Health-Monitoring Technology

Various wearable devices have been developed to be used in various crucial applica-
tions in mental health and panic disorder research studies due to the simplicity of collecting
continuous online data and the availability of multisensory data that are related to un-
derstanding people’s mental health conditions and statuses [70]. For example, wearable
sensors are used to track physiological parameters, such as heart rate and breathing pat-
terns, and the changes in heart rate are found to be associated with stress or anxiety [71,72].
Some other wearable devices can track behavioral signals and parameters, such as sleep
patterns, physical activity, and social interactions, that are connected to depression and
anxiety [73-75]. In [74], the authors used Lief, a smart patch, as a wearable device and
placed it beneath the left breast to collect physiological signals to manage stress remotely
so to reduce the symptoms of anxiety. In addition, smart wearable devices are a good
source of real-time monitoring and can provide real-time feedback to people related to their
mental health [74,76]. Some wearable devices can collect data as well as deliver personal-
ized interventions and recommendations based on the collected and processed measures
and parameters to improve people’s sleeping habits [73] and activity [77]. Moreover,
wearable devices can be used to deliver online therapy recommendations and treatment
decisions [78]. The most common types of mobile wearable and portable devices that are
used in mood and anxiety disorder applications are: blood pressure cuffs, patches, headsets,
headbands, wrist bands, smartphones, electronic textiles, and smart watches [79], and the
most common types of sensors that are embedded in these devices are: accelerometers, acti-
graphs, ECGs, EEGs, EGGs, EMGs, GPSs, PPGs, glucometer magnetometers, microphones,
pedometers, as well as temperature and infrared proximity [79].

o  Wearable Sleep Technology

Sleep medicine experts utilize polysomnography (PSG) systems to record and analyze
sleep studies performed in a sleep laboratory. These PSG systems use sensors to measure
things such as eye movements, oxygen levels in an individual’s blood, heart and breathing
rates, snoring, and body movements. PSG systems are used to diagnose sleep disorders,
such as sleep apnea, narcolepsy, insomnia, REM sleep behavior disorder, and sleepwalking.
These systems are high-cost and require complicated setup with trained professional health-
care staff. In addition, they are inconvenient for sleep monitoring. Current developments
in wearable devices help to overcome the PSG system limitations and complexities. Several
sensors are utilized in PSG wearable-based systems, such as electrodes to measure the
EEG for brain waves (location: forehead, scalp, and ear), and the ECG and impedance
cardiography (ICG) to measure the heart activities (location: chest) [80]. In [81], the au-
thors developed a wearable monitoring device based on multisensors for sleep studies as
a comfortable and reliable technology. They used an accelerometer, light sensor, sound
sensor, temperature sensors, as well as an optical PPG sensor. Microsleep is a short sleep
episode that lasts for few seconds and is caused by sleep deprivation, sleep apnea, and
narcolepsy [82]. These episodes have very dangerous effects on communities and peo-
ple’s lives, such as a reduction in work performance, traffic accidents, and work injuries.
Pham et al. developed WAKE, a behind-ear wearable technology, to detect microsleep by
monitoring biomarkers from eye movements (using an electro-oculogram), brain waves
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(using an EEG), facial muscle contractions (using electromyography), and sweat gland
activities on the skin (using the electrodermal activity score) [82]; this microsleep device
was developed as a flexible, accurate, comfortable, cost-consuming, and continuous moni-
toring trend that can be involved in a wide range of cognitive monitoring and improvement
applications [82]. It contains ten embedded electrodes, adheres comfortably behind the ear,
and requires only 20 min for setup, which is much quicker than the traditional PSG, which
takes around 45 min. Moreover, textile-based sensors have been developed as comfortable,
wearable, smart physiological monitoring devices to be used for noninvasively diagnosing
various diseases, such as obstructive sleep apnea—hypopnea syndrome and cardiovascular
diseases [83,84]. In [83], the authors developed a small-sized flower-shaped textile (which
contained two layers of a silver-coated fabric as the base and electrode flower shapes as the
superstructure) to be stitched /sewn on clothes, such as bands, to measure pulse waves at
the forehead, wrist, arm, and chest [83]. In [84], the authors developed a small-sized smart
waterproof textile based on a triboelectric sensor that was adhered to the waterproof Band-
Aid bandage for ambulatory cardiovascular monitoring; they combined their smart textile
with an ANN to continuously and precisely measure the systolic and diastolic pressure [84].
In [85], the authors developed and fabricated a wearable graphene-textile-based strain
sensor with negative resistance variation through a simple thermally reduced graphene
oxide (GO) to be knitted directly on clothing or to be adhered in various body locations
to detect various physiology signals and monitor various subtle motions; for example,
attached on the side of the mouth for various motion detections and facial expressions; on
the finger, head, and wrist for pulse monitoring and handwriting recognition; on the neck
for pulse monitoring as well as vocal vibration detections; near the abdomen for abdominal
breathing detection and analysis; on various body joints to detect the bending of joints [85].
In [86], the authors reported the manufacturing process of a silicone—textile composite
resistive strain sensor for monitoring human motion and physiological parameters; the
wearable sensor can be worn on the chest and elbow to monitor respiratory activity and
joint motion, respectively; it has a high sensitivity, low hysteresis, and ease for shaping
custom designs, while also being flexible, skin-safe, and moisture-resistant.

