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Abstract: Machine learning and digital health sensing data have led to numerous research achieve-
ments aimed at improving digital health technology. However, using machine learning in digital
health poses challenges related to data availability, such as incomplete, unstructured, and fragmented
data, as well as issues related to data privacy, security, and data format standardization. Furthermore,
there is a risk of bias and discrimination in machine learning models. Thus, developing an accurate
prediction model from scratch can be an expensive and complicated task that often requires extensive
experiments and complex computations. Transfer learning methods have emerged as a feasible
solution to address these issues by transferring knowledge from a previously trained task to develop
high-performance prediction models for a new task. This survey paper provides a comprehensive
study of the effectiveness of transfer learning for digital health applications to enhance the accuracy
and efficiency of diagnoses and prognoses, as well as to improve healthcare services. The first part of
this survey paper presents and discusses the most common digital health sensing technologies as
valuable data resources for machine learning applications, including transfer learning. The second
part discusses the meaning of transfer learning, clarifying the categories and types of knowledge
transfer. It also explains transfer learning methods and strategies, and their role in addressing the
challenges in developing accurate machine learning models, specifically on digital health sensing
data. These methods include feature extraction, fine-tuning, domain adaptation, multitask learning,
federated learning, and few-/single-/zero-shot learning. This survey paper highlights the key fea-
tures of each transfer learning method and strategy, and discusses the limitations and challenges
of using transfer learning for digital health applications. Overall, this paper is a comprehensive
survey of transfer learning methods on digital health sensing data which aims to inspire researchers
to gain knowledge of transfer learning approaches and their applications in digital health, enhance
the current transfer learning approaches in digital health, develop new transfer learning strategies to
overcome the current limitations, and apply them to a variety of digital health technologies.

Keywords: digital health; domain adaptation; feature extraction; federated learning; fine-tune;
inductive transfer learning; portable devices; transductive transfer learning; transfer learning;
wearable devices

1. Introduction

Digital health (DH) refers to the use of information and communication technolo-
gies in healthcare and medicine to enhance healthcare services and outcomes [1,2]. DH
technologies encompass both hardware and software services and applications, including
telemedicine, wearable devices, and augmented/virtual reality [3]. Hardware components
include: (a) sensors for measuring vital signs and detecting physiological events, (b) communi-
cation and network tools for transmitting and exchanging information between patients/users
and healthcare providers, and (c) mobile devices (such as computers and smartphones) for
storing, displaying, and processing collected and transmitted information [3].
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In healthcare, a multitude of technologies have been developed to enhance diagnosis
and prognosis outcomes, as well as to support decision-making and treatment plan selec-
tions. The primary objectives of DH are centered on improving the accuracy of diagnosis
and predictions, expediting the diagnosis process, and reducing diagnosis and treatment
costs [1–3]. Additionally, DH technologies aim to empower users, including patients, to
track their health status and wellness, while simultaneously enhancing the overall health-
care experience for both providers and patients [2]. Furthermore, DH provides continuous,
automatic, and mobile health monitoring, which have the potential to significantly improve
patients’ quality of life [3].

Embedded and integrated sensors found in portable and wearable devices are central
to the DH system, particularly in the new telemedicine paradigm developed to enhance
the quality of healthcare services [4,5]. These devices benefit from the integration of
Artificial Intelligence technology (AI). The latter aims for providing sophisticated end-to-
end solutions that are technologically intensive and cost-efficient [6]. By combining these
technologies, healthcare providers can receive comprehensive and accurate information of
patient health, and provide personalized treatment plans and diagnoses, thus leading to
improving patients’ outcomes and the more efficient use of healthcare resources [7].

The portable mobile monitoring technology can be classified into three main cate-
gories based on the number of embedded sensers: homogenous-based technology, dual-based
technology, and heterogenous-based technology [8]. Homogenous-based technology consists of
a single type of sensor, such as electrocardiography (ECG), electroencephalography (EEG),
electromyography (EMG), the global positioning system (GPS), photoplethysmography
(PPG), or an accelerometer. Dual-based technology employs two different types of sen-
sors for various forms of health monitoring to increase the reliability and accuracy, such
as the accelerometer and gyroscope, the accelerometer and PPG, ECG and PPG, blood
pressure and temperature, and ECG and EEG. Heterogenous-based technology embeds
multiple sensors in a single device to provide multifunction monitoring services, as well
as to improve the quality and precision of disease diagnosis. Anikwe et al. presented
and discussed various DH applications based on the above three technologies [8]. Most
heterogenous-based technology applications utilize Internet of Things (IoT) technology to
provide multidimensional features and real-time services in mobile health (mHealth) [3,9].
Involving IoT for medical applications and services is generally called the Internet of
Medical Things (IoMT) and refers to a network of Internet-connected medical devices,
sensors, and software apps that provide online, flexible analysis and monitoring services.
There are various IoMT applications based on their purpose and location of use, such as
in-home IoMT, on-body IoMT, community IoMT, and in-hospital IoMT. For example, a
smart health monitoring system was developed using Internet of Things (IoT) technology
as a contactless tracing and treatment method for patients with COVID-19 to monitor blood
pressure, heart rate, oxygen level, and temperature [10].

Wearable devices can be classified, according to the worn/mounted location, into the
following groups: (a) wrist-mounted devices, (b) head-mounted devices, (c) E-textiles, and
(d) smart jewelry and accessories [11]. Figure 1 presents examples of wearable and attach-
able technologies in digital healthcare. Wrist-mounted devices, such as fitness bands, smart
watches, and stretchable patches, are noninvasive monitoring devices that are developed
for physiological monitoring [11]. For example, wrist bands, watches, and arm-mounted
stretchable patches are used for monitoring cardiovascular signals (such as heart rate
and blood pressure) and sweat biomarkers (such as glucose, sodium, uric acid, lactate,
etc.) [8,11]. The most popular wearable devices for health monitoring and tracking are
the digital electrocardiogram (ECG) devices that are featured in smart watches and other
fitness trackers, as well as wearable patches and chest straps. Head-mounted devices,
such as mouthguards, are used for salivary-content monitoring (lactate, uric acid, and
glucose) [12–15], while eyeglasses are used for sweat-content monitoring (lactate and potas-
sium), as well as for cardiovascular signal monitoring (heart rate) [16,17]. Smart glasses
based on pulse-sensing were used to continuously monitor the heart rate by a photo-
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plethysmography (PPG) sensor placed on the nose pad [18]. E-textiles include textiles with
electrodes which are used for sweat-content monitoring (glucose and lactate) [19], those
worn on the calf for cardiovascular signal monitoring (heart rate and temperature) [11], and
footwear for physical activity monitoring (foot motion) [20]. Smart jewelry and accessories,
such as rings, necklaces, and clips, are used for physical activity monitoring (sleep, daily
activity) [11], and belts worn on waist and chest are used for physical activity monitoring
(step count and sitting time), as well as for physiological signal monitoring (ECG and
direct current) [11,21]. Most ECG devices in smartphones and fitness trackers are based
on a single-lead ECG and are connected with apps to store the ECG tracing. The sensors
that adhere to the skin, such as patches, are mostly wireless and water-resistant; they can
monitor and collect large amounts of continuous data for cardiologists for up to 30 days.
Smart continuous glucose monitoring (CGM) systems are common portable devices that
allow patients to measure the glucose levels in their blood [22]. This smart device is small
in size and can be connected to a smartphone to monitor blood sugar levels over time,
and have the ability to share the information with healthcare providers [22]. There are
three CGM modalities based on the method of placing the sensors: non-invasive (based
on optical sensors, such as contact lenses that do not require skin puncture), minimally
invasive (based on a microneedle-type sensor), and invasive (based on an implantable
sensor that is inserted under the skin) [22,23].

1 
 

 

Figure 1. Wearable and attachable technologies for health monitoring based on the worn/mounted
location.

Machine Learning (ML), including Deep Learning (DL), methods have been widely
employed across diverse domains, particularly in healthcare, to enhance the well-being
and safety of individuals. The influence of these methods within DH has been substantial,
revolutionizing the analysis and utilization of patient data. As a result, there has been a
notable improvement in the precision and efficiency of diagnoses, anomaly detection, and
the prediction of potential health concerns [24–26]. ML methods include both traditional
ML algorithms (such as the decision tree (DT), support vector machine (SVM), K-nearest
neighbor (KNN), and artificial neural network (ANN)) and DL models, which are just
ANNs with a hierarchical deep structure of multiple layers. These algorithms are trained
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using sufficient data to develop reliable automatic prediction models. By training on
vast amounts of electronic health records, medical images, sensor data, and genomic
data, ML/DL can develop high-performance predictive models for accurate diagnoses
and prognoses, and personalized patient care, thereby lowering healthcare costs [26–28].
Powered by ML/DL, DH will further revolutionize healthcare services [27,29].

The application of robust and effective ML/DL algorithms demands substantial
amounts of high-quality data collected and processed by experts [24,30], and the suffi-
ciency of the data depends on the adequate size of the data in terms of the number of
samples (i.e., the number of control and patient subjects), meaningful descriptors in each
sample, and/or accurate annotations. Processing the data is commonly performed at the
preprocessing stage to provide high-quality data that contain meaningful attributes, and it
is therefore essential to develop reliable ML/DL models. The most common preprocessing
data methods are: data transmission, data storing, data cleaning/denoising, data transfor-
mation, as well as data fusion. Data-transformation methods include sampling/resampling,
rescaling, augmentation, feature selection, and feature extraction. These methods are impor-
tant to develop robust attributes from the raw data, improve the prediction accuracy, as well
as to speed up the learning performance. Information fusion is also widely used to develop
accurate ML models, which includes: (1) data fusion or multimodal data from various
sensors and resources, for example, using medical imaging data as well as wearable-based
sensor data to; (2) feature fusion, which includes combining various types of features
that can be extracted from the data, such as texture, shape, histogram, and DL features;
(3) decision fusion, performed as a postprocessing step to increase the performance and
reduce the prediction error rate. The effectiveness of the complex computations in ML/DL
methods depends on the number of samples, the sample size, the type of data, and the size
and type of hardware (i.e., physical and cloud memory to store data and perform complex
computations) [24,30,31]. Although the accuracy of DL methods outperforms traditional
ML methods, most DL methods require big data and a huge amount of physical or cloud
memory to deal with the complex and deep architectures that are required of the expensive
computations, as shown in Figure 2. Using traditional ML methods is the ideal choice when
the memory size is small and/or the data size is small in terms of the number of samples.
However, traditional ML methods require robust features to overcome the small data size,
a common situation in healthcare. Extracting meaningful features is a time-consuming
and complex process that might require conducting extensive experiments to produce
the best model configuration. The state-of-the-art ML models are frequently used across
various domains; however, they do not necessarily produce high-quality outcomes due to
the differences in the tasks and/or the domains that make the same model less efficient
when adopted [32–34].

Transfer learning (TL) is a ML approach that has been developed for leveraging
previously acquired knowledge in one domain to enhance the performance in a different
but related domain [32–34]. TL relies on generalization theory, which posits that individuals
can apply their knowledge and skills to new contexts by recognizing the underlying
relatedness [34]. In general, TL methods are employed as an ML optimization tool to
improve the performance, provide better generalization, reduce overfitting, and mitigate
bias [32]. Suppose that a DL model was developed and trained on a large dataset of colored
images containing thousands of instances from four groups: car, bike, ship, and airplane.
The purpose was to automatically classify images into one of these four groups. Now,
consider a research group with 200 MRI images containing tumors (benign or malignant).
They aim to develop an automatic classification DL model, but the limited number of
medical images (200 samples) is insufficient for creating an accurate model. Instead, the
researchers can utilize transfer knowledge from a well-trained model, such as the one
developed for colored images, to create a new model for a healthcare task; for instance,
they can classify MRI images into benign or malignant tumors. This can be done by using
the pretrained model, updating only the output layer to classify the images into two classes,
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and updating the pretrained model parameters by training it on the MRI data, as shown in
Figure 3.
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Figure 3. Example of transferred knowledge from a color nonmedical image prediction model
(source) that was developed based on big data to the medical image prediction model (target) based
on small data.

There are several criteria have been used to categorize TL methods and strategies.
In [33], the TL methods were grouped into three main categories with respect to the data
annotation status, as shown in Figure 4: (a) inductive transfer learning, (b) transductive
transfer learning, and (c) unsupervised transfer learning. The domains of the source and
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target models in inductive TL are the same, and the tasks can be different but related. In
transductive transfer learning, the tasks are the same, and the domains can be different but
related. Domains and tasks are different but related in unsupervised learning. Zhuang et al.
discussed two different approaches to categorize the TL methods: data-based interpretation
and model-based interpretation [34]. The data-based interpretation approach is centered
around transferring knowledge through the adjustment and transformation of data. In
this approach, TL methods can be categorized into two distinct categories based on their
objectives and strategies. On the other hand, model-based interpretation focuses on the
development of accurate prediction models in the target task by transferring knowledge
based on the model control strategy, parameter control strategy, and model ensemble
strategy [34].
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There are various TL approaches that have been developed and examined to im-
prove healthcare services and patients’ health, such as fine-tuning [35–40], feature ex-
traction [41–44], multitask learning [45,46], domain adaptation [40,47,48], federate learn-
ing [49–51], as well as meta learning methods (such as zero-shot [52], one-shot [53], and
few-shot learning [53,54]). In this paper, we discuss twenty-seven studies in detail, dis-
tributed as presented in Figure 5, to highlight the applications of TL to enhance healthcare
services and outcomes based on DH sensing data, as shown in Figure 6.
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Figure 5. The distribution of the twenty-seven studies that are discussed and clarified in this paper
based on the following TL methods: feature extraction, fine-tuning, domain adaptation, multitask
learning, few-/single-/zero-shot learning, and federated learning.
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Figure 6. Applications of TL on DH sensing data to enhance healthcare services and outcomes.

This survey paper aims to present a comprehensive study of the applications of TL
techniques to enhance DH services and advance healthcare outcomes. The primary moti-
vation for this study stems from the necessity to address challenges, such as limited data
availability, data-sharing restrictions, and the high computational demands, within the
healthcare sector, all of which can hinder the development of effective ML prediction mod-
els. Furthermore, this survey paper explores a variety of DH sensing technologies that can
serve as abundant data sources for the development of automated and continuous health
monitoring and diagnostic methods, primarily based on ML and DL techniques. This study
is positioned to become a valuable resource for both practitioners and researchers in the
field of digital healthcare, offering insights and resources for researchers and practitioners
in the field of digital healthcare to the application of TL techniques for empowering digital
healthcare technologies. Our paper is primarily focused on demonstrating how to over-
come ML challenges using a TL approach. The literature included in this survey paper has
been sourced from diverse research databases, including, but not limited to, IEEE Xplore,
MDPI, PubMed, Google Scholar, ACM Digital Library, and others; in our search, we used
the included keywords in this survey paper, and more that are related to the applications of
TL on DH sensing data and DH sensing technologies, such as TL for brain tumor detection,
applications of multitask learning on medical imaging data, TL for sleep staging, TL for
mental health, applications of TL on wearable sensor data, attachable and wearable devices
for health monitoring, etc.

The remainder of this survey paper is organized as follows: Section 2 presents the
various sensing technologies that are currently available or that can be utilized in the
future for DH applications based on ML. These technologies provide efficient methods for
health monitoring and disease diagnosis, and they also generate sufficient data that can be
utilized for ML and DL applications; Section 3 explains the meaning of TL and illustrates
the categories; Section 4 presents the methods, strategies, and applications of TL on DH
sensing data to improve healthcare services and outcomes; Section 5 summarizes the use
of TL methods and strategies to address the challenges related to the developments of
accurate ML prediction models within the field of DH. In addition, it highlights potential
challenges that could result in negative transfer.