e  Wearable Noninvasive Continuous-Glucose-Monitoring Technology

Continuous-glucose-monitoring (CGM) systems are a commonly portable device that
allows patients to measure their glucose levels in real-time [87]. The most common glucose
monitoring methods are invasive, based on finger-prick testing [13]. However, invasive
methods can cause a physical and mental burden and an infection risk for diabetes patients,
and circadian fluctuations are also reported [13,14]. Thus, noninvasive continuous-glucose-
monitoring methods have been developed to reduce the risks and burdens in measuring
and monitoring glucose levels. These noninvasive devices are small in size and can be
easily connected to a smartphone to monitor blood sugar levels over a period of time [88].
Additionally, the collected data can be shared with healthcare providers online, allowing
for better management and adjustment of treatment plans. Because of plasma leakage
from blood into tears via the blood-tear barrier, glucose levels in tears are related with
blood glucose [89]. Smart contact lenses based on optical sensors are developed as a
noninvasive glucose monitoring system to measure glucose levels in the tear fluid [89].
Contact leans are included with various features to be used as an ideal medical device
for biosensing applications [90]. Another type of noninvasive glucose monitoring system
is the sweat glucose monitoring patch [91]; this system uses sweat sensors that can be
worn on the skin, typically on the arm or wrist, to measure glucose levels in the sweat
and provide a real-time reading. The detection of the glucose levels based on the contact
lenses is based on electrochemical sensors that consist of hydrogels with immobilized
glucose oxidases (GOx) [92]. Nanomaterials, such as gold-doped graphene and gold porous
structures [93,94], and carbon nanotubes [91], are utilized to enhance the glucose sensor
sensitivity. However, the most common challenges in these methods are the inaccurate
detection of glucose levels and the low sensitivity due to the low-glucose concentration
in the small volume of tears [95]. To overcome these limitations, Kim et al. proposed and
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developed smart contact lenses based on HA-Au@Pt BiNCs immobilized in the nanoporous
hydrogels of the glucose sensor for long-term and robust continuous glucose monitoring to
capture rapid changes in glucose levels [95].

e  Wearable Activity-Recognition Technology

Activity recognition is a valuable tool that can provide insights into an individual’s
physical activity levels and patterns, which can have significant impacts on overall health
and well-being. Accurately tracking physical activity can help individuals make informed
decisions about their lifestyle and exercise habits. In addition, healthcare professionals can
use this information to develop personalized treatment plans. There are several applications
of activity recognition, including fitness tracking, healthcare monitoring, elderly care,
movement disorder, and sport performance analysis [59,60,96]. Fitness tracking monitors
physical activity levels and provides feedback on progress towards fitness goals. Healthcare
monitoring can track patients with chronic conditions, such as heart disease or diabetes,
and provide healthcare professionals with real-time data on physical activity levels and
health metrics [97]. Elderly care involves monitoring elderly individuals and alerting
caregivers or emergency services in the event of a fall or a sudden change in physical activity
levels [59,60]. Sport performance analysis can provide athletes with valuable insights into
areas of improvement and injury prevention. The type of sensors commonly used in
activity recognition include accelerometers, gyroscopes, and magnetometers [35,37,49,96].
These sensors can detect various types of movement and changes in body orientation,
allowing for the identification and tracking of physical activities, such as walking, running,
or cycling. Accelerometers measure the changes in the linear acceleration, gyroscopes
measure the changes in the rotational velocity, and magnetometers detect the changes in
the Earth’s magnetic field. By combining the data from these sensors, wearable devices
can accurately recognize and classify different types of physical activities. Smart watches,
fitness trackers, smart clothing, and smart shoes are the most common activity-tracking
wearable devices [97-100]. These devices can be mounted on different body locations, such
as the arms, legs, wrists, chest, and more, to collect data from various sensors [97,100].

e  Wearable Mouth-Based Systems Technology

Smart mouthguard monitoring systems have been embedded with biosensors for
health monitoring and diagnosis [12,15]. In [12], the authors developed a smart wearable
mouthguard as a highly sensitive, selective, continuous, and stable noninvasive monitoring
biosensor to detect the salivary uric acid levels in a real-time and wireless fashion [12].
It was embedded with an enzyme (uricase)-modified screen-printed electrode system, a
microcontroller, and a Bluetooth low-energy transceiver to transmit the measured infor-
mation to mobile computers (such as smartphones and laptops) so to be displayed and
stored for diagnosis and monitoring purposes. In [15], the authors developed a smart
noninvasive wearable oral-monitoring glucose biosensor to measure saliva glucose [15];
this biosensor was integrated in a mouthguard to be installed in the oral cavity. The sensor
circuit has a small size and contains a glucose biosensor, a battery, and a telemetry system
to sample the saliva, continuously measure glaucous levels, and transmit the readings
wirelessly to mobile devices (smartphones/tablets) [15]. The observation of experienced
dentists or X-ray are the best ways to diagnose dental caries; however, dental caries is hard
to detect in its early stages, and it is mostly detected when the cavity or decayed surface
appears [101]. Li et al. developed a wearable fluorescent mouthguard, which consisted
of a zinc oxide-polynanocomposite, to precisely identify the locations of lesion sites in
humans [102]. This mouthguard displayed a highly sensitive and selective response to
volatile sulfur compounds in oral cavities, and showed high fluorescent stability, perfect
biocompatibility, and low biological effects. A wireless electronic solution for orthodontic
bond failure diagnosis was presented in [103], and it was based on developing a low-power-
capacitive-humidity implanted microchip that contained a humidity sensor to detect the
bond failure between the tooth and orthodontic braces. Tongue impairments in the elderly
impact swallowing, speech, and nutrition. A low-power smart wireless intra-oral wearable
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device with six capacitive coplanar sensors was developed to monitor tongue movements
and strength, making it suitable for long-lasting rehabilitation without the need for X-rays
or internal mouth cables [104].

e  Smart Shoes Technology

Various types of sensors have been integrated with smart shoes [105], such as (a) a
pressure sensor to measure foot pressure, commonly used for diabetic patients, (b) an
ultrasonic sensor to measure the distance to an object, mostly used by blind people, (c) an
accelerometer sensor to track movements, widely used for gait analysis, (d) a temperature
sensor to measure the body temperature and also the atmospheric temperature, (e) an
altitude sensor to provide an early warning to climbers or trekkers while at high altitudes,
(f) a piezoelectric pedometer to count the number of steps and speed for a specific time,
and (g) a gyroscopic sensor to track the angular movement for gait walking pattern iden-
tifications [105]. Smart wearable shoes serve two key purposes: enhancing sports and
well-being, and enabling medical monitoring and diagnosis. Users utilize them to track
daily activities, such as step count and speed [106], gait analysis, and joint stress detection,
for improved lifestyle choices.

o  Tear Biomarker Monitoring Using Eyeglasses-Nose-Bridge Pad Technology

The authors developed a noninvasive real-time tear alcohol and glucose biosensor
monitoring device that is placed outside the eyes [17]; wireless electronic circuitry was
embedded on the eyeglasses frame to provide a fully portable and convenient-to-use
sensing device. These eyeglasses monitoring devices based on the nose-bridge pad was
developed to overcome the downsides of a direct contact of the embedded sensor of the
contact lens with the eye, such as potential vision impairment [89,92], unsteady mechanical
stability, and non-biocompatibility due to immune response and toxic reactions [87].