2. Digital Health Sensing Technologies

Sensing technologies play a critical role in DH, enabling the collection of various phys-
iological, behavioral, and environmental data to monitor and manage health conditions,
along with enhancing the diagnosis and prognosis outcomes [1–3,16]. These technologies
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include wearable sensors, biosensors, environmental sensors, and imaging sensors [8].
Wearable sensors are widely used in activity monitoring [8,36,47,48], sleep tracking [37–40],
fitness tracking [8,16], and health monitoring [8,11,22,23]. Biosensors, on the other hand,
can measure various biomarkers, such as glucose, cholesterol, blood pressure, and other
vital signs [12,15–17]. Environmental sensors can detect air quality, temperature, and
humidity levels, which can impact health conditions [16]. Imaging sensors can provide
a noninvasive way to visualize internal organs and diagnose various diseases. ML/DL
methods have been used widely to analyze patients’ data that have been collected from
DH sensing technologies to enhance diagnoses and prognoses by providing early disease
detection, automatic and fast diagnosis, personalized medicine, decision support, patient
monitoring, and user self-monitoring. In this paper, we classify the sensing technologies in
DH into two main categories: (a) portable technologies and (b) nonportable technologies.

2.1. Portable Sensing Technologies

Portable DH devices and technologies refer to the use of portable (at-home and in-
hospital) electronic devices and technologies that allow individuals to monitor and manage
their health and well-being, as well as the healthcare provider to diagnose and manage
individuals’ illnesses. The at-home devices can range from simple fitness trackers that
monitor the steps taken and calories burned to more complex medical devices that can
measure vital signs, such as blood pressure, heart rate, and blood glucose levels; these
technologies are designed to be easy to use and accessible to individuals in a variety of
settings, including at home, in the workplace, and on-the-go. The in-hospital portable
devices can be small or big size, and some of them require experts and trained people to
setup and use them. Below, we categorize the portable DH technologies into five groups.

2.1.1. Wearable and Attachable Sensing Technologies

With the advent of digital healthcare, wearable and attachable devices have gained
popularity as tools for health monitoring [8,16]. These devices offer a convenient and
easy method for individuals to monitor their health in real-time [8]. Most of these devices
provide the continuous and noninvasive monitoring of key biological parameters and
vital signs, such as blood pressure, heart rate, cholesterol, glucose level, and oxygen
saturation levels [8,13,17]. This real-time health data can help individuals identify potential
health problems before they become serious and take proactive steps to manage their
health. Wearable devices are electronic devices that are designed to be worn on the body,
such as smart watches, fitness trackers, smart rings, smart shoes, and smart glasses [8].
One advantage of wearable devices is their convenience and ease of use. Some of these
devices are designed to be worn continuously, and often come equipped with sensors
that collect and transmit data about the wearer’s health and physical activity [8,11]. In
contrast, attachable devices are electronic devices that can be attached to the body [8],
such as heart rate monitors and blood glucose meters. These devices are typically used for
short periods and are designed to collect specific health information. They are designed to
be worn throughout the day, providing continuous health monitoring without requiring
any extra effort on the part of the user [11]. However, their continuous use can also be a
disadvantage, as they may require frequent charging and can sometimes be uncomfortable
to wear. Attachable devices, on the other hand, are generally more precise and accurate in
measuring specific health indicators. They are often used by healthcare professionals to
monitor patients with specific conditions, such as heart disease or diabetes [11]. However,
they may be less convenient for everyday use, as they require more effort to attach and
remove, and may not be suitable for long-term monitoring [55]. The patch is a major
attachable step towards the continuous, real-time, and noninvasive health monitoring of
chronic conditions, as well as early-warning signs of disease development [16]. Devices
capable of the noninvasive sensing of health status offer significant improvements in the
management of chronic conditions, such as diabetes and hypertension. Ultimately, the
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choice between wearable and attachable devices depends on the specific health needs and
preferences of the user [16].

Table A1 presents the most common wearable and attachable sensing technologies
in DH, and highlights their applications and features. Wearable/attachable sensing tech-
nology is divided into two main categories based on the number of embedded sensors:
homogenous-based sensors (containing only a single sensor) and heterogenous-based sen-
sors (containing multiple sensors) [8]. Wearable-based sensors include the EEG, EMG, PPG,
and GPSA. The EEG sensor is used to detect abnormalities in heart functions, irregular
heart rhythm, and cardiovascular disease [8]. The EEG sensor is used to continuously
measure and monitor the electrical activities of the human brain through scalp-wearable
devices, and they are commonly used to identify brain health issues, such as epileptic
seizures, brain injuries, antidepressant treatments, and sleep-stage analysis [8]. The EMG
sensor is widely used for measuring the electric signal from muscular activities to diagnose
neurological disorders. The global positioning system (GPS) sensor is used for activity
classifications by detecting the location and velocity of a subject, and it was utilized to
manage contact tracing to minimize the spread of COVID-19 [56,57]. The PPG sensor is an
optical sensor which is utilized to measure the volumetric variation in blood circulation
to study sleep disorders [58]. The accelerometer sensor measures the human acceleration
of force and dynamically assesses muscle movement, and it is used in human activity
identification studies, such as fall detections in the elderly [59,60].

A wearable heterogeneous-based sensor is a type of sensor that is integrated into a
wearable device with the purpose of measuring multiple physiological parameters simulta-
neously [8]. It can be utilized to monitor changes in vital signs, identify the early symptoms
of illness, and provide feedback on lifestyle choices, such as exercise and diet.

In the following, we present various attachable/wearable DH sensing technologies:

• Blood-Pressure-Monitoring (BPM) Technology

BPM devices are used to monitor blood pressure. Wireless BPMs are highly portable
and utilize smart technology to record and monitor patients’ blood pressure and send
the obtained information to the healthcare provider. There are two main types of out-of-
office BPMs: the arm-cuff and wrist-cuff. Other blood pressure devices used through a
finger (such as blood pressure monitors in smartphones) are less reliable. These wearable
devices are developed to be used as out-of-office blood pressure measures in order to
optimize the management of hypertensive individuals [61]. However, these devices mostly
accept a limited number of measurements to be recorded, and have discomfort limitations,
specifically at night [61]. The microelectromechanical system (MEMS) blood pressure
technology is a chip-based low-cost system with low-nonlinearity error and high-precision
inertial sensors [62]. The smartphone-based technology is an extension of the oscillometric
principle for cuffless blood pressure monitoring [63]; the smartphone is embedded with
a PPG and force transducers that are used as a blood pressure sensor to measure the
blood volume oscillations and applied pressure [63]. To activate the sensor, the user
presses her/his finger against the sensor location in the smartphone to increase the external
pressure of the underlying artery.

• Cardiac Monitor Technology

The most popular wearable devices for health monitoring and tracking are digital
electrocardiogram (ECG) devices that are featured in smart watches and other fitness track-
ers, as well as wearable patches and chest straps. The ECG records the electrical signal
from the heart to detect abnormalities and different heart conditions. The ECG devices that
are used in hospitals and healthcare centers contain a standard 12-lead electrocardiogram,
which is a representation of the heart’s electrical activity recorded from the electrodes on
the body’s surface. There are many ECG attachable/attachable devices that are produced
to be worn or used by people as a flexible portable monitoring method. Most ECG devices
in smartphones and fitness trackers are based on a single-lead ECG and are connected with
apps to store the ECG tracing. Wearable ECG monitoring devices are used as low-cost
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devices to store and plot ECG data in real-time [64–66]. Some of these devices are adapted
with IoT remote monitoring technology to transmit the measured data online to healthcare
providers [67]. For cardiac monitoring, compact ECG patches are commonly used. The
Zio Patch, measuring 123 × 53 × 10.7 mm and weighing just 34 g, is water-resistant and
captures up to 14 days of continuous single-lead ECG data [68]. Technicians apply it to the
patient’s left pectoral region using a skin adhesive. Users can initiate monitoring with a but-
ton press, then send the device and diary to a data processing center for analysis, generating
a report for the ordering physician [68]. In [69], a patch-based mobile cardiac telemetry
system was developed for COVID-19 patients outside intensive care and telemetry units,
proving useful for in-patient management and arrhythmia detection.

• Wearable Mental-Health-Monitoring Technology

Various wearable devices have been developed to be used in various crucial applica-
tions in mental health and panic disorder research studies due to the simplicity of collecting
continuous online data and the availability of multisensory data that are related to un-
derstanding people’s mental health conditions and statuses [70]. For example, wearable
sensors are used to track physiological parameters, such as heart rate and breathing pat-
terns, and the changes in heart rate are found to be associated with stress or anxiety [71,72].
Some other wearable devices can track behavioral signals and parameters, such as sleep
patterns, physical activity, and social interactions, that are connected to depression and
anxiety [73–75]. In [74], the authors used Lief, a smart patch, as a wearable device and
placed it beneath the left breast to collect physiological signals to manage stress remotely
so to reduce the symptoms of anxiety. In addition, smart wearable devices are a good
source of real-time monitoring and can provide real-time feedback to people related to their
mental health [74,76]. Some wearable devices can collect data as well as deliver personal-
ized interventions and recommendations based on the collected and processed measures
and parameters to improve people’s sleeping habits [73] and activity [77]. Moreover,
wearable devices can be used to deliver online therapy recommendations and treatment
decisions [78]. The most common types of mobile wearable and portable devices that are
used in mood and anxiety disorder applications are: blood pressure cuffs, patches, headsets,
headbands, wrist bands, smartphones, electronic textiles, and smart watches [79], and the
most common types of sensors that are embedded in these devices are: accelerometers, acti-
graphs, ECGs, EEGs, EGGs, EMGs, GPSs, PPGs, glucometer magnetometers, microphones,
pedometers, as well as temperature and infrared proximity [79].

• Wearable Sleep Technology

Sleep medicine experts utilize polysomnography (PSG) systems to record and analyze
sleep studies performed in a sleep laboratory. These PSG systems use sensors to measure
things such as eye movements, oxygen levels in an individual’s blood, heart and breathing
rates, snoring, and body movements. PSG systems are used to diagnose sleep disorders,
such as sleep apnea, narcolepsy, insomnia, REM sleep behavior disorder, and sleepwalking.
These systems are high-cost and require complicated setup with trained professional health-
care staff. In addition, they are inconvenient for sleep monitoring. Current developments
in wearable devices help to overcome the PSG system limitations and complexities. Several
sensors are utilized in PSG wearable-based systems, such as electrodes to measure the
EEG for brain waves (location: forehead, scalp, and ear), and the ECG and impedance
cardiography (ICG) to measure the heart activities (location: chest) [80]. In [81], the au-
thors developed a wearable monitoring device based on multisensors for sleep studies as
a comfortable and reliable technology. They used an accelerometer, light sensor, sound
sensor, temperature sensors, as well as an optical PPG sensor. Microsleep is a short sleep
episode that lasts for few seconds and is caused by sleep deprivation, sleep apnea, and
narcolepsy [82]. These episodes have very dangerous effects on communities and peo-
ple’s lives, such as a reduction in work performance, traffic accidents, and work injuries.
Pham et al. developed WAKE, a behind-ear wearable technology, to detect microsleep by
monitoring biomarkers from eye movements (using an electro-oculogram), brain waves
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(using an EEG), facial muscle contractions (using electromyography), and sweat gland
activities on the skin (using the electrodermal activity score) [82]; this microsleep device
was developed as a flexible, accurate, comfortable, cost-consuming, and continuous moni-
toring trend that can be involved in a wide range of cognitive monitoring and improvement
applications [82]. It contains ten embedded electrodes, adheres comfortably behind the ear,
and requires only 20 min for setup, which is much quicker than the traditional PSG, which
takes around 45 min. Moreover, textile-based sensors have been developed as comfortable,
wearable, smart physiological monitoring devices to be used for noninvasively diagnosing
various diseases, such as obstructive sleep apnea–hypopnea syndrome and cardiovascular
diseases [83,84]. In [83], the authors developed a small-sized flower-shaped textile (which
contained two layers of a silver-coated fabric as the base and electrode flower shapes as the
superstructure) to be stitched/sewn on clothes, such as bands, to measure pulse waves at
the forehead, wrist, arm, and chest [83]. In [84], the authors developed a small-sized smart
waterproof textile based on a triboelectric sensor that was adhered to the waterproof Band-
Aid bandage for ambulatory cardiovascular monitoring; they combined their smart textile
with an ANN to continuously and precisely measure the systolic and diastolic pressure [84].
In [85], the authors developed and fabricated a wearable graphene-textile-based strain
sensor with negative resistance variation through a simple thermally reduced graphene
oxide (GO) to be knitted directly on clothing or to be adhered in various body locations
to detect various physiology signals and monitor various subtle motions; for example,
attached on the side of the mouth for various motion detections and facial expressions; on
the finger, head, and wrist for pulse monitoring and handwriting recognition; on the neck
for pulse monitoring as well as vocal vibration detections; near the abdomen for abdominal
breathing detection and analysis; on various body joints to detect the bending of joints [85].
In [86], the authors reported the manufacturing process of a silicone–textile composite
resistive strain sensor for monitoring human motion and physiological parameters; the
wearable sensor can be worn on the chest and elbow to monitor respiratory activity and
joint motion, respectively; it has a high sensitivity, low hysteresis, and ease for shaping
custom designs, while also being flexible, skin-safe, and moisture-resistant.

• Wearable Noninvasive Continuous-Glucose-Monitoring Technology

Continuous-glucose-monitoring (CGM) systems are a commonly portable device that
allows patients to measure their glucose levels in real-time [87]. The most common glucose
monitoring methods are invasive, based on finger-prick testing [13]. However, invasive
methods can cause a physical and mental burden and an infection risk for diabetes patients,
and circadian fluctuations are also reported [13,14]. Thus, noninvasive continuous-glucose-
monitoring methods have been developed to reduce the risks and burdens in measuring
and monitoring glucose levels. These noninvasive devices are small in size and can be
easily connected to a smartphone to monitor blood sugar levels over a period of time [88].
Additionally, the collected data can be shared with healthcare providers online, allowing
for better management and adjustment of treatment plans. Because of plasma leakage
from blood into tears via the blood–tear barrier, glucose levels in tears are related with
blood glucose [89]. Smart contact lenses based on optical sensors are developed as a
noninvasive glucose monitoring system to measure glucose levels in the tear fluid [89].
Contact leans are included with various features to be used as an ideal medical device
for biosensing applications [90]. Another type of noninvasive glucose monitoring system
is the sweat glucose monitoring patch [91]; this system uses sweat sensors that can be
worn on the skin, typically on the arm or wrist, to measure glucose levels in the sweat
and provide a real-time reading. The detection of the glucose levels based on the contact
lenses is based on electrochemical sensors that consist of hydrogels with immobilized
glucose oxidases (GOx) [92]. Nanomaterials, such as gold-doped graphene and gold porous
structures [93,94], and carbon nanotubes [91], are utilized to enhance the glucose sensor
sensitivity. However, the most common challenges in these methods are the inaccurate
detection of glucose levels and the low sensitivity due to the low-glucose concentration
in the small volume of tears [95]. To overcome these limitations, Kim et al. proposed and
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developed smart contact lenses based on HA-Au@Pt BiNCs immobilized in the nanoporous
hydrogels of the glucose sensor for long-term and robust continuous glucose monitoring to
capture rapid changes in glucose levels [95].

• Wearable Activity-Recognition Technology

Activity recognition is a valuable tool that can provide insights into an individual’s
physical activity levels and patterns, which can have significant impacts on overall health
and well-being. Accurately tracking physical activity can help individuals make informed
decisions about their lifestyle and exercise habits. In addition, healthcare professionals can
use this information to develop personalized treatment plans. There are several applications
of activity recognition, including fitness tracking, healthcare monitoring, elderly care,
movement disorder, and sport performance analysis [59,60,96]. Fitness tracking monitors
physical activity levels and provides feedback on progress towards fitness goals. Healthcare
monitoring can track patients with chronic conditions, such as heart disease or diabetes,
and provide healthcare professionals with real-time data on physical activity levels and
health metrics [97]. Elderly care involves monitoring elderly individuals and alerting
caregivers or emergency services in the event of a fall or a sudden change in physical activity
levels [59,60]. Sport performance analysis can provide athletes with valuable insights into
areas of improvement and injury prevention. The type of sensors commonly used in
activity recognition include accelerometers, gyroscopes, and magnetometers [35,37,49,96].
These sensors can detect various types of movement and changes in body orientation,
allowing for the identification and tracking of physical activities, such as walking, running,
or cycling. Accelerometers measure the changes in the linear acceleration, gyroscopes
measure the changes in the rotational velocity, and magnetometers detect the changes in
the Earth’s magnetic field. By combining the data from these sensors, wearable devices
can accurately recognize and classify different types of physical activities. Smart watches,
fitness trackers, smart clothing, and smart shoes are the most common activity-tracking
wearable devices [97–100]. These devices can be mounted on different body locations, such
as the arms, legs, wrists, chest, and more, to collect data from various sensors [97,100].

• Wearable Mouth-Based Systems Technology

Smart mouthguard monitoring systems have been embedded with biosensors for
health monitoring and diagnosis [12,15]. In [12], the authors developed a smart wearable
mouthguard as a highly sensitive, selective, continuous, and stable noninvasive monitoring
biosensor to detect the salivary uric acid levels in a real-time and wireless fashion [12].
It was embedded with an enzyme (uricase)-modified screen-printed electrode system, a
microcontroller, and a Bluetooth low-energy transceiver to transmit the measured infor-
mation to mobile computers (such as smartphones and laptops) so to be displayed and
stored for diagnosis and monitoring purposes. In [15], the authors developed a smart
noninvasive wearable oral-monitoring glucose biosensor to measure saliva glucose [15];
this biosensor was integrated in a mouthguard to be installed in the oral cavity. The sensor
circuit has a small size and contains a glucose biosensor, a battery, and a telemetry system
to sample the saliva, continuously measure glaucous levels, and transmit the readings
wirelessly to mobile devices (smartphones/tablets) [15]. The observation of experienced
dentists or X-ray are the best ways to diagnose dental caries; however, dental caries is hard
to detect in its early stages, and it is mostly detected when the cavity or decayed surface
appears [101]. Li et al. developed a wearable fluorescent mouthguard, which consisted
of a zinc oxide–polynanocomposite, to precisely identify the locations of lesion sites in
humans [102]. This mouthguard displayed a highly sensitive and selective response to
volatile sulfur compounds in oral cavities, and showed high fluorescent stability, perfect
biocompatibility, and low biological effects. A wireless electronic solution for orthodontic
bond failure diagnosis was presented in [103], and it was based on developing a low-power-
capacitive-humidity implanted microchip that contained a humidity sensor to detect the
bond failure between the tooth and orthodontic braces. Tongue impairments in the elderly
impact swallowing, speech, and nutrition. A low-power smart wireless intra-oral wearable
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device with six capacitive coplanar sensors was developed to monitor tongue movements
and strength, making it suitable for long-lasting rehabilitation without the need for X-rays
or internal mouth cables [104].

• Smart Shoes Technology

Various types of sensors have been integrated with smart shoes [105], such as (a) a
pressure sensor to measure foot pressure, commonly used for diabetic patients, (b) an
ultrasonic sensor to measure the distance to an object, mostly used by blind people, (c) an
accelerometer sensor to track movements, widely used for gait analysis, (d) a temperature
sensor to measure the body temperature and also the atmospheric temperature, (e) an
altitude sensor to provide an early warning to climbers or trekkers while at high altitudes,
(f) a piezoelectric pedometer to count the number of steps and speed for a specific time,
and (g) a gyroscopic sensor to track the angular movement for gait walking pattern iden-
tifications [105]. Smart wearable shoes serve two key purposes: enhancing sports and
well-being, and enabling medical monitoring and diagnosis. Users utilize them to track
daily activities, such as step count and speed [106], gait analysis, and joint stress detection,
for improved lifestyle choices.

• Tear Biomarker Monitoring Using Eyeglasses-Nose-Bridge Pad Technology

The authors developed a noninvasive real-time tear alcohol and glucose biosensor
monitoring device that is placed outside the eyes [17]; wireless electronic circuitry was
embedded on the eyeglasses frame to provide a fully portable and convenient-to-use
sensing device. These eyeglasses monitoring devices based on the nose-bridge pad was
developed to overcome the downsides of a direct contact of the embedded sensor of the
contact lens with the eye, such as potential vision impairment [89,92], unsteady mechanical
stability, and non-biocompatibility due to immune response and toxic reactions [87].

• Attachable Patch/Bands for Sweat-Biomarker-Monitoring Technology

Sweat glands, primarily found in the hands, feet, lower back, and underarms, have
led to the development of various portable technologies for measuring sweat biomarkers
to diagnose diseases and monitor health. These include head/wrist bands [91], head/arm
patches [107], touchpad–fingertip sensors [108], and smart clothing (underwear, socks,
gloves, and finger cots). These technologies detect biomarkers, like lactate for fatigue,
glucose for diabetes, cortisol for mental stress, creatinine and urea for kidney disorders,
and caffeine and lactate for dosage tracking and metabolic monitoring. Bae et al. intro-
duced a stretchable patch with an omnidirectionally stretchable nanoporous gold (NPG)
electrochemical biosensor and a stretchable passive microfluidic device for accurate glucose
monitoring from sweat [107]. Emaminejad et al. developed a smart wearable head/wrist
band platform for multiplexed in situ perspiration analysis, measuring sweat metabo-
lites, electrolytes, and skin temperature for personalized diagnostics and physiological
monitoring [91]. Bo Wang et al. devised a thin hydrogel micro patch on the fingertip to
sample sweat and monitor biomarkers, like caffeine and lactate, using an electrochemical
sensor [108].

2.1.2. Implantable Sensing Technology

Implantable sensing technology involves the use of small devices implanted within the
body to measure and monitor various physiological parameters, such as the blood glucose
levels, heart rate, blood pressure, and oxygen saturation [109,110]. They can also be used to
detect and monitor the presence of specific substances in the body, such as drugs, hormones,
and neurotransmitters. These devices can be used to diagnose and manage a range of
medical conditions, from chronic diseases like diabetes and heart disease to neurological
disorders like epilepsy. One of the key benefits of implantable sensing technology is that it
allows for the continuous monitoring of physiological parameters, providing more accurate
and reliable data than intermittent testing [110,111]. This can be particularly important
for people with chronic conditions that require ongoing management. Another advantage
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of implantable sensors is that they can be used to deliver targeted therapies directly to
the affected area of the body. For example, implantable pumps can be used to deliver
medications to treat pain, spasticity, and other symptoms associated with neurological
disorders. Implantable sensors can also be used to monitor the effectiveness of treatments
and adjust dosages as needed. This can help to optimize treatment outcomes and reduce
the risk of complications. Implantable sensors can be categorized into three distinct types
based on their functionality [112]: biopotential sensors that are designed to measure
electrical activity, mechanical sensors that respond to changes in mechanical parameters,
and chemical biosensors that are specifically engineered to transduce the concentration of a
targeted molecule of interest. Overall, implantable sensing technology has a wide range
of applications in the field of medicine. Constant efforts are being made to develop new
devices to improve patient outcomes and enhance their quality of life. Presented below are
some examples and applications of implantable sensing technology:

1. Glucose Monitoring: Implantable glucose sensors can be used to monitor blood sugar
levels in people with diabetes [110]. These devices can continuously measure glucose
levels and send data to a handheld device or smartphone, allowing patients to adjust
their insulin dosages as needed.

2. Cardiac Monitoring: Implantable cardiac monitors can be used to track heart rhythm
and detect abnormalities, such as arrhythmias [113]. These devices can also monitor
the heart rate, blood pressure, and other vital signs to help doctors diagnose and
manage heart disease [110,113].

3. Neurological Monitoring: Implantable sensors can be used to monitor the brain activ-
ity in people with epilepsy, helping doctors to diagnose and treat the condition [112].
They can also be used to monitor intracranial pressure in people with traumatic brain
injuries.

4. Drug Delivery: Implantable sensors can be used to monitor drug levels in the body,
allowing doctors to adjust dosages as needed [110,112,114]. They can also be used to
deliver medications directly to the affected area of the body, reducing the risk of side
effects [112].

5. Cancer Treatment: Implantable sensors can be used to monitor tumor growth and
response to treatment, helping doctors to adjust treatment plans as needed [114,115].
They can also be used to deliver targeted therapies directly to the tumor site, minimiz-
ing the damage to healthy tissue.

2.1.3. Ingestible Sensing Technology

Ingestible sensing technology refers to the use of miniature electronic devices that are
swallowed or ingested in the form of pills or capsules to monitor various physiological
parameters within the gastrointestinal tract [116,117]. These devices contain sensors that
can detect and transmit information about the pH levels, temperature, pressure, and other
relevant indicators, and can provide valuable insights into digestive processes, medication
effectiveness, and disease progression [116]. Ingestible sensing technology relies on a
variety of sensors to measure physiological parameters within the body. Dagdeviren
et al. developed an ingestible sensor that can be placed on the lining of the stomach to
monitor vital signs and mechanical changes in the gastric cavity [118] for diagnosing and
treating motility disorders, and monitoring food intake in individuals with obesity. In
another study [119], researchers developed an ingestible device that combined probiotic
sensor bacteria with microelectronics, which can communicate with external devices like
smartphones. They engineered heme-sensitive probiotic biosensors, and showed the
precise detection of gastrointestinal (GI) bleeds in pigs, with a remarkable sensitivity of
100% after 120 min. Below, the most common types of sensors used in this technology are
presented [117]:

1. pH sensors are used to measure the acidity or alkalinity of the digestive system. These
sensors can be used to diagnose conditions like acid reflux, gastroesophageal reflux
disease (GERD), and Helicobacter pylori infection.
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2. Temperature sensors are used to measure the temperature of the digestive system.
These sensors can be used to monitor body temperature and detect fever, as well as to
diagnose conditions like Barrett’s esophagus and inflammatory bowel disease.

3. Pressure sensors are used to measure the pressure within the digestive system. These
sensors can be used to diagnose conditions like gastroparesis, achalasia, and other
motility disorders.

4. Electrolyte sensors are used to measure the levels of various electrolytes within
the body, including sodium, potassium, and chloride. These sensors can be used
to monitor electrolyte imbalances and diagnose conditions like dehydration and
electrolyte disorders.

5. Glucose sensors are used to measure blood sugar levels within the body. These
sensors are commonly used to monitor glucose levels in people with diabetes.

6. Drug sensors are used to monitor the absorption and distribution of medications
within the body. These sensors can be used to optimize drug formulations and dosages
for better treatment outcomes.

7. Magnetic sensors are used to detect the presence of magnetic particles within the di-
gestive system. These sensors can be used to diagnose conditions like gastrointestinal
bleeding.

2.1.4. Smartphones

The use of smartphones in DH has revolutionized the way we approach healthcare,
enabling individuals to monitor their health and wellness anytime and anywhere. Smart-
phones are increasingly being utilized as portable devices for a wide range of health-related
applications, including fitness tracking, medication reminders, and telemedicine [120–122].
Through the use of various sensors and applications, smartphones can track important
health metrics, such as heart rate, blood pressure, and sleep quality, providing users
with real-time insights into their physical and mental well-being [123,124]. In addition,
smartphones can be used to store and share medical records [120], access educational
resources, and connect with healthcare professionals via telemedicine services [7,8,120].
The widespread availability and affordability of smartphones make them a powerful tool
for improving health outcomes, particularly in underserved and remote areas, where access
to traditional healthcare services may be limited. However, the use of smartphones in DH
also raises concerns regarding privacy, data security, and the accuracy and reliability of
health-related information. As such, it is important to ensure that appropriate measures
are in place to safeguard user privacy and data security, and to verify the accuracy and
reliability of health-related data obtained through smartphone-based applications. Smart-
phones are equipped with various sensors that can be used for health monitoring and DH
applications [121,123]. Table 1 displays the common sensors found in smartphones with
their features and applications.

2.1.5. Others

There are several other portable sensing technologies that are not considered in the
previous categories, such as portable smart inhalers [125,126], ultrasound devices [127],
and in-hospital ECG devices [128], EEGs [129], PPGs [130], spirometers [131], blood ana-
lyzers [132], oximeters [133], gas sensors, and smart pill bottles [134]. Smart inhalers are
a type of medical device that incorporates electronic sensors and wireless connectivity to
provide additional features beyond traditional inhalers [125,126]. They are used to treat
respiratory conditions, such as asthma and chronic obstructive pulmonary disease.
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Table 1. Smartphones’ sensors and their applications in digital healthcare [121,123].

Sensor Function Application

Accelerometer Measures the phone’s
movement and orientation

• tracking physical activity
• monitoring sleep quality

GPS Provides location information

• movement tracking
• physical activity

monitoring
• detecting location-based

health information

Gyroscope Measures the phone’s rotation
to detect changes in position • tracking physical activity

Photoplethysmography (PPG) Measures the heart rate
• fitness tracking to

monitor heart health
• stress management

Photodiode sensor (ambient
light sensor)

Measures the amount of light
in the user’s environment

• adjusting the phone’s
display brightness to
reduce eye strain

• improving sleep quality

Infrared (IR) sensor
(proximity sensor)

Detects the presence of nearby
objects or surfaces, as well as
the contactless monitoring of
vital signs

• remote patient
monitoring

• sleep apnea detection
• stress management
• fall detection

2.2. Nonportable Sensing Technologies

Nonportable DH technologies refer to those devices that are not easily transportable
and usually require a fixed installation. These technologies can be used in various settings,
such as hospitals, clinics, and smart homes, to provide continuous monitoring and improve
patient outcomes. Below are the most prevalent forms of nonportable sensing technology:

1. Stationary medical imaging technologies: Imaging technologies are noninvasive
methods to visualize internal organs and diagnose various diseases [135]. Examples
include X-ray, computed tomography (CT), magnetic resonance imaging (MRI), and
positron emission tomography (PET). Owing to the extensive literature available on
medical imaging methods and their applications in detecting and diagnosing various
diseases and abnormalities, we have not provided detailed features of each method.
Instead, we have referenced key review articles, such as Hosny et al., which presented
a comprehensive overview of imaging technologies that have been enhanced with
artificial intelligence techniques to diagnose various diseases [136]. Guluma et al. also
reviewed DL methods in the detection of cancers using medical imaging data [137].
Additionally, Rana et al. discussed the use of ML and DL as medical imaging analysis
tools for disease detection and diagnosis [138]. These articles provide valuable insights
into the types of medical imaging data and applications of advanced computational
techniques in medical imaging, and demonstrate their potential in improving disease
diagnosis and patient outcomes.