e  Attachable Patch/Bands for Sweat-Biomarker-Monitoring Technology

Sweat glands, primarily found in the hands, feet, lower back, and underarms, have
led to the development of various portable technologies for measuring sweat biomarkers
to diagnose diseases and monitor health. These include head /wrist bands [91], head /arm
patches [107], touchpad-fingertip sensors [108], and smart clothing (underwear, socks,
gloves, and finger cots). These technologies detect biomarkers, like lactate for fatigue,
glucose for diabetes, cortisol for mental stress, creatinine and urea for kidney disorders,
and caffeine and lactate for dosage tracking and metabolic monitoring. Bae et al. intro-
duced a stretchable patch with an omnidirectionally stretchable nanoporous gold (NPG)
electrochemical biosensor and a stretchable passive microfluidic device for accurate glucose
monitoring from sweat [107]. Emaminejad et al. developed a smart wearable head /wrist
band platform for multiplexed in situ perspiration analysis, measuring sweat metabo-
lites, electrolytes, and skin temperature for personalized diagnostics and physiological
monitoring [91]. Bo Wang et al. devised a thin hydrogel micro patch on the fingertip to
sample sweat and monitor biomarkers, like caffeine and lactate, using an electrochemical
sensor [108].

2.1.2. Implantable Sensing Technology

Implantable sensing technology involves the use of small devices implanted within the
body to measure and monitor various physiological parameters, such as the blood glucose
levels, heart rate, blood pressure, and oxygen saturation [109,110]. They can also be used to
detect and monitor the presence of specific substances in the body, such as drugs, hormones,
and neurotransmitters. These devices can be used to diagnose and manage a range of
medical conditions, from chronic diseases like diabetes and heart disease to neurological
disorders like epilepsy. One of the key benefits of implantable sensing technology is that it
allows for the continuous monitoring of physiological parameters, providing more accurate
and reliable data than intermittent testing [110,111]. This can be particularly important
for people with chronic conditions that require ongoing management. Another advantage
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of implantable sensors is that they can be used to deliver targeted therapies directly to
the affected area of the body. For example, implantable pumps can be used to deliver
medications to treat pain, spasticity, and other symptoms associated with neurological
disorders. Implantable sensors can also be used to monitor the effectiveness of treatments
and adjust dosages as needed. This can help to optimize treatment outcomes and reduce
the risk of complications. Implantable sensors can be categorized into three distinct types
based on their functionality [112]: biopotential sensors that are designed to measure
electrical activity, mechanical sensors that respond to changes in mechanical parameters,
and chemical biosensors that are specifically engineered to transduce the concentration of a
targeted molecule of interest. Overall, implantable sensing technology has a wide range
of applications in the field of medicine. Constant efforts are being made to develop new
devices to improve patient outcomes and enhance their quality of life. Presented below are
some examples and applications of implantable sensing technology:

1.  Glucose Monitoring: Implantable glucose sensors can be used to monitor blood sugar
levels in people with diabetes [110]. These devices can continuously measure glucose
levels and send data to a handheld device or smartphone, allowing patients to adjust
their insulin dosages as needed.

2. Cardiac Monitoring: Implantable cardiac monitors can be used to track heart rhythm
and detect abnormalities, such as arrhythmias [113]. These devices can also monitor
the heart rate, blood pressure, and other vital signs to help doctors diagnose and
manage heart disease [110,113].

3. Neurological Monitoring: Implantable sensors can be used to monitor the brain activ-
ity in people with epilepsy, helping doctors to diagnose and treat the condition [112].
They can also be used to monitor intracranial pressure in people with traumatic brain
injuries.

4. Drug Delivery: Implantable sensors can be used to monitor drug levels in the body,
allowing doctors to adjust dosages as needed [110,112,114]. They can also be used to
deliver medications directly to the affected area of the body, reducing the risk of side
effects [112].

5. Cancer Treatment: Implantable sensors can be used to monitor tumor growth and
response to treatment, helping doctors to adjust treatment plans as needed [114,115].
They can also be used to deliver targeted therapies directly to the tumor site, minimiz-
ing the damage to healthy tissue.

2.1.3. Ingestible Sensing Technology

Ingestible sensing technology refers to the use of miniature electronic devices that are
swallowed or ingested in the form of pills or capsules to monitor various physiological
parameters within the gastrointestinal tract [116,117]. These devices contain sensors that
can detect and transmit information about the pH levels, temperature, pressure, and other
relevant indicators, and can provide valuable insights into digestive processes, medication
effectiveness, and disease progression [116]. Ingestible sensing technology relies on a
variety of sensors to measure physiological parameters within the body. Dagdeviren
et al. developed an ingestible sensor that can be placed on the lining of the stomach to
monitor vital signs and mechanical changes in the gastric cavity [118] for diagnosing and
treating motility disorders, and monitoring food intake in individuals with obesity. In
another study [119], researchers developed an ingestible device that combined probiotic
sensor bacteria with microelectronics, which can communicate with external devices like
smartphones. They engineered heme-sensitive probiotic biosensors, and showed the
precise detection of gastrointestinal (GI) bleeds in pigs, with a remarkable sensitivity of
100% after 120 min. Below, the most common types of sensors used in this technology are
presented [117]:

1.  pHsensors are used to measure the acidity or alkalinity of the digestive system. These
sensors can be used to diagnose conditions like acid reflux, gastroesophageal reflux
disease (GERD), and Helicobacter pylori infection.
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2.  Temperature sensors are used to measure the temperature of the digestive system.
These sensors can be used to monitor body temperature and detect fever, as well as to
diagnose conditions like Barrett’s esophagus and inflammatory bowel disease.

3. Pressure sensors are used to measure the pressure within the digestive system. These
sensors can be used to diagnose conditions like gastroparesis, achalasia, and other
motility disorders.

4. Electrolyte sensors are used to measure the levels of various electrolytes within
the body, including sodium, potassium, and chloride. These sensors can be used
to monitor electrolyte imbalances and diagnose conditions like dehydration and
electrolyte disorders.

5. Glucose sensors are used to measure blood sugar levels within the body. These
sensors are commonly used to monitor glucose levels in people with diabetes.

6. Drug sensors are used to monitor the absorption and distribution of medications
within the body. These sensors can be used to optimize drug formulations and dosages
for better treatment outcomes.

7.  Magnetic sensors are used to detect the presence of magnetic particles within the di-
gestive system. These sensors can be used to diagnose conditions like gastrointestinal
bleeding.

2.1.4. Smartphones

The use of smartphones in DH has revolutionized the way we approach healthcare,
enabling individuals to monitor their health and wellness anytime and anywhere. Smart-
phones are increasingly being utilized as portable devices for a wide range of health-related
applications, including fitness tracking, medication reminders, and telemedicine [120-122].
Through the use of various sensors and applications, smartphones can track important
health metrics, such as heart rate, blood pressure, and sleep quality, providing users
with real-time insights into their physical and mental well-being [123,124]. In addition,
smartphones can be used to store and share medical records [120], access educational
resources, and connect with healthcare professionals via telemedicine services [7,8,120].
The widespread availability and affordability of smartphones make them a powerful tool
for improving health outcomes, particularly in underserved and remote areas, where access
to traditional healthcare services may be limited. However, the use of smartphones in DH
also raises concerns regarding privacy, data security, and the accuracy and reliability of
health-related information. As such, it is important to ensure that appropriate measures
are in place to safeguard user privacy and data security, and to verify the accuracy and
reliability of health-related data obtained through smartphone-based applications. Smart-
phones are equipped with various sensors that can be used for health monitoring and DH
applications [121,123]. Table 1 displays the common sensors found in smartphones with
their features and applications.

2.1.5. Others

There are several other portable sensing technologies that are not considered in the
previous categories, such as portable smart inhalers [125,126], ultrasound devices [127],
and in-hospital ECG devices [128], EEGs [129], PPGs [130], spirometers [131], blood ana-
lyzers [132], oximeters [133], gas sensors, and smart pill bottles [134]. Smart inhalers are
a type of medical device that incorporates electronic sensors and wireless connectivity to
provide additional features beyond traditional inhalers [125,126]. They are used to treat
respiratory conditions, such as asthma and chronic obstructive pulmonary disease.
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Table 1. Smartphones’ sensors and their applications in digital healthcare [121,123].

Sensor Function Application
he phone’ . . ..
Accelerometer Measures the p one’s track.mg.physmal actlv.lty
movement and orientation monitoring sleep quality
movement tracking
physical activity
GPS Provides location information monitoring
detecting location-based
health information
Measures the phone’s rotation . . . .
Gyroscope tracking physical activity

to detect changes in position

Photoplethysmography (PPG)

Measures the heart rate

fitness tracking to
monitor heart health
stress management

Photodiode sensor (ambient
light sensor)

Measures the amount of light
in the user’s environment

adjusting the phone’s
display brightness to
reduce eye strain
improving sleep quality

Infrared (IR) sensor
(proximity sensor)

Detects the presence of nearby
objects or surfaces, as well as
the contactless monitoring of
vital signs

remote patient
monitoring

sleep apnea detection
stress management
fall detection

2.2. Nonportable Sensing Technologies

Nonportable DH technologies refer to those devices that are not easily transportable

and usually require a fixed installation. These technologies can be used in various settings,
such as hospitals, clinics, and smart homes, to provide continuous monitoring and improve
patient outcomes. Below are the most prevalent forms of nonportable sensing technology:

1.

Stationary medical imaging technologies: Imaging technologies are noninvasive
methods to visualize internal organs and diagnose various diseases [135]. Examples
include X-ray, computed tomography (CT), magnetic resonance imaging (MRI), and
positron emission tomography (PET). Owing to the extensive literature available on
medical imaging methods and their applications in detecting and diagnosing various
diseases and abnormalities, we have not provided detailed features of each method.
Instead, we have referenced key review articles, such as Hosny et al., which presented
a comprehensive overview of imaging technologies that have been enhanced with
artificial intelligence techniques to diagnose various diseases [136]. Guluma et al. also
reviewed DL methods in the detection of cancers using medical imaging data [137].
Additionally, Rana et al. discussed the use of ML and DL as medical imaging analysis
tools for disease detection and diagnosis [138]. These articles provide valuable insights
into the types of medical imaging data and applications of advanced computational
techniques in medical imaging, and demonstrate their potential in improving disease
diagnosis and patient outcomes.

Environmental sensing technologies: They are used to detect and monitor environ-
mental factors that can impact health conditions. Examples include air quality sensors,
temperature sensors, and humidity sensors [139]. These sensors are used in smart
homes. By combining these sensors with other DH technologies, they can play signifi-
cant roles in improving the quality of care, reducing healthcare costs, and enhancing
the independence and well-being of individuals [140].

Monitoring and diagnostic technologies: Monitoring and diagnostic technologies
based on biosensors are used to monitor and diagnose health conditions [141]. These
devices are used to measure various biomarkers, such as glucose, cholesterol, and
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other vital signs, such as ECG, EEG, electro-oculography (EOG), and electroretinogra-
phy (ERG).

4. Robotic surgery systems: They are advanced medical devices that utilize robotic
arms and computer-controlled instruments to assist surgeons in performing mini-
mally invasive surgeries [141-143]. Examples of common robotic surgery systems
include: (1) the da Vinci Surgical System [141], which is comprised of a console for
the surgeon, and several robotic arms that hold surgical instruments and a camera;
(2) MAKOplasty [142], utilized for orthopedic surgeries, such as knee and hip replace-
ments; (3) the CyberKnife [143], employed for radiation therapy to treat cancer; (4) the
ROSA Surgical System, utilized for neurosurgery procedures.

The most prevalent sensors utilized in digital healthcare aimed at developing robust
ML/DL models for health monitoring and diagnosis are presented in Table A2. In this
table, we have outlined the data types and the ML /DL applications associated with each
DH sensor technology [144-203].

3. Transfer Learning: Strategies and Categories
3.1. Why the Transfer Learning Technique

In this paper, the term classical learning (CL) denotes a learning approach based on
traditional ML or DL methods which emphasizes the design and development of prediction
models from scratch using labeled or unlabeled collected data to perform predictions on
future data.