2. Environmental sensing technologies: They are used to detect and monitor environ-
mental factors that can impact health conditions. Examples include air quality sensors,
temperature sensors, and humidity sensors [139]. These sensors are used in smart
homes. By combining these sensors with other DH technologies, they can play signifi-
cant roles in improving the quality of care, reducing healthcare costs, and enhancing
the independence and well-being of individuals [140].

3. Monitoring and diagnostic technologies: Monitoring and diagnostic technologies
based on biosensors are used to monitor and diagnose health conditions [141]. These
devices are used to measure various biomarkers, such as glucose, cholesterol, and
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other vital signs, such as ECG, EEG, electro-oculography (EOG), and electroretinogra-
phy (ERG).

4. Robotic surgery systems: They are advanced medical devices that utilize robotic
arms and computer-controlled instruments to assist surgeons in performing mini-
mally invasive surgeries [141–143]. Examples of common robotic surgery systems
include: (1) the da Vinci Surgical System [141], which is comprised of a console for
the surgeon, and several robotic arms that hold surgical instruments and a camera;
(2) MAKOplasty [142], utilized for orthopedic surgeries, such as knee and hip replace-
ments; (3) the CyberKnife [143], employed for radiation therapy to treat cancer; (4) the
ROSA Surgical System, utilized for neurosurgery procedures.

The most prevalent sensors utilized in digital healthcare aimed at developing robust
ML/DL models for health monitoring and diagnosis are presented in Table A2. In this
table, we have outlined the data types and the ML/DL applications associated with each
DH sensor technology [144–203].

3. Transfer Learning: Strategies and Categories
3.1. Why the Transfer Learning Technique

In this paper, the term classical learning (CL) denotes a learning approach based on
traditional ML or DL methods which emphasizes the design and development of prediction
models from scratch using labeled or unlabeled collected data to perform predictions on
future data.

Any prediction problem based on ML can be categorized into three categories accord-
ing to annotation status of the train and test datasets: (a) supervised, (b) semi-supervised,
and (c) unsupervised [162]. In the supervised learning approach, both the train and test
datasets are labeled and suitable to generalize an accurate prediction model; in supervised
learning, the prediction model performs mapping between inputs (features) and outputs
(labeled targets) [204]. Various prediction tasks can be performed in the supervised learn-
ing approach: classification, detection, segmentation, and regression. In semi-supervised
learning, the available data contain small labeled data and large unlabeled data, and both
labeled and unlabeled data samples are used to generate a prediction model [205]. The
unsupervised learning approach utilizes unlabeled data only, and it is used widely in
dimensionality reductions, feature selections, and clustering applications. In addition, there
is reinforcement learning (RL), which aims to achieve an optimal behavior in an interactive
environment by using feedback from a series of previous actions [204]. Like in supervised
learning, the RL maps between the inputs and outputs, but the feedback is a series of
correct learning actions, as in unsupervised learning. Both RL and unsupervised learning
perform learning in unlabeled data, but unsupervised learning discovers the similarities
and differences between the data samples and RL learns an optimal behavior by achieving
maximum rewards.

The following two terms are used in ML problems to define the data distribution and
the purpose: the domain and task [206]. The domain D provides information about the
inputs to an ML algorithm (data), and it is defined by two components, a feature space X
and a marginal probability distribution P(X) [206]. The task T describes the purpose of
the ML model, and two components are used to define the task T: a label space Y (outputs)
and a predictive function f (·). The predictive function is learned from the feature vector
and label pairs {xi, yi}, where xi ∈ X and yi ∈ Y [206].

If a specific ML algorithm based on the CL approach is used to solve two problems
(i.e., the source and target), the domains and distributions of the data, as well as the tasks
of both the source and target problems, should be same. Additionally, the target data are
usually a subset of the training data (source data). If either the domains and distributions
or the tasks in both the source and target are dissimilar, the CL method is mostly unproper
to develop accurate prediction models. In addition, there are four main challenges that
arise when users attempt to develop accurate and reliable ML prediction models based on
the CL approach [31]:
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1. Appropriate modeling algorithms: there are many different types of ML algorithms,
and choosing the right modeling algorithm for a particular task requires careful
consideration of the data, the problem, and the desired outcome.

2. Hyperparameter tuning: each ML method has hyperparameters that must be set
before training, such as the learning rate, regularization strength, number of layers, etc.
Determining the optimal values for these hyperparameters can be time-consuming,
as it often requires many attempts to attain the best configuration.

3. Data quality and privacy: preparing data to train ML models often requires extensive
preprocessing of the raw data to enhance its quality and size. This involves techniques
like normalization, scaling, transformation, feature selection, data augmentation, and
data denoising, which demand careful considerations of the underlying data and the
specific problem.

4. Significant hardware resources: DL algorithms particularly require significant compu-
tational resources, including powerful GPUs, high-speed storage, and large amounts
of memory, to perform complex computations due to the deep architectures that con-
sist of various types of numerous kernels and layers. Several challenges are associated
with these requirements, such as cost, availability, scalability, energy consumption,
maintenance, and upgrade requirements.

Addressing the above challenges requires careful consideration of the data, problem,
and available resources, and often requires a combination of technical expertise, domain
knowledge, and trial and error.

Within the domain of DH, the availability of insufficient data can present challenges to
the development of efficient ML prediction models. These data challenges include various
factors, such as limited data availability, data imbalance, concerns about data quality and
consistency, and constraints on data access and sharing [31,207]. In the context of DH,
dataset constraints related to limited samples, especially for rare diseases or conditions,
can complicate the generalization of ML models based on CL. Additionally, imbalanced
data are a common problem in DH, which leads to potential biases and poor performance
on underrepresented classes [31,207]. Furthermore, DH datasets may be noisy, incomplete,
or inconsistent, which can make it challenging to extract useful information and train
accurate models [31]. The presence of sensitive information, such as patient health records,
within these datasets further restricts data sharing, consequently limiting the availability of
sufficient data for the development of ML models. Overall, these challenges collectively
contribute to the complexity of developing accurate and scalable ML models based on CL
within the realm of DH.

TL methods have been developed as a vital solution to address the above challenges
associated with the CL approach in DH [35–54]. Figure 7 shows the general architecture
of the TL approach. Many researchers describe TL as “the improvement of learning in a
new task (the target task) through transferring knowledge from a related task (the source
task) that has already been learned previously”. The source domain and the source task are
defined as Ds and Ts, respectively. The target domain, and target task are defined as Dt and
Tt, respectively. The objective of TL is to transfer knowledge from the source problem to
obtain a reliable solution in the target problem. Thus, the TL methods are ML optimization
methods to speed up learning process by fast convergence, reducing the requirements of big
data, decreasing the memory usage (to deal with complex computations), and improving
the performance (in terms of the starting point and accuracy) [32]. The definition that
focuses on transferring a previous knowledge can be related to fine-tuning and feature
extraction methods only. In this paper, we expand the meaning of TL to cover any type of
knowledge transfer from the source to the target, either previously learned or simultane-
ously learned, to include other types of TL, such as domain adaptation, multitask learning,
and meta learning methods. In the next section, we will describe each of these approaches
and their vital applications in DH.



J. Pers. Med. 2023, 13, 1703 19 of 53

J. Pers. Med. 2023, 13, x FOR PEER REVIEW  19  of  54 
 

 

improving the performance (in terms of the starting point and accuracy) [32]. The defini-

tion that focuses on transferring a previous knowledge can be related to fine-tuning and 

feature extraction methods only. In this paper, we expand the meaning of TL to cover any 

type of knowledge transfer from the source to the target, either previously learned or sim-

ultaneously learned, to include other types of TL, such as domain adaptation, multitask 

learning, and meta learning methods. In the next section, we will describe each of these 

approaches and their vital applications in DH. 

 

Figure 7. Transfer learning architecture. 

3.2. Categories and Techniques of Transfer Learning 

TL can be classified into three main branches based on the availability of the labeled 

data in the source and target task: inductive, transductive, and unsupervised [33,34], as 

illustrated  in  Figure  4.  TL  is  also  categorized  into  four  main  groups  based  on  the 

knowledge  transferred between domains  [33]:  instance  transfer,  feature-representation 

transfer, parameter transfer, and relational-knowledge transfer. 

To use an effective TL method to obtain a reliable solution in the target problem, we 

need  to answer  the  following  three questions  carefully:  (1) What  to  transfer?  (or what 

knowledge  to  transfer  from  the source  to  the  target?);  (2) How  to  transfer?  (or how  to 

develop a proper learning algorithm to transfer knowledge?); (3) When to transfer? (or 

when should the knowledge not be transferred?). There could be various possible answers 

for the above three questions based on the variations in the domain and task of the source 

and target models. However, the answer may lead to negative transfer, which requires a 

different strategy or method. The data labeling status can be used as a good sight to an-

swer these questions, as shown in Figure 4. Another way to answer these questions can be 

the relation between the source and target domains. If the source and target domains are 

similar or closely  related  in  terms of  features and data distributions  (i.e., Xs = Xt),  the 

approach is defined as a homogeneous TL. If the source and target domains are dissimilar 

in terms of features or data distributions (i.e., Xs ≠ Xt), the approach is defined as hetero-

geneous TL [206]. In heterogenous TL, the knowledge is transferred between different or 

unrelated source and target domains, which may require adaptation or alignment tech-

niques to bridge the gap between these two domains. Thus, homogenous transfer can of-

ten be easier to implement due to the similarities between domains, while heterogeneous 

TL requires more sophisticated techniques to handle the dissimilarities and domain shifts 

between the source and target domains. 

   

Figure 7. Transfer learning architecture.

3.2. Categories and Techniques of Transfer Learning

TL can be classified into three main branches based on the availability of the labeled
data in the source and target task: inductive, transductive, and unsupervised [33,34],
as illustrated in Figure 4. TL is also categorized into four main groups based on the
knowledge transferred between domains [33]: instance transfer, feature-representation
transfer, parameter transfer, and relational-knowledge transfer.

To use an effective TL method to obtain a reliable solution in the target problem, we
need to answer the following three questions carefully: (1) What to transfer? (or what
knowledge to transfer from the source to the target?); (2) How to transfer? (or how to
develop a proper learning algorithm to transfer knowledge?); (3) When to transfer? (or
when should the knowledge not be transferred?). There could be various possible answers
for the above three questions based on the variations in the domain and task of the source
and target models. However, the answer may lead to negative transfer, which requires a
different strategy or method. The data labeling status can be used as a good sight to answer
these questions, as shown in Figure 4. Another way to answer these questions can be the
relation between the source and target domains. If the source and target domains are similar
or closely related in terms of features and data distributions (i.e., Xs = Xt), the approach
is defined as a homogeneous TL. If the source and target domains are dissimilar in terms
of features or data distributions (i.e., Xs 6= Xt), the approach is defined as heterogeneous
TL [206]. In heterogenous TL, the knowledge is transferred between different or unrelated
source and target domains, which may require adaptation or alignment techniques to
bridge the gap between these two domains. Thus, homogenous transfer can often be easier
to implement due to the similarities between domains, while heterogeneous TL requires
more sophisticated techniques to handle the dissimilarities and domain shifts between the
source and target domains.

3.3. What to Transfer?

What is the type of knowledge needing to be transferred from a source model to a
target model? The answer to this question is crucial to choosing the suitable strategy, and
then the best algorithms, to develop accurate prediction models. Figure 4 presents the most
common approaches to answer “What to transfer?” that are related to the three TL methods
in Figure 4. These approaches are described as follows [33,34,206]:

• Instance transfer: The ideal solution in TL is to effectively reuse knowledge from one
domain to enhance the performance in another domain. However, the direct reuse of
data from the source domain in the target domain is typically not feasible. Instead,
the focus is on specific data instances from the source domain that can be combined
with target data to enhance the results. This process is known as inductive transfer.
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This approach assumes that particular data portions from the source domain can be
repurposed through techniques like instance reweighting and importance sampling.

• Feature-representation transfer: The goal of this approach is to decrease the dif-
ferences between domains and improve the accuracy by finding valuable feature
representations that can be shared from the source to the target domains. The choice
between supervised and unsupervised methods for feature-based transfers depends
on whether labeled data are accessible or not.

• Parameter transfer: This approach operates under the assumption that models for
related tasks have certain shared parameters or a common distribution of hyperpa-
rameters. Multitask learning, where both the source and target tasks are learned
simultaneously, is used in parameter-based TL.

• Relational-knowledge transfer: In contrast to the above three methods, relational-
knowledge transfer aims to address non-independent and identically distributed data
(non-IID), where each subsample exhibits significant variation and does not accurately
represent the overall dataset distribution.

From Figure 8, we can conclude that not all the approaches mentioned above can be
applied to all the three TL categories in Figure 4. For example, all the above approaches
can be employed with inductive TL due to the availability of the labeled data for the target
model. In contrast, the instance transfer and feature-representation transfer approaches are
suitable for transductive TL, which is defined as suitable for situations involving similar
source and target tasks, but without a requisite similarity in the source and target domains.
This lack of similarity can appear as either variation in the feature space of the domains or
variation in the marginal probability distribution of the domains (with a similar feature
space) [33]. The transductive transferred knowledge attempts to solve these variations
between the source and target domains, thus the absence of labeled data in the target
is the case of this approach. This approach proves particularly valuable in addressing
the challenges of a costly labeling process for target problems, such as medical image
labeling [208–210]. In addition, the feature-representation transfer approach is utilized as
an unsupervised TL method, requiring no labeled data to extract high-quality attributes
from the raw data. As such, it is applicable to all three approaches and stands as the sole
method for unsupervised TL [33].

1 
 

 
 

 

 

Figure 8. Approaches of knowledge transfer to answer “What to transfer?” for the three TL strategies:
inductive, transductive, and unsupervised [206].

4. Applications of Transfer Learning on Digital Health Sensing Technologies

TL has emerged as a promising approach in digital healthcare, enabling the develop-
ment of accurate and efficient ML models with limited data. Recent research has demon-
strated the benefits of TL in a wide range of healthcare applications, including medical
image analysis for disease diagnosis [210–212] and wearable sensor processing for patient
monitoring [37,39,40]. For instance, TL has been used to improve the accuracy of the
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automated diagnosis of lung cancer in CT scans [210], where the models were fine-tuned
on large-scale image datasets. TL has also been used to develop personalized models
for supporting decision-making by categorizing patients of Alzheimer’s disease based
on their MRI scans [213] into one of the following groups: Alzheimer’s disease, late mild
cognitive impairment, mild cognitive impairment, and normal cognition. Additionally,
TL has shown great potential in remote patient monitoring, where it has been used to
analyze wearable sensor data and predict the risk of falls in elderly people [155,214], the
steep staging [39,40], and human activities [47–49]. It has been used to develop models for
predicting blood glucose levels in patients with diabetes based on data collected from wear-
able sensors [215]. These studies have demonstrated the significant impact of TL on digital
healthcare, highlighting its potential to improve patient outcomes and reduce healthcare
costs by facilitating early diagnosis, personalized treatment, and remote monitoring.

Selecting the most suitable TL method and strategy is crucial to develop reliable
prediction systems in digital healthcare. Factors such as the availability, size, and type of
data, as well as the type of task and the relationship between source and target domains,
must be considered when selecting a TL method. Additionally, privacy and data sharing
must also be taken into account. In the following subsection, we present and explain several
TL methods and approaches in digital healthcare to enhance diagnosis and prognosis
outcomes, as well as digital healthcare services.