Any prediction problem based on ML can be categorized into three categories accord-
ing to annotation status of the train and test datasets: (a) supervised, (b) semi-supervised,
and (c) unsupervised [162]. In the supervised learning approach, both the train and test
datasets are labeled and suitable to generalize an accurate prediction model; in supervised
learning, the prediction model performs mapping between inputs (features) and outputs
(labeled targets) [204]. Various prediction tasks can be performed in the supervised learn-
ing approach: classification, detection, segmentation, and regression. In semi-supervised
learning, the available data contain small labeled data and large unlabeled data, and both
labeled and unlabeled data samples are used to generate a prediction model [205]. The
unsupervised learning approach utilizes unlabeled data only, and it is used widely in
dimensionality reductions, feature selections, and clustering applications. In addition, there
is reinforcement learning (RL), which aims to achieve an optimal behavior in an interactive
environment by using feedback from a series of previous actions [204]. Like in supervised
learning, the RL maps between the inputs and outputs, but the feedback is a series of
correct learning actions, as in unsupervised learning. Both RL and unsupervised learning
perform learning in unlabeled data, but unsupervised learning discovers the similarities
and differences between the data samples and RL learns an optimal behavior by achieving
maximum rewards.

The following two terms are used in ML problems to define the data distribution and
the purpose: the domain and task [206]. The domain D provides information about the
inputs to an ML algorithm (data), and it is defined by two components, a feature space X
and a marginal probability distribution P(X) [206]. The task T describes the purpose of
the ML model, and two components are used to define the task T: a label space Y (outputs)
and a predictive function f (-). The predictive function is learned from the feature vector
and label pairs {x;, y;}, where x; € X and y; € Y [206].

If a specific ML algorithm based on the CL approach is used to solve two problems
(i.e., the source and target), the domains and distributions of the data, as well as the tasks
of both the source and target problems, should be same. Additionally, the target data are
usually a subset of the training data (source data). If either the domains and distributions
or the tasks in both the source and target are dissimilar, the CL method is mostly unproper
to develop accurate prediction models. In addition, there are four main challenges that
arise when users attempt to develop accurate and reliable ML prediction models based on
the CL approach [31]:
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1.  Appropriate modeling algorithms: there are many different types of ML algorithms,
and choosing the right modeling algorithm for a particular task requires careful
consideration of the data, the problem, and the desired outcome.

2.  Hyperparameter tuning: each ML method has hyperparameters that must be set
before training, such as the learning rate, regularization strength, number of layers, etc.
Determining the optimal values for these hyperparameters can be time-consuming,
as it often requires many attempts to attain the best configuration.

3. Data quality and privacy: preparing data to train ML models often requires extensive
preprocessing of the raw data to enhance its quality and size. This involves techniques
like normalization, scaling, transformation, feature selection, data augmentation, and
data denoising, which demand careful considerations of the underlying data and the
specific problem.

4.  Significant hardware resources: DL algorithms particularly require significant compu-
tational resources, including powerful GPUs, high-speed storage, and large amounts
of memory, to perform complex computations due to the deep architectures that con-
sist of various types of numerous kernels and layers. Several challenges are associated
with these requirements, such as cost, availability, scalability, energy consumption,
maintenance, and upgrade requirements.

Addressing the above challenges requires careful consideration of the data, problem,
and available resources, and often requires a combination of technical expertise, domain
knowledge, and trial and error.

Within the domain of DH, the availability of insufficient data can present challenges to
the development of efficient ML prediction models. These data challenges include various
factors, such as limited data availability, data imbalance, concerns about data quality and
consistency, and constraints on data access and sharing [31,207]. In the context of DH,
dataset constraints related to limited samples, especially for rare diseases or conditions,
can complicate the generalization of ML models based on CL. Additionally, imbalanced
data are a common problem in DH, which leads to potential biases and poor performance
on underrepresented classes [31,207]. Furthermore, DH datasets may be noisy, incomplete,
or inconsistent, which can make it challenging to extract useful information and train
accurate models [31]. The presence of sensitive information, such as patient health records,
within these datasets further restricts data sharing, consequently limiting the availability of
sufficient data for the development of ML models. Overall, these challenges collectively
contribute to the complexity of developing accurate and scalable ML models based on CL
within the realm of DH.

TL methods have been developed as a vital solution to address the above challenges
associated with the CL approach in DH [35-54]. Figure 7 shows the general architecture
of the TL approach. Many researchers describe TL as “the improvement of learning in a
new task (the target task) through transferring knowledge from a related task (the source
task) that has already been learned previously”. The source domain and the source task are
defined as Ds and Ts, respectively. The farget domain, and target task are defined as Dt and
Tt, respectively. The objective of TL is to transfer knowledge from the source problem to
obtain a reliable solution in the target problem. Thus, the TL methods are ML optimization
methods to speed up learning process by fast convergence, reducing the requirements of big
data, decreasing the memory usage (to deal with complex computations), and improving
the performance (in terms of the starting point and accuracy) [32]. The definition that
focuses on transferring a previous knowledge can be related to fine-tuning and feature
extraction methods only. In this paper, we expand the meaning of TL to cover any type of
knowledge transfer from the source to the target, either previously learned or simultane-
ously learned, to include other types of TL, such as domain adaptation, multitask learning,
and meta learning methods. In the next section, we will describe each of these approaches
and their vital applications in DH.
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Figure 7. Transfer learning architecture.

3.2. Categories and Techniques of Transfer Learning

TL can be classified into three main branches based on the availability of the labeled
data in the source and target task: inductive, transductive, and unsupervised [33,34],
as illustrated in Figure 4. TL is also categorized into four main groups based on the
knowledge transferred between domains [33]: instance transfer, feature-representation
transfer, parameter transfer, and relational-knowledge transfer.

To use an effective TL method to obtain a reliable solution in the target problem, we
need to answer the following three questions carefully: (1) What to transfer? (or what
knowledge to transfer from the source to the target?); (2) How to transfer? (or how to
develop a proper learning algorithm to transfer knowledge?); (3) When to transfer? (or
when should the knowledge not be transferred?). There could be various possible answers
for the above three questions based on the variations in the domain and task of the source
and target models. However, the answer may lead to negative transfer, which requires a
different strategy or method. The data labeling status can be used as a good sight to answer
these questions, as shown in Figure 4. Another way to answer these questions can be the
relation between the source and target domains. If the source and target domains are similar
or closely related in terms of features and data distributions (i.e., Xs = Xt), the approach
is defined as a homogeneous TL. If the source and target domains are dissimilar in terms
of features or data distributions (i.e., Xs 7 Xt), the approach is defined as heterogeneous
TL [206]. In heterogenous TL, the knowledge is transferred between different or unrelated
source and target domains, which may require adaptation or alignment techniques to
bridge the gap between these two domains. Thus, homogenous transfer can often be easier
to implement due to the similarities between domains, while heterogeneous TL requires
more sophisticated techniques to handle the dissimilarities and domain shifts between the
source and target domains.

3.3. What to Transfer?

What is the type of knowledge needing to be transferred from a source model to a
target model? The answer to this question is crucial to choosing the suitable strategy, and
then the best algorithms, to develop accurate prediction models. Figure 4 presents the most
common approaches to answer “What to transfer?” that are related to the three TL methods
in Figure 4. These approaches are described as follows [33,34,206]:

e Instance transfer: The ideal solution in TL is to effectively reuse knowledge from one
domain to enhance the performance in another domain. However, the direct reuse of
data from the source domain in the target domain is typically not feasible. Instead,
the focus is on specific data instances from the source domain that can be combined
with target data to enhance the results. This process is known as inductive transfer.
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This approach assumes that particular data portions from the source domain can be
repurposed through techniques like instance reweighting and importance sampling.

e Feature-representation transfer: The goal of this approach is to decrease the dif-
ferences between domains and improve the accuracy by finding valuable feature
representations that can be shared from the source to the target domains. The choice
between supervised and unsupervised methods for feature-based transfers depends
on whether labeled data are accessible or not.

e  Parameter transfer: This approach operates under the assumption that models for
related tasks have certain shared parameters or a common distribution of hyperpa-
rameters. Multitask learning, where both the source and target tasks are learned
simultaneously, is used in parameter-based TL.

e Relational-knowledge transfer: In contrast to the above three methods, relational-
knowledge transfer aims to address non-independent and identically distributed data
(non-IID), where each subsample exhibits significant variation and does not accurately
represent the overall dataset distribution.

From Figure 8, we can conclude that not all the approaches mentioned above can be
applied to all the three TL categories in Figure 4. For example, all the above approaches
can be employed with inductive TL due to the availability of the labeled data for the target
model. In contrast, the instance transfer and feature-representation transfer approaches are
suitable for transductive TL, which is defined as suitable for situations involving similar
source and target tasks, but without a requisite similarity in the source and target domains.
This lack of similarity can appear as either variation in the feature space of the domains or
variation in the marginal probability distribution of the domains (with a similar feature
space) [33]. The transductive transferred knowledge attempts to solve these variations
between the source and target domains, thus the absence of labeled data in the target
is the case of this approach. This approach proves particularly valuable in addressing
the challenges of a costly labeling process for target problems, such as medical image
labeling [208-210]. In addition, the feature-representation transfer approach is utilized as
an unsupervised TL method, requiring no labeled data to extract high-quality attributes
from the raw data. As such, it is applicable to all three approaches and stands as the sole
method for unsupervised TL [33].

Parameter transfer

[ Relational-knowledge transfer ]

Inductive
Instance transfer

Unsupervised Feature-representation transfer

I

Transductive

Figure 8. Approaches of knowledge transfer to answer “What fo transfer?” for the three TL strategies:
inductive, transductive, and unsupervised [206].

4. Applications of Transfer Learning on Digital Health Sensing Technologies

TL has emerged as a promising approach in digital healthcare, enabling the develop-
ment of accurate and efficient ML models with limited data. Recent research has demon-
strated the benefits of TL in a wide range of healthcare applications, including medical
image analysis for disease diagnosis [210-212] and wearable sensor processing for patient
monitoring [37,39,40]. For instance, TL has been used to improve the accuracy of the
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automated diagnosis of lung cancer in CT scans [210], where the models were fine-tuned
on large-scale image datasets. TL has also been used to develop personalized models
for supporting decision-making by categorizing patients of Alzheimer’s disease based
on their MRI scans [213] into one of the following groups: Alzheimer’s disease, late mild
cognitive impairment, mild cognitive impairment, and normal cognition. Additionally,
TL has shown great potential in remote patient monitoring, where it has been used to
analyze wearable sensor data and predict the risk of falls in elderly people [155,214], the
steep staging [39,40], and human activities [47-49]. It has been used to develop models for
predicting blood glucose levels in patients with diabetes based on data collected from wear-
able sensors [215]. These studies have demonstrated the significant impact of TL on digital
healthcare, highlighting its potential to improve patient outcomes and reduce healthcare
costs by facilitating early diagnosis, personalized treatment, and remote monitoring.

Selecting the most suitable TL method and strategy is crucial to develop reliable
prediction systems in digital healthcare. Factors such as the availability, size, and type of
data, as well as the type of task and the relationship between source and target domains,
must be considered when selecting a TL method. Additionally, privacy and data sharing
must also be taken into account. In the following subsection, we present and explain several
TL methods and approaches in digital healthcare to enhance diagnosis and prognosis
outcomes, as well as digital healthcare services.

4.1. Methods, Strategies, and Applications of Transfer Learning in Digital Healthcare

In the realm of digital healthcare, a plethora of TL methods and strategies have been
proposed and developed with the aim of bolstering the accuracy and training time of
prediction models, mitigating the impact of data limitations, including issues with data
quality, size, accurate labeling, bias, compatibility, and privacy, and reducing computation
costs. In this context, we have outlined and summarized the most prevalent transfer
learning strategies and methods employed for diverse applications in digital healthcare.
Furthermore, we provide information regarding each study to inspire researchers to employ
these approaches across a range of applications, improve their current systems through
training or combining various techniques, and develop novel approaches. It is noteworthy
that some of the studies cited herein rely on multi-TL approaches and strategies to address
the manifold challenges and issues in ML and digital healthcare.