4.1. Methods, Strategies, and Applications of Transfer Learning in Digital Healthcare

In the realm of digital healthcare, a plethora of TL methods and strategies have been
proposed and developed with the aim of bolstering the accuracy and training time of
prediction models, mitigating the impact of data limitations, including issues with data
quality, size, accurate labeling, bias, compatibility, and privacy, and reducing computation
costs. In this context, we have outlined and summarized the most prevalent transfer
learning strategies and methods employed for diverse applications in digital healthcare.
Furthermore, we provide information regarding each study to inspire researchers to employ
these approaches across a range of applications, improve their current systems through
training or combining various techniques, and develop novel approaches. It is noteworthy
that some of the studies cited herein rely on multi-TL approaches and strategies to address
the manifold challenges and issues in ML and digital healthcare.

4.1.1. Feature Extraction

In the medical field, the availability of sufficient data for DL is crucial. When working
with small medical datasets, traditional ML methods may be a suitable alternative to DL,
which typically requires large amounts of data [162]. However, when working with medical
images, traditional ML methods require a preprocessing step to extract, select, and/or
combine meaningful features that can be challenging to implement effectively. To address
this challenge, leveraging pretrained DL (source) models that have learned general features
from large and diverse datasets can improve the model performance on downstream tasks
(target tasks), reduce the need for extensive retraining on new data, and enable the effective
transfer of knowledge between different tasks and domains.

With this method, users have the flexibility to employ the entirety of the pretrained
network’s layers, except the output layer [42], or select specific layers that yield meaningful
features [43]. These chosen layers remain frozen to extract features; therefore, this method is
considered as an unsupervised TL method, which is widely used in the preprocessing step
to extract meaningful representations from the data without requiring existing labels [42].
These features are commonly called deep features, as they are extracted from pretrained DL
models. Then, these features are either directed to a traditional ML algorithm (such as the
SVN, KNN, etc.) or to a new output neural network prediction layer, as shown in Figure 9,
to train a new ML model. An important consideration for this method is the need for
consistent input vector dimensions in both the source and target models, coupled with the
requirement for the relevance between the source and target domains. For example, most
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of the available state-of-the-art pretrained models were developed based on image data
for computer vision tasks (classification, detection, and segmentation), such as VGG 16,
VGG 19, ResNet50, ResNet101, InceptionResNetV2, etc. Thus, these models cannot be
used to extract features from non-imaging data, such as sensor and sound signals. Re-
searchers have addressed these limitations by incorporating preprocessing techniques, such
as resizing/cropping [41,43,44], domain transformation [42] (as shown in Figure 10), and
feature fusions [43]. These steps are employed to harmonize the input data dimensions and
establish domain relatedness prior to feeding the data into the network’s input layers. The
feature extraction method has been used widely to solve limited data samples, commonly
within medical imaging data [41,43,44]. In [41], the authors employed three state-of-the-art
pretrained DL classification models, namely, ResNet50, ResNet101, and InceptionResNetV2,
to extract high-quality features from X-ray images. These features were utilized to train two
different traditional ML classifiers, the SVM and KNN, using the 10-fold cross-validation
method to classify patients’ X-ray images into three categories: COVID-19, normal, and
pneumonia. The authors concluded that a high classification accuracy of 99.86% was
achieved using the SVM classifier. This suggests that the model could serve as a valuable
decision support tool for radiologists. In [42], the authors explored the feasibility of using
TL based on feature extraction to address the challenge of limited training data for the
ECG signal classification. They used the pretrained DenseNet (the 161-layer deep CNN) to
extract features from the ECG data to classify the ECG arrhythmia into four classes: normal
sinus rhythm, ventricular fibrillation, atrial fibrillation and flutter, and ST segment change
(ST). As the DenseNet model was trained on the image data, the authors applied a domain
transformation to convert the signal representation (one-dimensional data(1D)) of the ECG
arrhythmia to an image representation that was represented by the ECG spectrograms
(two-dimensional (2D)). The extracted features from the ECG spectrograms were used
to train an SVM classifier through 10-fold cross-validation. This model was based on
deep features, and achieved an accuracy of 97.23% in classifying nearly 7000 instances,
outperforming other models based on the CL approach using the SVM classifier using 1D
and 2D ECG signals.
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Vo et al. used ensemble deep pretrained convolutional neural networks to empower
the meaning of the extracted deep features from multiscale images to grade breast cancer
in histology images using a traditional ML (gradient boosting trees) [43]. The authors
concluded that their method achieved a better performance compared to the state-of-the-art
breast cancer classification systems in categorizing histological breast cancer images into
four groups (normal, benign, in situ carcinoma, and invasive carcinoma) or two groups
(noncarcinomas (combining the normal and benign classes) and carcinomas (combining
the in situ and invasive classes)) due to the use of the ensemble deep convolutional neural
networks (DCNNs) to combine various high-quality deep features; they reported the
ensemble DCNNs model achieved an improved accuracy of at least 3.3%, 4.2%, 5.5%,
and 3.6% for the images at the respective magnification factors of 40×, 100×, 200×, and
400×, respectively, compared to the other state-of-the-art approaches. In another breast
cancer classification study [44], the authors utilized two TL methods to detect breast
cancers in histopathological images: (1) fine-tuning, and (2) feature extraction. First,
the authors fine-tuned two state-of-the-art imaging classifiers, the VGG16 and VGG19
networks, on histopathological breast images (this method will be discussed in the next
subsection), and then they used these fine-tuned networks as pretrained models to extract
the discriminated cancer features (deep features) from the histopathological images. To
improve the performance, the authors used the GAN to increase the size of the data. The
authors directed these extracted features (from the data, and augmented the data using
the GAN) to a neural network to develop a reliable breast cancer detection system; they
proposed three voting methods to calculate the accuracy for classifying malignant or benign
patches, with method A relying on majority predictions, method B assigning correctness if
two out of four patches are correct, and method C requiring at least one correct patch for
the overall image to be classified as correct. The average attained accuracies of 94.9–99.2%
were achieved by both methods B and C, and authors indicated the feasibility of using
them in detecting the cancer when the patients have any potential signs before medical
examinations.

In Table A3, we have summarized the methodology for the X-ray image classification
using the TL feature extraction method to assist in diagnosing COVID-19 [41], thereby
providing insights on how to implement TL feature extraction on DH sensing data.
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4.1.2. Fine-Tuning

Fine-tuning is a TL method that involves taking a whole pretrained model, or part
of it, and adapting it to a new downstream task with additional training on task-specific
data [216]. The adaptation here includes model parameters as well as the model structure.
Both feature extraction and fine-tuning utilize wellpretrained models that were developed
on big data to assist in the development of a new task. The model parameters are frozen
in the feature extraction method, but updatable in the fine-tuning method. In digital
healthcare, fine-tuning can be particularly useful for tasks where specific features relevant
to the task are not learned by the pretrained model. By fine-tuning the pretrained model
on new task-specific data, the model can learn to adapt the features to the new task and
improve the performance [216]. For example, in medical image analysis, fine-tuning can be
used to train the pretrained convolutional neural network (that was already trained on a
computer-vision classification task) on labeled medical image data for tasks such as tumor
classification. The fine-tuning process requires three steps to adapt a pretrained model to a
new task, as shown in Figure 11. Some researchers extracted part of a pretrained model
(usually the top part that is close to the input) and modified it by adding new trainable
layers in the output part to prepare it for a new task.
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Various strategies can be employed to refine a pretrained model through fine-tuning, as
explained below. These strategies differ in terms of which of the parameters of a pretrained
model are selected for updating, and how these parameters can be updated to develop an
accurate model for a target task.

1. Partial Fine-Tuning (unfreezing some layers)

Here, users can selectively unfreeze and fine-tune only a subset of layers in the pre-
trained model [35]. Typically, researchers unfreeze the later layers (closer to the output) and
keep the earlier layers frozen because the earlier layers develop low-level features (general
features, such as lines, edges, and gradients), while the top layers develop high-level
features (advanced descriptors, such as shape, type, and spatial and temporal information).
This approach can be useful when the lower-level features are universally applicable and
only the task-specific high-level features need adjustment.

2. Fully Fine-Tuning (unfreezing entire extracted layers)

In this approach, all layers of the pretrained model are unfrozen, and both the lower-
level features and higher-level representations are adjusted to the new task’s data [217,218].
This approach can be effective when the new (target) task’s dataset is significantly different
from the dataset on which the original (source) model was trained. This technique is
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especially useful when additional data have been amassed after training a model on an
extensive dataset. Instead of retraining the model using both old and new data, fine-
tuning can be exclusively applied to the new data. This approach does not necessitate any
layer removal, modification, or addition, given that the target task aligns with the source
task. However, if the source and target tasks are not identical, but interconnected, certain
modifications become imperative for the successful application of this approach.

3. Progressive Fine-Tuning (partially unfreezing the layers and training them on a
multistage)

In the first stage, the initial layers of a pretrained model are frozen and the remaining
layers are fine-tuned. The second phase involves gradually unfreezing the frozen layers in
the first stage and fine-tuning the unfrozen layers.

4. Adaptive Fine-Tuning (differentiating the learning rates for layer groups)

This method adjusts the learning rate for the different layers during the fine-tuning of
a pretrained model. The layers closer to the input capture the general features, which are
valuable for a new task, and thus have smaller learning rates to preserve these features [219].
On the other hand, the layers closer to the output learn features that are more related to
decision making on the task’s specifics, and may require larger learning rates for efficient
adaptation. By customizing the learning rates across the layers, adaptive fine-tuning
enhances the convergence, the stability, and the model’s ability to transfer knowledge to
new tasks. Here, it is worth highlighting that adjusting the learning rates for the layer
groups is a distinct approach from the more general concept of adapting the learning rates
within the optimizer.

Figure 12 clarifies the idea of the entire fine-tuning and partial fine-tuning approaches.
If the target task is not similar to the source task, modifying a pretrained model is essential
for developing a proper model for the target task; modifications may include updating
the output layer only to make it compatible with the target task purpose or increasing
the network capacity by adding new layers on the model’s output part to develop more
robust task-specific features. Although increasing the model capacity also increases the
computation costs, it is useful for improving the performance [220].

After describing the common fine-tuning approaches, the subsequent discussion ex-
plores the relevant applications for a better clarification and a source of inspiration. To
develop the dental caries detection system, researchers have implemented modifications to
the pretrained VGG16 model by adding specific layers after removing the output layer from
the VGG16 [217]. They called their model the ConvNet, and trained end-to-end on oral
photographs captured using consumer-grade cameras. Then, they fine-tuned the ConvNet
with true positives against only false positives as a second training stage to decrease the
false-positive predictions and boost the performance by achieving 85.65%, 81.9%, and
64.6% of the area under the curve (AUC), image-wise sensitivity, and box-wise sensitivity,
respectively. The authors reported that their approach successfully classified the presence
of dental caries in the provided images and accurately identified the localization of the
bounding boxes. This outcome underscores the potential of their methodology as a valuable
tool for cost-effective and efficient dental caries screening among large populations. Koike
et al. investigated the effectiveness of using TL for heart-sound classification [218]. They
fine-tuned a pretrained model that was trained on large-scale audio data, the PhysioNet
CinC Challenge dataset, to classify heart sounds into normal and abnormal sounds. The
authors reported that their method demonstrated superior performance compared to other
models that were pretrained on images, achieving the highest unweighted average recall of
89.7%. This highlights the potential of using TL methods as a noninvasive way to monitor a
person’s health status by automatically extracting higher representations from heart sounds
without requiring human domain knowledge. In [36], researchers addressed two key chal-
lenges in human activity recognition (HAR) using TL. First, conventional training struggles
with new users’ diverse activity patterns. Second, training from scratch being impractical
for mobile apps due to computation and time constraints. Their innovative approach in-
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volved a thorough analysis to identify common and user-specific features. By transferring
the reusable parts of an offline classifier to new users and fine-tuning for uniqueness, they
achieved remarkable results—up to a 43% accuracy boost and 66% training time reduction.
Additionally, hardware assessments indicated a 43% drop in power consumption and a
68% drop in energy consumption. In another study [35], partial fine-tuning was employed
to address the cross-sensor challenge that arises when sensor variations between the source
and target dataset are presented to train a human activity recognition (HAR) system; the au-
thors utilized nine pretrained state-of-the-art convolutional neural network (CNN) models
on the KU-HAR dataset as the source. As all these pretrained CNNs were developed using
image data, the researchers generated the scalogram from the accelerometer and gyroscope
data of smartphones as a virtual image representation by using different configurations of
mother wavelets. The most superior performance from the source KU-HAR dataset was
achieved by partially fine-tuning the DenseNet121 architecture using the Morlet wavelet
(with a classification accuracy of 97.48% and an F1 score of 97.52%), thereby outperform-
ing the state-of-the-art achievement; they found that freezing the first 308 layers of the
pretrained model resulted in faster training and a smoother gradient descent on a small
dataset. This model also achieved improvements in both the accuracy and F1 score by
0.21% and 0.33%, respectively, on the entire UCI-HAPT target dataset. In addition, they
reported that the fine-tuned larger datasets led to the negative transfer causing a drop in the
accuracy. Another study involved the transfer of knowledge from in-hospital multi-sensor
data, which are generally more comprehensive and dependable, to wearable devices to
benefit from its size and cost [37]; this approach sought to improve the accuracy of the
models trained on the wearable device data, which are typically derived from a limited set
of sensors. The authors used in-hospital recordings to boost the performance via TL on a
sleep-staging task using a single channel of the EEG captured from an in-home commercial
system [37]. They used two pretrained neural networks, bespoke (their own network) and
the DeepSleepNET, to be trained on six publicly available in-hospital datasets based on
PSG sensors as the source data, and then retrained these models on a wearable head device
EEG-based sensor as a target dataset. They tested several transferability measures (such as
the log expected empirical prediction (LEEP), H-score, hypothesis margin, silhouette score,
and the target density around the source) to determine the most effective one for assessing
the performance on unseen target data. They used two CNN structures: their own structure
and the DeepSleepNET structure. They used several TL approaches to retrain bespoke
(their own network) and the DeepSleepNET, aimed at developing the best model, such as
Head Re-train, subspace alignment, Per-Class CORAL, CORAL, and deep domain confu-
sion (DDC). They found that retraining the head layers (the closest to the output) was the
most effective TL method, and the transferability measures provided useful indicators of
the TL effectiveness. In [40], the authors proposed a method to improve the performance of
a sleep-staging system based on small PPG data through a combined domain and decision
TL. They used a pretrained RNN model based on large ECG data from an unwearable
device to enhance the performance of the wearable-PPG-based data. The authors compared
different training strategies, including CL and three TL approaches (domain transfer, deci-
sion transfer, and combined domain and decision transfer). The authors reported that the
models developed using any of the three TL approaches achieved a better accuracy than
those based on CL (trained from scratch). While the accuracy of each domain transfer and
decision transfer was similar, the combined domain and decision method outperformed
the other two TL methods by achieving 0.65 ± 0.11 and 76.36 ± 7.57% for Cohen’s kappa
and accuracy, respectively. The authors concluded that training a successful structure from
scratch is not a good strategy, although it can be considered as transferring knowledge
based on the model structure.
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specific output layer; (b) The entire fine-tuning of the extracted 200 layers from the source (pretrained)
model to develop a target task that can either be the same as the source task or different and requiring
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189 layers, and the fine-tuning of only the last 2 layers (layers 199 and 200) to develop a target task
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(the model base).