4.1.1. Feature Extraction

In the medical field, the availability of sufficient data for DL is crucial. When working
with small medical datasets, traditional ML methods may be a suitable alternative to DL,
which typically requires large amounts of data [162]. However, when working with medical
images, traditional ML methods require a preprocessing step to extract, select, and/or
combine meaningful features that can be challenging to implement effectively. To address
this challenge, leveraging pretrained DL (source) models that have learned general features
from large and diverse datasets can improve the model performance on downstream tasks
(target tasks), reduce the need for extensive retraining on new data, and enable the effective
transfer of knowledge between different tasks and domains.

With this method, users have the flexibility to employ the entirety of the pretrained
network’s layers, except the output layer [42], or select specific layers that yield meaningful
features [43]. These chosen layers remain frozen to extract features; therefore, this method is
considered as an unsupervised TL method, which is widely used in the preprocessing step
to extract meaningful representations from the data without requiring existing labels [42].
These features are commonly called deep features, as they are extracted from pretrained DL
models. Then, these features are either directed to a traditional ML algorithm (such as the
SVN, KNN, etc.) or to a new output neural network prediction layer, as shown in Figure 9,
to train a new ML model. An important consideration for this method is the need for
consistent input vector dimensions in both the source and target models, coupled with the
requirement for the relevance between the source and target domains. For example, most
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of the available state-of-the-art pretrained models were developed based on image data
for computer vision tasks (classification, detection, and segmentation), such as VGG 16,
VGG 19, ResNet50, ResNet101, InceptionResNetV2, etc. Thus, these models cannot be
used to extract features from non-imaging data, such as sensor and sound signals. Re-
searchers have addressed these limitations by incorporating preprocessing techniques, such
as resizing/cropping [41,43,44], domain transformation [42] (as shown in Figure 10), and
feature fusions [43]. These steps are employed to harmonize the input data dimensions and
establish domain relatedness prior to feeding the data into the network’s input layers. The
feature extraction method has been used widely to solve limited data samples, commonly
within medical imaging data [41,43,44]. In [41], the authors employed three state-of-the-art
pretrained DL classification models, namely, ResNet50, ResNet101, and InceptionResNetV2,
to extract high-quality features from X-ray images. These features were utilized to train two
different traditional ML classifiers, the SVM and KNN, using the 10-fold cross-validation
method to classify patients” X-ray images into three categories: COVID-19, normal, and
pneumonia. The authors concluded that a high classification accuracy of 99.86% was
achieved using the SVM classifier. This suggests that the model could serve as a valuable
decision support tool for radiologists. In [42], the authors explored the feasibility of using
TL based on feature extraction to address the challenge of limited training data for the
ECG signal classification. They used the pretrained DenseNet (the 161-layer deep CNN) to
extract features from the ECG data to classify the ECG arrhythmia into four classes: normal
sinus rhythm, ventricular fibrillation, atrial fibrillation and flutter, and ST segment change
(ST). As the DenseNet model was trained on the image data, the authors applied a domain
transformation to convert the signal representation (one-dimensional data(1D)) of the ECG
arrhythmia to an image representation that was represented by the ECG spectrograms
(two-dimensional (2D)). The extracted features from the ECG spectrograms were used
to train an SVM classifier through 10-fold cross-validation. This model was based on
deep features, and achieved an accuracy of 97.23% in classifying nearly 7000 instances,
outperforming other models based on the CL approach using the SVM classifier using 1D
and 2D ECG signals.

Pretrained Model Feature Extraction (Scenario 1) Feature Extraction (Scenario 2)

Usually, a state-of-the-art model Updating the output layer size and Using a traditional ML to train a
training a new model new model

Small Small

Dataset Dataset

Large Dataset

Layer 1

to extract features

Layer 199

Pre-trained Model
to extract features

Layer 199
Layer 200

Deep Features

Traditional ML

Layer 199
Layer 200

Layer 200

Deep Features

Output Layer
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Output Layer
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(SYVM, KNN, Tree,...)
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Figure 9. Transfer learning based on the feature extraction method.
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Figure 10. Feature extraction process using state-of-the-art image-based pretrained models that were
developed on huge nonmedical imaging data for computer-vision tasks. (a) Medical imaging data
can be directed to the input of these state-of-the-art image-based pretrained models after proper
scaling and/or cropping; (b) One-dimensional data, such as sensor data and sound data, should be
transformed to a two-dimensional shape (image representation) to be used with these models.

Vo et al. used ensemble deep pretrained convolutional neural networks to empower
the meaning of the extracted deep features from multiscale images to grade breast cancer
in histology images using a traditional ML (gradient boosting trees) [43]. The authors
concluded that their method achieved a better performance compared to the state-of-the-art
breast cancer classification systems in categorizing histological breast cancer images into
four groups (normal, benign, in situ carcinoma, and invasive carcinoma) or two groups
(noncarcinomas (combining the normal and benign classes) and carcinomas (combining
the in situ and invasive classes)) due to the use of the ensemble deep convolutional neural
networks (DCNNs) to combine various high-quality deep features; they reported the
ensemble DCNNs model achieved an improved accuracy of at least 3.3%, 4.2%, 5.5%,
and 3.6% for the images at the respective magnification factors of 40x, 100x, 200x, and
400, respectively, compared to the other state-of-the-art approaches. In another breast
cancer classification study [44], the authors utilized two TL methods to detect breast
cancers in histopathological images: (1) fine-tuning, and (2) feature extraction. First,
the authors fine-tuned two state-of-the-art imaging classifiers, the VGG16 and VGG19
networks, on histopathological breast images (this method will be discussed in the next
subsection), and then they used these fine-tuned networks as pretrained models to extract
the discriminated cancer features (deep features) from the histopathological images. To
improve the performance, the authors used the GAN to increase the size of the data. The
authors directed these extracted features (from the data, and augmented the data using
the GAN) to a neural network to develop a reliable breast cancer detection system; they
proposed three voting methods to calculate the accuracy for classifying malignant or benign
patches, with method A relying on majority predictions, method B assigning correctness if
two out of four patches are correct, and method C requiring at least one correct patch for
the overall image to be classified as correct. The average attained accuracies of 94.9-99.2%
were achieved by both methods B and C, and authors indicated the feasibility of using
them in detecting the cancer when the patients have any potential signs before medical
examinations.