The following two studies demonstrated the effectiveness of TL in creating accurate
sleep-staging systems using a variety of physiological signals. In [38], the authors proposed
a TL method to develop an automatic and high-performing sleep-staging system based on
long-term scalp EEG recordings. They trained a hybrid DL network of a CNN and RNN,
called the CRNN, on large clinical PSG data from over 6000 patients and fine-tuned it on
long-term ambulatory scalp EEG recordings. The pretrained and fine-tuned CRNN models
achieved a Cohen’s kappa close to the expert level (0.75 ± 0.11), with the fine-tuned CRNN
increasing the cross-validated Cohen’s kappa to 0.78. In [39], the authors used a pretrained
CNN model based on derived information from large ECG data to develop a sleep-staging
model based on small PPG data recorded from wearable devices. The authors reported
improving the accuracy and Cohen’s kappa coefficient of the fine-tuned model on the PPG
data to 1–9% and 0.01–0.13, respectively, compared to training without TL. The advantages
of using fine-tuned TL in wearable devices for digital healthcare can be summarized as
follows: First, by leveraging pretrained models, wearable devices can achieve a high
accuracy even with limited amounts of individual data. Second, fine-tuning the pretrained
model on individual data enables personalized health insights and recommendations,
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which can improve the health outcomes and promote patient engagement. Finally, fine-
tuning allows for the continuous learning and improvement of the model, making it more
robust and adaptable to individual wearers over time.

In Table A4 we have summarized the methodology for human activity recognition
based on wearable sensors using the TL fine-tuning method, providing insights on how to
address the cross-sensor challenges that arise with sensor variations between the source
and target datasets using TL methods [35].

4.1.3. Domain Adaptation

Domain adaptation (DA) is a subfield of TL that focuses on developing effective
techniques to address the issue of heterogeneous data distributions [47,48]. Transduc-
tive TL methods, including domain adaptation, have demonstrated significant success
in addressing domain differences between the source and target domain distributions,
thereby eliminating the need for expensive target domain data annotations [48]. The source
and target domains are different (Ds 6= Dt), but they are related in this approach, as we
can adapt one to the other. In digital healthcare, domain adaptation can be particularly
useful when working with data from different sources. By adapting the model to the target
domain, domain adaptation can improve the model performance and reduce the need
for retraining the model on new data. For example, in medical image analysis, domain
adaptation can be used to adapt pretrained models on medical images from one hospital
to medical images from another hospital with different imaging protocols. Similarly, in
wearable and unwearable devices, domain adaptation can be used to adapt pretrained pre-
diction models from two different sources of sensor data that measure related signals [40].
In [47], the authors proposed a novel cross-domain learning framework called stratified
transfer learning (STL) to improve the classification accuracy for activity recognition by
exploiting the intra-affinity of the classes. STL first obtains pseudo labels for the target
domain and performs an iterative intraclass knowledge transfer to transform both domains
into the same subspaces. The labels of the target domain are obtained via the second
annotation. Comprehensive experiments on three large public activity recognition datasets
(all data have different sensors that were mounted on different body locations) show that
STL significantly outperformed the other state-of-the-art methods, with an improvement
of 7.68% in the classification accuracy. The authors also investigated the performance of
STL across different degrees of similarities and activity levels between the domains, and
discussed its potential in other pervasive computing applications. In [48], the authors
proposed a deep multi-source adversarial domain adaptation (MSADA) framework for
human activity recognition from wearable sensor data in heterogeneous environments,
where multiple distinct source domains are present. The proposed framework selected
the most relevant feature representations from multiple source domains and established
mappings to the target domain by learning the perplexity scores. The authors demonstrated
that the learned mappings reflected prior knowledge on the semantic relationships between
domains, making the MSADA a powerful tool for exploratory activity data analysis; the
proposed multisource domain adaptation approach achieved a 2% and a 13% improvement
in accuracy on both the OPPORTUNITY dataset and the DSADS dataset, respectively.
In [221], the authors proposed a new method called joint probability domain adaptation
with a bi-projection matrix algorithm (JPDA-BPM) to overcome the challenge of collecting
enough labeled data for emotion recognition based on physiological signals, which is
time-consuming and expensive. The proposed method considered the differences in feature
distributions between the source and target domains, which improved the algorithm’s
performance. The authors also proposed a substructure-based joint probability domain
adaptation algorithm (SSJPDA) to overcome the effect of physiological signal noise. The
proposed algorithm was tested on the DEAP dataset and the results showed that the aver-
age recognition accuracy of the proposed SSJPDA-BPM algorithm in the multimodal fusion
physiological data from the DEAP dataset was 63.6% and 64.4% in valence and arousal,
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respectively. Compared with joint probability domain adaptation (JPDA), the performance
of the valence and arousal recognition accuracy increased by 17.6% and 13.4%, respectively.

4.1.4. Multitask Learning

Multitask learning (MTL) is inspired by the way humans can learn multiple related
tasks simultaneously, which is often faster and more efficient than focusing on each task
separately for extended periods. This parallels how children typically learn to read and
write concurrently. Multitask learning is a technique that involves training a single ML
model to perform multiple related tasks simultaneously [222,223] rather than training
multiple models (one for each specific task), as shown in Figure 13. This approach is
an inductive transfer mechanism that aims to improve the generalization performance
by utilizing domain-specific information in the training of jointly related tasks [46]. In
this method, the transferred knowledge is represented by sharing the feature learning
simultaneously among different (but related) tasks, leveraging task similarities to enhance
the performance and generalization [224,225]. This method has been used as a powerful
tool to reduce computation costs and the need for big training/validation data, as well as to
overcome expensive data labeling requirements [222,223]. It does not require transferring
knowledge from previously learned tasks (source models) to leverage a new task (the target
model), as in fine-tuning method; instead, it focuses on sharing joint feature adaptation
among various related tasks during the learning process. In this matter, each task can be
considered as a target task, while the other tasks are source tasks that jointly participate
in developing each other. Thus, to develop a multitask learning model, there is no need
for two separate datasets (the source and the target); a single dataset is sufficient to learn
multiple tasks.
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In multitask learning, as in any learning procedure (CL or TL), data can be collected
from a multisource or a single source, as shown in Figure 14. In digital healthcare, multitask
learning based on multisource data can be particularly useful when working with data
from multiple sensors (i.e., wearable and attachable devices) that predict different aspects
of a patient’s health, such as wearable-based multi sensor data to segment and recognize
activities and cycle phases simultaneously [224], or data from a specific single sensor (i.e., a
medical imaging scanner, such as an MRI) to provide multiple automatic diagnoses and
prognoses (such as simultaneously detecting, segmenting, and classifying different parts of
the human spine, including the discs, vertebrae, and neural foramen) using MRI images
in categories such as normal, slight, marked, and severe [225]. Two challenges that are
taken into consideration for developing a multitask learning model are: a network sharing
architecture that focuses on answering the questions What to share? and Where to share?,
and loss-balancing methods that relate to the answer for How to balance the learning of
multitasks?. For What to share? and Where to share?, the multitask DL model can be
represented in two ways based on the parameter-sharing scheme: hard-parameter sharing
and soft-parameter sharing, as shown in Figure 15. The hard-parameter sharing is the most
common scheme, generalized around sharing the early hidden layers of the model among
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all tasks while using a few different task-specific output layers. So, the low-level features
are more general and common, while the high-level features are more task-specific features.
This scheme assists in reducing overfitting. For example, four wearable-based inertial
sensors placed at the wrists and on the shoes to segment and recognize activities and cycle
phases simultaneously using the hard-parameter sharing scheme [224]; the overall achieved
F1-score and the phase-detection F1-score were 92.6% and 98.2%, respectively. Additionally,
the achieved mean stride time error and swing duration error were 5.3 ± 51.9 ms and
0.0 ± 5.9%, respectively, in the gait analysis. In another study, the hard-parameter sharing
multitask learning architecture was developed based on wearable technology to collabo-
ratively learn two correlated tasks, rhythm-classification and signal-quality classification
(excellent, acceptable, and noise) [223]. The idea behind jointly learning these two tasks
was to overcome the low performance in the rhythm-classification task that occurs due
to noisy signals measured by wrist-worn wearable devices. The authors adopted unsu-
pervised transfer learning through the convolutional denoising autoencoder architecture
in their classification model to enhance the quality of the noisy signals and improve the
performance of atrial fibrillation detection, achieving an F1 score of 0.96 compared to 0.54
when the single task was performed.
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While, in the soft parameter sharing scheme, each task has its own parameters, this
approach focuses on regularizing the distances between these task-specific parameters to
encourage the similarity among the related tasks. Although this approach shows superi-
ority in reducing the dissimilarity between different tasks, it suffers from huge memory
requirements and expensive computations due to a large number of parameters [226].
Thus, a hybrid approach that combines both soft- and hard-parameter sharing schemes
was developed to reduce the computation costs and memory requirements. To combine
the benefits of these two approaches and reduce their drawbacks, various schemes of the
hybrid approach have been developed, such as the select-or-skip policy learning scheme
to choose which layers to be trained, shared, and skipped for each task [226], and the
attention module scheme to learn task-related features by applying a soft-attention mask to
the features in the shared network [227]. For example, the attention-based U-Net model
was modified to implement two brain tumor diagnosis tasks: classification (meningioma,
glioma, and pituitary) and segmentation in the MRI images [228]; the authors developed
their model based on the attention U-Net, and modified the encoder part to not only de-
velop low-level segmentation features, but also to classify an MRI image into one of the
following brain tumor categories: glioma, meningioma, and pituitary; the segmentation
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of these brain tumors in the MRI images was performed in the decoder part. This scheme
improved both the segmentation performance by achieving a Dice coefficient of 0.74 (a 5%
increase) and a Jaccard index of 0.6 (a 9% increase) compared to the U-Net segmentation
model, and the classification performance achieved an accuracy of 98.04% (increasing by at
least 4%) compared to other pretrained classification models (such as VGG 16, VGG19, and
ResNet50).
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To balance the learning of the multitask (when each task has a specific type of loss),
various loss optimization procedures have been developed and applied [222,229]. Let a
multitask model contain t tasks. The objective loss (Lobj) can be explicated as Lobj = ∑t

i λi Li.
The hyperparameter λi represents the weight assigned to each task-specific loss. In the
simplest case, for the equal weighting method, λi = 1/t. However, this approach may not be
effective when there is significant variation in the difficulty of learning across tasks [222].
Thus, various weighting strategies have been proposed and developed, such as uncertainty
weights [230], gradient normalization [231], the dynamic weight average [227], the projecting
conflicting gradient [232], impartial multitask learning [233], and random loss weighting [229].

In [45], the authors proposed a multitask multi-kernel based on a logistic regression
(MTMKLR) model for emotion recognition. The authors used the multitask learning as
an inductive TL approach to improve the generalization by using the domain information
contained in the training signals of related tasks as an inductive bias [45,46], and the multi-
kernel method to address the challenge of fusing different physiological signals for emotion
recognition, as different types of physiological signals may carry different information
related to emotions [45]. The authors concluded that, by treating different physiological
signals as multiple kernels, the proposed method was able to combine them into a single
model that could capture more complex relationships between signals and improve the
recognition accuracy. The authors used the multitask method to simultaneously address the
challenge of revealing the importance of different signals for recognition. By considering
the classification of low/high valence and low/high arousal as multiple tasks, the proposed
method was able to learn multiple decision boundaries that corresponded to different
emotions and capture the relevance of different signals to different emotions. Therefore,
the proposed multitask multi-kernel logistic regression (MTMKLR) approach solves both
the problems of fusing different signals and identifying their importance for emotion
recognition; this MTMKLR approach increased the accuracy to more than 10% compared
to conventional kernel logistic regression.
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In Table A5 we have summarized the methodology for implementing brain tumor
classification and segmentation in MRI scans jointly in a single model using the multitask
method [228], providing insights on how to improve the accuracy of two different but
related tasks using limited data using these methods.

4.1.5. Zero-Shot, One-Shot, and Few-Shot Learning

One-shot, few-shot, and zero-shot learning are meta-learning methods. Meta-learning
methods are designed around the idea of “learn how to learn”, and they are related to
TL in that they all involve leveraging existing knowledge or structures to improve the
generalization performance on new tasks or domains [234–236]. These methods can be
considered a specialized form of TL, where the model learns how to learn and adapt across
different tasks, rather than just transferring fixed knowledge from one specific task to
another. In other words, they focus on enabling a model to quickly adapt to new tasks,
which aligns with the concept of TL, where knowledge acquired from one domain or
task is applied to improve performance on a related but different domain or task. These
methods do not require a vast amount of labeled data to predict a new category; just a
few to zero examples (i.e., samples) are sufficient. To train and test a prediction model
using few-shot learning, one requires both training and test datasets, each comprising
multiple tasks. In the training dataset, each task consists of a labeled support set (training
data), used to train the model, and a labeled query set (validation data), used for model
validation. The notation ‘N-way K-shot’ is typically employed in few-shot learning, with ‘N’
denoting the number of distinct classes within each task and ‘K’ representing the number
of samples (i.e., examples) within each class. During the training stage, it is important
to ensure that identical tasks are not used. However, some tasks may share classes with
other tasks. For instance, Task 2 in the training set shown in Figure 16 might contain
the same ‘rectangular’ class as Task 1 (though Task 1 and Task 2 are distinct and should
not be considered identical). Within the query set, tasks consist of samples that have
not been seen before, but they belong to the same classes as those in the support set.
The test dataset contains tasks that have not been encountered during training, and the
query set within the test dataset is typically unlabeled, requiring predictions from the
developed model. Usually, a large dataset containing numerous distinct training tasks
is used to develop a pretrained model based on few-shot learning. Subsequently, this
pretrained model is fine-tuned on a limited dataset to implement a new few-shot learning
task. In the context of this paper, the training dataset could consist of images from a
computer-vision classification task for pretrained model development, with the pretrained
model then being fine-tuned on medical imaging data to implement a medical image
classification task. One-shot learning is a learning paradigm where the model is trained
to recognize new objects or categories based on a single example (i.e., K = 1) rather than a
few examples. This is typically achieved by leveraging the prior knowledge or structure
about the underlying data to generalize to new examples. Zero-shot learning is another
learning paradigm where the model is trained to recognize new objects or categories that
were not present in the training dataset. This is typically achieved by leveraging additional
information, such as attributes or relationships, to generalize to new examples. In [54],
the authors proposed a method to address the limitations of existing CNNs in semantic
segmentation based on medical images due to high manual annotation costs and privacy
issues. The authors combined domain adaptation and meta learning based on few-shot
learning to adjust an optimization algorithm so that the segmentation model could learn
with only a few examples instead of big annotated data. They used an optimization
based on the meta-learning method to align the source and target data in a domain-
invariant discriminative feature space. They proposed augmenting model–agnostic meta-
learning (MAML) and Reptile algorithms (meta-learning benchmarks) to learn from diverse
segmentation tasks across the entire task distribution. The proposed method focused on
learning from the diversity of image features that characterize a specific tissue type while
showing diverse signal intensities. The advantages of the proposed method include an
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improved learning capability, avoidance of overfitting, and fast domain adaptation with a
small dataset. To examine their proposed method, the authors used Medical Segmentation
Decathlon (MSD) data that contained several medical image segmentation tasks; they
chose six segmentation tasks randomly as source tasks (the heart/King’s College London,
the liver/IRCAD, the prostate/Nijmegen Medical Centre, and the pancreas/Memorial
Sloan Kettering Cancer Center, spleen/Memorial Sloan Kettering Cancer Center, and
colon/Memorial Sloan Kettering Cancer Center), and they involved the remaining two
tasks (liver and colon) as target tasks. The authors concluded that their proposed method
outperformed existing benchmarks (for the MAML and Reptile, 2% and 2.4% in terms of
the Dice similarity coefficient (DSC), respectively), and improved the generalization of the
model on tasks with few examples.
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In [53], the authors proposed a TL approach based on meta-transfer and few-shot for
automatic arrhythmia detection based on wearable device data. The source and target
tasks were related, but different, and the domains were the same (ECG data) but from
different devices and datasets. The researchers used few-shot to overcome the pretraining
in big data for a new class. The proposed method involved transforming the ECG signals
into time–frequency spectrograms and using a 2D-CNN model for feature extraction. The
feature extractor was pretrained on an auxiliary dataset to improve the efficiency and
alleviate the training sample requirements. The proposed meta-transfer scheme was used
to recognize the unseen target samples and improve the generalization to new arrhythmia
types, even with limited-sized datasets. They used the meta-transfer strategy to leverage
the learned knowledge to mitigate overfitting, a challenge commonly faced by traditional
few-shot learning methods. They conducted comprehensive experiments to evaluate the
effectiveness of their proposed approach (2-way and 4-way with few-shots (1–5)), which
outperformed other developed meta learning methods in terms of the accuracy, with
improvements of 3–12%, 1–11.5%, and 1.8–4%, in the 1-shot 2-way, the 10-shot 2-way, and
the 10-shot 4-way, respectively. In addition, this model achieved competitive accuracies
when compared to large-scale training, especially when the 10-shot was applied.