In Table A3, we have summarized the methodology for the X-ray image classification
using the TL feature extraction method to assist in diagnosing COVID-19 [41], thereby
providing insights on how to implement TL feature extraction on DH sensing data.
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4.1.2. Fine-Tuning

Fine-tuning is a TL method that involves taking a whole pretrained model, or part
of it, and adapting it to a new downstream task with additional training on task-specific
data [216]. The adaptation here includes model parameters as well as the model structure.
Both feature extraction and fine-tuning utilize wellpretrained models that were developed
on big data to assist in the development of a new task. The model parameters are frozen
in the feature extraction method, but updatable in the fine-tuning method. In digital
healthcare, fine-tuning can be particularly useful for tasks where specific features relevant
to the task are not learned by the pretrained model. By fine-tuning the pretrained model
on new task-specific data, the model can learn to adapt the features to the new task and
improve the performance [216]. For example, in medical image analysis, fine-tuning can be
used to train the pretrained convolutional neural network (that was already trained on a
computer-vision classification task) on labeled medical image data for tasks such as tumor
classification. The fine-tuning process requires three steps to adapt a pretrained model to a
new task, as shown in Figure 11. Some researchers extracted part of a pretrained model
(usually the top part that is close to the input) and modified it by adding new trainable
layers in the output part to prepare it for a new task.

/
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*Should be a State-of-the art model to a new task ePartial Fine-Tuning
model *Entire Fine-Tuning

*Should be related to the *Select entire a pre-trained model or part of *Progressive Fine-Tuning
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Figure 11. Steps to fine-tune a pretrained model.

Various strategies can be employed to refine a pretrained model through fine-tuning, as
explained below. These strategies differ in terms of which of the parameters of a pretrained
model are selected for updating, and how these parameters can be updated to develop an
accurate model for a target task.

1.  Partial Fine-Tuning (unfreezing some layers)

Here, users can selectively unfreeze and fine-tune only a subset of layers in the pre-
trained model [35]. Typically, researchers unfreeze the later layers (closer to the output) and
keep the earlier layers frozen because the earlier layers develop low-level features (general
features, such as lines, edges, and gradients), while the top layers develop high-level
features (advanced descriptors, such as shape, type, and spatial and temporal information).
This approach can be useful when the lower-level features are universally applicable and
only the task-specific high-level features need adjustment.

2. Fully Fine-Tuning (unfreezing entire extracted layers)

In this approach, all layers of the pretrained model are unfrozen, and both the lower-
level features and higher-level representations are adjusted to the new task’s data [217,218].
This approach can be effective when the new (target) task’s dataset is significantly different
from the dataset on which the original (source) model was trained. This technique is
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especially useful when additional data have been amassed after training a model on an
extensive dataset. Instead of retraining the model using both old and new data, fine-
tuning can be exclusively applied to the new data. This approach does not necessitate any
layer removal, modification, or addition, given that the target task aligns with the source
task. However, if the source and target tasks are not identical, but interconnected, certain
modifications become imperative for the successful application of this approach.

3. Progressive Fine-Tuning (partially unfreezing the layers and training them on a
multistage)

In the first stage, the initial layers of a pretrained model are frozen and the remaining
layers are fine-tuned. The second phase involves gradually unfreezing the frozen layers in
the first stage and fine-tuning the unfrozen layers.

4.  Adaptive Fine-Tuning (differentiating the learning rates for layer groups)

This method adjusts the learning rate for the different layers during the fine-tuning of
a pretrained model. The layers closer to the input capture the general features, which are
valuable for a new task, and thus have smaller learning rates to preserve these features [219].
On the other hand, the layers closer to the output learn features that are more related to
decision making on the task’s specifics, and may require larger learning rates for efficient
adaptation. By customizing the learning rates across the layers, adaptive fine-tuning
enhances the convergence, the stability, and the model’s ability to transfer knowledge to
new tasks. Here, it is worth highlighting that adjusting the learning rates for the layer
groups is a distinct approach from the more general concept of adapting the learning rates
within the optimizer.

Figure 12 clarifies the idea of the entire fine-tuning and partial fine-tuning approaches.
If the target task is not similar to the source task, modifying a pretrained model is essential
for developing a proper model for the target task; modifications may include updating
the output layer only to make it compatible with the target task purpose or increasing
the network capacity by adding new layers on the model’s output part to develop more
robust task-specific features. Although increasing the model capacity also increases the
computation costs, it is useful for improving the performance [220].

After describing the common fine-tuning approaches, the subsequent discussion ex-
plores the relevant applications for a better clarification and a source of inspiration. To
develop the dental caries detection system, researchers have implemented modifications to
the pretrained VGG16 model by adding specific layers after removing the output layer from
the VGG16 [217]. They called their model the ConvNet, and trained end-to-end on oral
photographs captured using consumer-grade cameras. Then, they fine-tuned the ConvNet
with true positives against only false positives as a second training stage to decrease the
false-positive predictions and boost the performance by achieving 85.65%, 81.9%, and
64.6% of the area under the curve (AUC), image-wise sensitivity, and box-wise sensitivity,
respectively. The authors reported that their approach successfully classified the presence
of dental caries in the provided images and accurately identified the localization of the
bounding boxes. This outcome underscores the potential of their methodology as a valuable
tool for cost-effective and efficient dental caries screening among large populations. Koike
et al. investigated the effectiveness of using TL for heart-sound classification [218]. They
fine-tuned a pretrained model that was trained on large-scale audio data, the PhysioNet
CinC Challenge dataset, to classify heart sounds into normal and abnormal sounds. The
authors reported that their method demonstrated superior performance compared to other
models that were pretrained on images, achieving the highest unweighted average recall of
89.7%. This highlights the potential of using TL methods as a noninvasive way to monitor a
person’s health status by automatically extracting higher representations from heart sounds
without requiring human domain knowledge. In [36], researchers addressed two key chal-
lenges in human activity recognition (HAR) using TL. First, conventional training struggles
with new users’ diverse activity patterns. Second, training from scratch being impractical
for mobile apps due to computation and time constraints. Their innovative approach in-
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volved a thorough analysis to identify common and user-specific features. By transferring
the reusable parts of an offline classifier to new users and fine-tuning for uniqueness, they
achieved remarkable results—up to a 43% accuracy boost and 66% training time reduction.
Additionally, hardware assessments indicated a 43% drop in power consumption and