In [52], the authors proposed a novel zero-shot image-retrieval model for medical
images using meta-learning and ensemble learning techniques for medical image retrieval
to improve the generalizability of the model for new and emerging infectious diseases
where historical data were not available. To conduct experiments, they randomly sampled
5% of the images from the NIH Chest X-Ray dataset and created a smaller dataset that
contained 5606 images classified into 15 classes. To simulate the situation of new diseases,
they randomly selected one disease as the new disease and used the other 14 types of
diseases as the training set. The goal of the experiment was to train a retrieval model
on the 14 diseases and achieve a good retrieval performance on the new disease without
using any data from the new disease. The triplet loss was used to optimize the model
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during the training process by decreasing the distance between the image’s hash codes
of the same class and increasing the distance between the image’s hash codes of different
classes. The authors used the pretrained model Alexnet to extract the image features
and the mean average precision (mAP) based on Hamming ranking as the evaluation
metric. The proposed method achieved a 3% to 5% improvement when four distinct hash
codes were applied (8 bits, 16 bits, 32 bits, 48 bits) in the retrieval mAP compared to the
traditional method (baseline), which can aid doctors in making more accurate diagnoses of
new diseases.

4.1.6. Federated Learning

The sharing of sensitive health data in DH is a major concern, as it poses a significant
risk to patient privacy and security. To address this problem, federated learning has
emerged as a promising approach, in which ML models can be trained on distributed data
from various resources while preserving data privacy [237]. Federated learning is an ML
technique that allows multiple healthcare centers to collaboratively train a shared model
without sharing their data, as shown in Figure 17. Instead, each healthcare center trains
a local model on their own data and then shares the model updates with a central server,
which aggregates them to create a new, improved model. In this manner, the principles
of federated learning align with those of TL. The core of knowledge transfer in federated
learning primarily centers around the exchange of the architecture details of the local
models among multiple parties; subsequently, these parties adapt and enhance the model
parameters using their private data [237]. This methodology not only enhances model
accuracy and generalization, but also mitigates the risks associated with centralized data
storage. Furthermore, it enables the development of personalized health monitoring and
disease detection systems that can be used by individuals in real-time. In this approach
of TL, there is no a singular source (pretrained) model to be involved in generating an
accurate target (new) model. Instead, the approach involves the aggregation of multiple
refined local (source) models to produce a robust global (target) model.

1 
 

 
 

 

 

Figure 17. Federate learning architecture. The different colors are assigned for different centers to
clarify that each center updated the parameters of the global model with its own data. For example,
the first center 1 (blue) used the global model and updated its parameters using its own data (blue),
and after finishing, sent the blue model to center 2 (orang); center 2 updated the parameters of the
blue model using its own data to generate the orange model, and continued the same process to end
with the yellow model as a final developed global model.
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In [49], the authors developed a framework called the FedHAR for human activities
recognition (HAR) based on multimodality sensor data. The framework was designed to
address challenges related to privacy preservation, label scarcity, real-time processing, and
heterogeneity. The proposed FedHAR model uses a hierarchical attention architecture for
the alignment of different level features and a semi-supervised online learning strategy for
online HAR tasks. The proposed FedHAR framework utilizes a semi-supervised online
learning strategy that aggregates gradients from both labeled and unlabeled clients. This
approach is related to TL, as it involves leveraging information from multiple sources (in
this case, both labeled and unlabeled clients) to improve the performance of the model
on a given task [49]. The authors concluded that their FedHAR model outperformed the
state-of-the-art baselines on two public datasets; in the fine-tuning of each unlabeled client,
PerFedHAR achieved an average of a +10% improvement across all metrics on the two
datasets. In another study [50], the authors proposed a new framework called FedHealth,
which is the first federated TL framework for wearable healthcare devices. FedHealth
aggregates data from different organizations while ensuring privacy and security. The
framework achieves personalized model learning through knowledge transfer, resulting
in excellent performance in smartphone-based human activity recognition. Compared to
traditional learning approaches, FedHealth significantly improves the recognition accuracy.
The authors believe that FedHealth is an extensible framework that can be used in many
healthcare applications. As a proof-of-concept, the authors designed a FedHealth system
and applied it in Parkinson’s disease auxiliary diagnosis. The results showed that the
system achieved good performance while preserving users’ privacy in real-world scenarios.
In terms of the classification accuracy, FedHealth demonstrated a substantial enhancement
of 21.6% and 16.8% in two datasets compared to the non-federated systems. In [51], the
authors proposed a method for COVID-19 diagnosis using two-stage federated learning as
a TL technique based on convolutional neural networks (CNNs) to classify lung CT scans.
The authors utilized the LeNet pretrained model to train a classification model to categorize
CT scans into healthy and pneumonia in the first stage, then categorize pneumonia into
COVID-19 pneumonia and non-COVID-19 pneumonia in the second stage. In this work, the
authors highlighted the two main challenges in medical image classification—the difficulty
in acquiring enough samples and privacy concerns. Thus, they used federated learning to
ensure privacy by decentralizing the model training on different devices without sharing
data, while they utilized TL based on the fine-tuning approach to deal with the limited
data. The authors explored the impact of the dataset distribution and training epochs on
the model performance. The authors achieved a high performance with their proposed
method, attaining a high area under the curve (AUC) of 0.99 for diagnosing COVID-19
while preserving privacy.

While federated learning has achieved notable milestones in digital healthcare, obsta-
cles linked to data heterogeneity and the demanding nature of the system complexity are
present [238].

To provide a comprehensive understanding of the above methods, Table 2; Table 3
outline the key features and challenges relevant to each of the TL methods that have been
discussed above. This analysis serves as a guide to help researchers and practitioners select
the most appropriate TL method for their specific needs, based on the characteristics of
their data and the intended use of their prediction system.

Some of the discussed literature in this section mentioned the DL framework they
used in developing their research without explaining the specific reasons for their choice;
these DL open-source frameworks are: Keras on top of the TensorFlow [38,54,223,224],
TensorFlow [36,43,44,51], and PyTorch [53], as shown in Figure 18. We observed that certain
references provide open-access code on GitHub, such as [53,226,227]. However, the authors
did not mention the availability of the source code in their papers, so we did not cite the
GitHub sources, and we did not include them in Figure 18.
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Table 2. Characteristics and challenges of the feature extraction, fine-tuning, and domain adaption
transfer learning methods.

Transfer Learning
Method

Feature Extraction Fine-Tuning Domain Adaptation

Source and Target
Domains

Similar Similar or related Related but not different

Source and target tasks Similar/related/different Similar or related Similar or related

Model complexity Low/moderate Moderate/high High

Features 1. Cannot develop a final
prediction model, but can
provide features; thus, it is
used as a preprocessing
method.

2. Relies on a well-generalized
pretrained model to extract
high-quality representation
from the data.

3. Does not need any
annotation information to
extract features.

4. Reduces the need for
big data.

1. Relies on a
well-generalized
pretrained model.

2. Good for reducing
computation costs if the
freezing layers are
considered.

3. A good method to
improve the
performance and
generalization when
new data are collected,
which reduces the need
to retrain on both
previous and new data.

1. Handles shifts in data
distribution, allowing
better performance.

2. Reduces data
requirements

3. Better generalization.

Challenges 1. May not be able to capture
complex relationships
between domains and tasks.

2. Needs a second phase
focused on modeling to
develop a reliable prediction
model.

1. May require large
amounts of labeled data
for the target task.

2. May be overfit to the
source task.

3. Limited generalization
to new tasks or domains.

4. May require various
experiments to come up
with the best
configuration.

5. May increase
computation costs due
to the increasing model
capacity when the
model modification is
considered.

1. Assumes similarity
between domains and
tasks.

2. Lack of data availability
or data heterogeneity
negatively effects the
learning process.
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Figure 18. DL open-source frameworks that were used in the studies to develop and test prediction
models based on TL for the applications of the DH sensing data.
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Table 3. Characteristics and challenges of the multitask, federated, and few-shot, one-shot, and
zero-shot transfer learning methods.

Transfer Learning Method Multitask Federated Few-/One-/Zero-Shot

Source and Target Domains Similar Multiple distributed
Similar

Similar/related/different

Source and target tasks Multiple and related Similar Similar or related

Model complexity High High High

Features 1. Develops multiple
related tasks
simultaneously.

2. No previously
pretrained model is
required.

3. Reduces the model
development time, as
the single model
descripts multiple tasks.

1. Maintains data privacy
and shares an updated
global model.

2. Better generalization, as
multi centers or parties
collaboratively develop
models.

3. Reduces the
requirement for large
data per institution.

1. Reduces the dependency
on large annotated
datasets.

2. Quick adaptation to new
tasks or concepts, even
with very limited data.

Challenges 1. Requires sufficient data
to describe all tasks.

2. Increasing complexity
when the number of
tasks is increased.

3. Requires task
relatedness.

4. Hard to generalize and
difficult in
interpretation.

1. Data heterogeneity.
2. Limited data.
3. Bias and fairness due to

data heterogeneity that
may lead to negative
learning.

4. Complex system
architecture that may
require secure
encryption methods to
prevent data disclosure,
or the creation of
suitable node schedulers
to optimize the
utilization of distributed
computational devices
and minimize idle time.

1. May require significant
computational
resources.

2. May be limited by the
size and diversity of the
support set.

3. May not generalize well
to unseen domain or
tasks.

4.2. Advantages and Disadvantages of Transfer Learning

From the explained and discussed applications of TL in DH in the previous section,
we can summarize the following advantages of using the TL techniques:

• Improved performance: TL can help improve the performance of ML models, espe-
cially in cases where the training data are limited.

• Reduced training time: TL can reduce the amount of time and resources required to
train an ML model, as the pretrained model can provide a starting point for learning.

• Reduced need for large datasets: TL can help mitigate the need for large datasets, as
the pretrained model can provide a starting point for learning on smaller datasets.

• Increased generalization: TL can help improve the generalization of ML models, as
the pretrained model has already learned the general features that can be applied to
new datasets.

• Maintain data privacy: Multiple centers can collaboratively develop a global model
without the need to share data to protect data sharing privacy.

Despite the above advantages of TL, challenges are present too. They are summarized
as follows:

• Domain-specific knowledge [239,240]: TL requires domain-specific knowledge to be
effective. For example, if the Ds is image data, while the Dt is sound data, it is obvious



J. Pers. Med. 2023, 13, 1703 38 of 53

that their features and distributions are dissimilar. Without finding a way to connect
these two different domains, TL cannot be feasible.

• Limited flexibility: If the source task and target task are different and not related, it
may not be easy to adapt the source task to a new task.

• Risk of negative transfer: TL can lead to a negative transfer for various reasons:
distinct domains, conflicting assumptions, incompatible features, unbalanced transfer
(if the source domain dominates the target domain, the model might be overfit to the
source domain’s characteristics, leading to poor generalization on the target task),
and model complexity. Additionally, transferring knowledge from noisy and limited
source data cannot lead to positive outcomes in the target data.

• Limited interpretability: TL can make it more challenging to interpret the features
learned by the model, as they may be influenced by the source model and may not
necessarily be relevant to the target domain.

The mentioned disadvantages of TL should not be interpreted as invalidating its
effectiveness. These disadvantages highlight the need for careful consideration and un-
derstanding of the source and target domains, as well as the potential challenges that
might arise during the transfer process. Proper adaptation techniques, domain-alignment
methods, and thoughtful model selection can help mitigate these issues and make TL more
effective.

5. Conclusions and Future Work

TL has emerged as a powerful technique for improving the performance and efficiency
of ML models within the perspective of data quality and size, as well as computation
complexity and time development. From the above studies, it has been shown to be
effective in addressing several challenges and limitations in deploying ML on DH sensing
technologies, such as the availability of sufficient data, variations in the domains, variations
and complexities in the tasks, as well as issues related to data privacy and sharing. To
overcome the challenge of insufficient data, TL is instrumental in leveraging pretrained
models that have already been trained on large amounts of available data. By fine-tuning
these models on smaller labeled datasets, TL improves the accuracy and efficiency of ML
models, even when limited labeled data is available. Additionally, it can help to adapt
models to new domains or datasets, reduce the need for extensive feature engineering
by using pretrained models to extract high-level features from the raw data, and reduce
the size and computational complexity of models by fine-tuning them on smaller, more
targeted datasets. In addition, the meta-TL methods (zero-shot, single-shot, and few-shot)
contributed positively to the ability to achieve a high prediction accuracy, even when few-
or zero-labeled samples were available. Further, federate learning successfully addresses
the data privacy and sharing limitations in medical data by providing the ability to improve
the prediction model generalizations and update the model parameters without the need
to share data among multiple healthcare centers. In addition, using multiple TL strategies
is crucial to improving the performance of a specific problem, as they can address more
challenges and limitations.

Although TL offers many potential benefits in DH sensor data, challenges are still
present. One major challenge for complex new tasks is the need for large, diverse datasets
to train pretrained models to be fine-tuned for specific applications. In some cases, such as
with rare diseases or specific patient populations, there may not be enough data available to
train effective models. Additionally, transferring models from one domain to another can
be difficult due to variations in data distributions and feature representations, which may
potentially lead to reduced performance and accuracy in some cases. Another challenge is
the need for the interpretability and transparency in TL models used in healthcare, as deci-
sions made by these models can have significant impacts on patient outcomes. Moreover,
ethical considerations must be taken into account, such as ensuring that models are not
biased or discriminating against certain patient groups. These challenges and limitations
need further research to be carefully considered and addressed. We also highlight specific
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open research topics in the concept of TL on DH that need further development, improve-
ment, and experimentation to enhance the contributions of TL on the DH domain. These
questions are the focus of our ongoing research.

1. Adaptive Learning for real-time DH sensing Data:

Research Challenge: DH sensing data are continuously generated in real-time, pre-
senting a dynamic and evolving landscape. TL models need to adapt to handle incremental
learning, ensuring they stay up to date with the latest data.

Research Direction: How can TL models be developed to effectively adapt to real-time
or near-real-time data streams, facilitating continuous learning and timely decision-making?

2. Enabling TL on Edge Devices (EDs) for timely healthcare applications:

Research Challenge: To enhance in-time diagnosis and personal healthcare monitoring,
there is a need to enable TL approaches on edge devices.

Research Direction: How can we simplify the embedding of TL models on portable
devices, ensuring the efficient, real-time analysis of DH sensing data? This includes opti-
mizing the model size, energy efficiency, and deployment strategies for edge computing.
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Appendix A

In this Appendix, we present tables that summarize the features and applications of
common wearable/attachable devices, as well as sensing technologies in DH.

Table A1. Features of common wearable and attachable sensing technologies in digital health.

Technology Worn/Attached Location Features and Applications

Smart watches and fitness trackers
(Wearable)

Wrist, upper arm, waist, and
ankle

Track physical activity, heart rate, sleep patterns, and
other health metrics.

Smart lenses
(Wearable) Head/eye

Embedded with sensors to monitor glucose levels and
other parameters in the tears, and send the data to a
connected device.

Mouthguards
(Wearable) Head/mouth

Monitor various health metrics, such as the heart rate,
breathing rate, and oxygen saturation, by measuring
changes in the saliva and oral fluids.

Continuous glucose monitoring and
insulin pumps

(Wearable/attached to the skin using
adhesive patches)

Abdomen (belly), upper
buttocks, upper arm, and

thigh

Help people with diabetes manage their blood sugar
levels by continuously monitoring glucose levels and
automatically delivering insulin as needed.

Headbands and hats
(Wearable)

Head/around the forehead,
and over the ears

Measure the brain activity, heart rate, and other
vital signs.

Chest straps and attached bands
(Wearable)

Around the chest or the
wrist

Measure the heart rate variability, respiratory rate, and
other health metrics by sensing changes in the skin
conductivity or other physiological parameters used in
the field of fitness and wellness.
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Table A1. Cont.

Technology Worn/Attached Location Features and Applications

ECG patches
(Attached to the skin using a

medical-grade adhesive)

Chest, upper back, or upper
arm

It can monitor the heart rate, rhythm, and other
cardiac metrics, and are often used to diagnose
arrhythmias and other heart conditions.

Blood pressure cuffs
(Wearable) Wrist or upper arm

Measure blood pressure and can help diagnose and
manage hypertension and other cardiovascular
conditions. Some of these devices contain memory to
store measurements and send information wirelessly
to healthcare providers.

Smart clothing
shirts, pants, and sports bras

(Wearable)
Human body Embedded with sensors to monitor vital signs,

physical activity, and other health parameters.

Wearable cameras
Capture images and video of a patient’s environment,
which can be used for telemedicine and remote
monitoring purposes.

Smart jewelry
rings, bracelets, and necklaces

(Wearable)
Different body locations Equipped with sensors to track various health metrics.

Smart shoes
(Wearable) Foot Detect gait patterns, track steps, and monitor posture.

Skin patches
(Attachable) Skin

Attached to the skin to monitor various physiological
parameters, such as the heart rate, blood glucose
levels, temperature, and hydration.

Smart helmets
(Wearable) Head

Enhance safety and provide connectivity. Equipped
with sensors to monitor head impact forces and detect
signs of concussion in athletes.

Table A2. Sensor technologies in digital health that have been used with ML/DL techniques.

Sensor
(Type of Data)

Features Applications

Electrocardiogram (ECG)
(Time series)

Measures electrical signals of the heart
over time

Detecting arrhythmias and predicting heart
disease [144,145]

Blood glucose monitoring
(Time series)

Measures glucose levels over time Predicting blood glucose levels [146,147]

Pulse oximeter
(Time series)

Measures oxygen saturation and heart
rate over time

Monitoring patients with respiratory (chronic
obstructive pulmonary disease [148], COVID-19 [149],
cardiac conditions [150])

Electroencephalogram (EEG)
(Time series)

Measures electrical activity in the brain
over time

Predicting epilepsy [151], seizure risk [152], and
diagnosing neurological disorders [153,154]

Accelerometer
(Time series)

Measures movement over time Monitoring physical activity [35,37,49] and predicting
falls [155,156]

Blood pressure monitor
(MEMS)
(Time series)

Measures blood pressure over time Cardiovascular monitoring [157]

X-ray
(Image)

Images of internal structures, such as
bones or organs

Diagnosing internal injuries or diseases (i.e.,
coronavirus [158,159], heart diseases [160])
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Table A2. Cont.

Sensor
(Type of Data)

Features Applications

MRI
(Image)

Images of internal structures, such as the
brain or joints

Diagnosing internal injuries or diseases (i.e.,
cardiovascular diseases [161], cancers [162,163], knee
injuries [164])

CT scan
(Image)

Images of internal structures, such as the
brain or abdomen

Diagnosing internal injuries and diseases (i.e.,
cancers [165,166], cerebral aneurysm [167], lung
diseases [168], and brain injuries [169])

Ultrasound
(Image)

Images of internal structures, such as the
fetus or organs

Diagnosing internal injuries or diseases (i.e., carpal
tunnel [170], liver diseases [171,172], and kidney
injuries [173])

Spirometer
(Time series)

Measures lung function, including
volume and flow rates

Predicting respiratory disease progression and
monitoring the response to treatment [174,175]

Photoplethysmography
(PPG)
(Time series)

Measures various physiological
parameters (heart rate, blood oxygen
saturation, blood pressure, glucose levels,
and emotional state)

Predicting glucose levels in patients with
diabetes [176,177] and monitoring the emotional state
or stress levels [178,179]

Electro-oculogram (EOG)
(Time series)

Measures electrical signals from eye
muscles and movements

Monitoring sleep patterns [180,181] and predicting eye
disorder [182]

Infrared thermometer
(Time series)

Measures body temperature from a
distance

Monitoring patients with fever or
hypothermia [183,184]

Optical coherence
tomography (OCT)
(Image)

Images of internal structures, such as the
retina or cornea

Diagnosing eye diseases [185,186]

Capsule endoscope
(Video)

Images and videos of the digestive tract Diagnosing gastrointestinal disorders [187,188]

Acoustic
(Video)

Measures acoustic features of the voice,
e.g., the pitch, volume, and tone

Predicting Parkinson’s disease [189,190], diagnosing
voice disorders [191], and detecting cardiac
diseases [192]

Electrodermal activity
sensor (EDA)
(Time series)

Measures the electrical activity of sweat
glands

Predicting emotional or psychological states [193,194]
and monitoring stress levels [195]

Magnetometer
(Time series)

Measures magnetic fields in the body Monitoring cardiac function [196] and detecting
locomotion and daily activities [197]

Photoacoustic imaging
(Image)

Combines optical and ultrasound
imaging for high-resolution images

Diagnosing cancer [198,199] and brain diseases [200]

Smart clothing
(Time series)

Monitors vital signs and activity levels
through sensors woven into clothing

Monitoring sleep [85], human motion [88], and
detecting cardiovascular diseases [86].

Pulse oximeter
(Time series)

Measures oxygen saturation in the blood
through a sensor on a finger or earlobe

Monitoring patients with respiratory [201] or cardiac
conditions [202]

Multi-sensors
(Multimodal signals data)
(Time series)

Selects a few data features for better
performance and higher accuracy

Multitask emotion recognition (valence, arousal,
dominance, and liking) after watching videos [45]

Multi-sensors
(Multimodal imaging data)
(Image)

Provides information about tissues and
internal organs, and functional
information about metapolicy activities

Early detections of COVID-19 to assign appropriate
treatment plans [203]
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Appendix B

In this Appendix, we describe data characteristics and methodologies for some exam-
ples that we illustrated in Section 4.1.

Table A3. Methodologies to implement feature extraction TL for automatically patients’ X-ray images
classification into one of three categories: COVID-19, normal, and pneumonia to assist in the diagnosis
COVID-19 [41].

Task, Goal, and ML/DL
Software to Develop the

Model

Data Characteristics Development Procedure Achievements

Task: Automatically classify
patients’ X-ray images into
one of three categories:
COVID-19, normal, and
pneumonia.
Goal: Overcome the difficulty
in selecting the optimal
engineering features to
develop a reliable prediction
model. Reduce the high
dimensionality of the raw
data, and improve its
meaning.
Software: Not specified.

Source: COVID-19
radiography database (open
access provided by Kaggle).
This database consists of
4 datasets:

• COVID-19 Database:
The Italian Medical and
Interventional Radiology
Society.

• Novel Corona Virus 2019
Dataset: Cohen Morrison
and Dao on GitHub.

• COVID-19 (+) Chest
X-ray Images collected
from various scientific
articles.

• Kaggle chest X-ray
database.

Number of samples: 219
X-ray images from patients
with COVID-19, 1341 normal
individuals, and
1345 pneumonia patients.

• Extract features from
X-ray data by using the
three state-of-the-art
pretrained models
(ResNet50, ResNet101,
and InceptionResNetV2).

• Combine the three sets of
deep features.

• Apply the feature
selection method using
particle swarm
optimization and the ant
colony algorithm to
select the optimal
features.

• Feed the selected
features to either the
SVM or KNN classifier
for model training.

• Compare the results of
the various
configurations, such as
models without feature
selection methods using
the SVM classifier,
models with feature
selection methods using
the SVM classifier,
models without feature
selection methods using
the KNN classifier, or
models with feature
selection methods using
the KNN classifier

• They found the SVM
classifier achieved better
performance in terms of
the F1 score and
accuracy compared with
the KNN classifier in all
four configurations: only
ResNet50 features, only
ResNet101 features, only
IncResNetV2 features,
and combined features
(presented in Tables 4
and 5 in the study [41]).

• The combined features
achieved the best
performance in both the
SVM and KNN
classifiers. In addition,
the feature selection
methods improved
slightly the performance
of the SVM classifier,
while they slightly
reduced the performance
of the KNN classifier in
the combined features
configuration (see
Tables 4–10 in the
study [41]).

• The highest performance
was achieved by the
configuration (combined
features, particle swarm
optimization, and linear
SVM), with an accuracy
of 99.86%
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Table A4. Methodologies to implement the fine-tuning TL for human activity recognition based on
wearable sensors [35].

Task, Goal, and ML/DL
Software to Develop the

Model

Data Characteristics Development Procedure Achievements

Task: Classify human
activities based on
smartphone sensor data.
Goal: Use fine-tuning to
speed up training
processes, overcome
overfitting, and achieve a
high classification
accuracy in a new target
task.
Software: Not specified.

Source: Two state-of-the-art
datasets were used: the
“Khulna University Human
Activity Recognition
(KU-HAR)” and “the
University of California Irvine
Human Activities and
Postural Transitions
(UCI-HAPT)”
Data usage:

• The KU-HAR (source
dataset) to develop the
pretraining model and to
select the best model.

• The UCI-HAPT (target
dataset) to test and
fine-tune the pretrained
model on a new task.

KU-HAR dataset (2021):
Contains 20,750 samples of
18 different activities (stand,
sit, talk–sit, talk–stand,
stand–sit, lay, lay–stand, pick,
jump, push-up, sit-up, walk,
walk backwards, walk–circle,
run, stair–up, stair–down, and
table tennis). Each sample
lasted 3 s.
The data were collected using
a smartphone’s accelerometer
and gyroscope sensors, worn
at the waist. The data were
gathered from 90 people aged
18 to 34. The data were not
cleaned or filtered in any way
so to consider a realistic
dataset of real-world
conditions. The dataset is
unbalanced, and no data
samples overlap with each
other.
UCI-HAPT (2014):
Contains 10,929 samples
collected from 30 volunteers
(aged 19–48) using a
waist-mounted smartphone
triaxial accelerometer and
gyroscope at the sampling
rate of 50 Hz. It contains
12 activities (walking, walking
upstairs, walking downstairs,
sitting, standing, laying,
stand-to-sit, sit-to-stand,
sit-to-lie, lie-to-sit, stand-to-lie,
and lie-to-stand).

• Extract frequency- and
time-domain features
(scalograms for the visual
representation of a signal)
from the KU-HAR data
samples (i.e., the signals)
using the continuous
wavelet transform.

• To achieve the best
performance, use various
scalogram representations to
train various pretrained
models (DenseNet121,
DenseNet169, DenseNet201,
ResNet50, ResNet101,
ResNet152, Xception,
InceptionV3, and
InceptionResNetV2).

• Choose the best model based
on the highest achieved
accuracy.

• To achieve an identical
sample form of the KU-HAR
data, preprocess the
UCI-HAPT data (target data)
by increasing the sampling
rate of the raw data from
50 HZ to 100 Hz, and then
use a nonoverlapping 3 s
windowing technique to
sample the data. This step
produced 4847 six-channel
time-domain samples.

• Select 30% of the data
samples randomly for
validation, and the
remaining samples can be
used to train and fine-tune
the model.

• Extract the time- and
frequency-domain features
(scalograms) from the
training samples.

• Feed these training samples
to the best pretrained model.

• Apply partial fine-tuning on
the UCI-HAPT dataset by
freezing the layers close to
the input and unfreezing the
layers that are close to the
output. To obtain best
performance, the authors
gradually unfroze the
output layers and fine-tuned
the model. This step was
important to reduce the
computations and overcome
overfitting.

• Partial fine-tuning of the
DenseNet121
architecture using Morlet
wavelet achieved the
best performance on the
source KU-HAR dataset
(classification accuracy
of 97.48% and an F1
score of 97.52%),
outperforming the
state-of-the-art
achievements.

• Freezing the first
308 layers of the
pretrained model
resulted in faster training
and a smoother gradient
descent on a small
dataset.

• This model also achieved
improvements in both
the accuracy and F1
score by 0.21% and
0.33%, respectively, on
entire the UCI-HAPT
target dataset.
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Table A5. Methodologies to implement multitask TL brain tumor classification and segmentation in
MRI scans [228].

Task, Goal, and ML/DL
Software to Develop the

Model

Data Characteristics Development Procedure Achievements

Task: Automatically classify
patients’ MRI scans into one
of three brain tumors:
meningioma, glioma, and
pituitary tumors, and segment
the tumor regions from the
MRI scans.
Goal: Reduce development
processes and improve the
performance by jointly
training two distinct but
related tasks.
Software: Not specified.

Source: Figshare MRI dataset.
This dataset consists of:
3064 2D T1-weighted
contrast-enhanced modalities
(coronal, axial, and sagittal)
collected from 233 patients.
The classification and
segmentation labels are
included.
Datadistribution:

• 23% samples of
meningioma (708 slices)

• 46.5% samples of glioma
(1426 slices)

• 30% samples of pituitary
(930 slices)

• 80% samples for training
and 20% for validation

• Develop a multitask DL
classification and
segmentation model
based on the modified
U-Net to successfully
predict two distinct
diagnosis tasks, but
related simultaneously.
The state-of-the-art DL
segmentation
architecture for medical
imaging data analysis,
called the U-Net, was
modified by the authors
by adding a classification
layer to the end of the
encoder branch to
implement the
classification task along
with the segmentation
task.

• Feed the training
samples to the
developed mode.

• Train and validate the
model to justify its
effectiveness.

• The authors developed a
multitask DL
classification and
segmentation model
based on the modified
U-Net, called the
attention-guided
encoder–decoder
network (MAG-Net).
The authors added a
classification layer to the
end of the encoder part
of the U0-net
segmentation model to
perform the classification
task in addition to the
segmentation.

• Using multitask model
improved both the
segmentation and
classification results.

• The segmentation task in
the multitask model
achieved a Dice
coefficient of 0.74 (a 5%
increase) and a Jaccard
index of 0.6 (a 9%
increase) compared to a
U-Net segmentation
model.

• The classification task in
the multitask model
achieved an accuracy of
98.04% (increasing by at
least 4%) compared to
the other state-of-the-art
pretrained classification
models, such as VGG 16,
VGG19, and ResNet50.
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