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Abstract: Early risk stratification is of outmost clinical importance in hospitalized patients with heart
failure (HHF). We examined the predictive value of the Larissa Heart Failure Risk Score (LHFRS)
in a large population of HHF patients from the Cleveland Clinic. A total of 13,309 admissions for
heart failure (HF) from 9207 unique patients were extracted from the Cleveland Clinic’s electronic
health record system. For each admission, components of the 3-variable simple LHFRS were obtained,
including hypertension history, myocardial infarction history, and red blood cell distribution width
(RDW) ≥ 15%. The primary outcome was a HF readmission and/or all-cause mortality at one year,
and the secondary outcome was all-cause mortality at one year of discharge. For both outcomes,
all variables were statistically significant, and the Kaplan–Meier curves were well-separated and
in a consistent order (Log-rank test p-value < 0.001). Higher LHFRS values were found to be
strongly related to patients experiencing an event, showing a clear association of LHFRS with this
study outcomes. The bootstrapped-validated area under the curve (AUC) for the logistic regression
model for each outcome revealed a C-index of 0.64 both for the primary and secondary outcomes,
respectively. LHFRS is a simple risk model and can be utilized as a basis for risk stratification in
patients hospitalized for HF.

Keywords: Larissa heart failure risk score; stratification; heart failure; hospitalized; mortality

1. Introduction

Heart failure (HF) is a pandemic characterized by high prevalence and incidence [1].
At least 15 million patients in Europe suffer from HF, according to the European Society of
Cardiology (ESC) [2]. In the United States, data from the ARIC Community Surveillance
(2005–2013) revealed a significant number of annual first episodes of acute decompensated
HF in the range of 25.7–34.8 per 1.000 person years for patients aged ≥ 75 years [3]. Al-
though a number of life-saving therapeutic strategies have been implemented in the last
two decades, both pharmaceutical (ACE-inhibitors, ARB, ARNI, beta-blockers, mineralo-
corticoid antagonists) and interventional (primary percutaneous coronary intervention,
cardiac resynchronization therapy, implantable cardioverter-defibrillators, and left ven-
tricular assist devices), recent data from the ESC-HFA Heart Failure Long-Term Registry
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(ESC-HF-LT) revealed 1-year all-cause mortality rates of 23.6% for hospitalized HF (HHF)
and 6.4% for chronic HF (CHF) [4].

Timely and precise risk stratification of HF patients is of outmost importance, espe-
cially in those acutely hospitalized, where the clinical decision is often challenging [5].
Consequently, several predictive scores have been evolved and validated in HHF [6–9].
Nonetheless, in the majority of these prognostic models, numerous parameters (multi-
variable risk scores) are incorporated, making their calculation difficult and frequently
requiring the utilization of sophisticated calculators [10]. Accordingly, we validated the pre-
dictive value of the very simply calculated Larissa Heart Failure Risk Score (LHFRS) [11,12]
in a large population of patients hospitalized for HF from a single health system.

2. Materials and Methods
2.1. Patients

A total of 13,309 hospital admissions for HF, corresponding to 9207 patients, were
extracted from the Cleveland Clinic Health System electronic health record system (HER),
which satisfied the inclusion criteria:

(1) Occurrence in Ohio (from December 2009 through May 2015) with HF as the primary
reason for hospital admission.

(2) Admission hemoglobin value ≥ 10 g/dL.
(3) Admission red blood cell distribution width (RDW) determination.
(4) Presence of data on hypertension (HTN) history and myocardial infarction

(MI) history.

2.2. The Larissa Heart Failure Risk Score

The derivation of LHFRS has been previously described in detail. [11] Variables
included are HTN history, MI history, and RDW at admission. Absence of HTN history,
presence of MI history, and admission RDW value ≥15% are assigned 2, 1, and 1 points,
respectively. Patients with LHFRS = 0 have the best score, whereas those with LHFRS = 4
have the worst score.

2.3. Definitions

HTN history was defined as having a diagnosis of HTN on the problem list during
admission; MI history was defined as having an MI diagnosis any time prior to admission;
and RDW values that were measured on the day of admission were used. Regarding
all-cause mortality, the date of death was used. This consisted of either: (a) the date of
death if the patient died in the hospital and thus it was recorded; or (b) the date of death
according to the Ohio Death Index, which is the state’s record of people who died in Ohio
or were Ohio residents and died outside of Ohio. The ICD codes used for the present
analysis are depicted in Table 1.

Table 1. ICD codes and descriptions of the variables used in the analysis.

HEART FAILURE

ICD9 ICD10 Description

I11.0 Hypertensive heart disease with heart failure

I11.0 Hypertensive heart failure

I13.0 Hypertensive heart and chronic kidney disease with heart failure and stage 1 through
stage 4 chronic kidney disease, or unspecified chronic kidney disease

I13.2 Hypertensive heart and chronic kidney disease with heart failure and stage 5 chronic
kidney disease, or end-stage renal disease
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Table 1. Cont.

HEART FAILURE

I50.1 Cardiac asthma

I50.1 Edema of the lung with heart disease NOS

I50.1 Edema of the lung with heart failure

I50.2 Systolic-congestive heart failure

I50.21 Acute systolic congestive heart failure

I50.3 Diastolic congestive heart failure

I50.31 Acute diastolic congestive heart failure

I50.4 Combined systolic (congestive) and diastolic (congestive) heart failure

I50.9 Biventricular congestive heart failure

I50.9 Cardiac, heart, or myocardial failure (NOS)

I50.9 Right ventricular failure (secondary to left heart failure)

398.91 I09.81 Congestive rheumatic heart failure

402.01 Malignant hypertensive heart disease with heart failure

402.11 Benign hypertensive heart disease with heart failure

402.91 Unspecified hypertensive heart disease with heart failure

404.01 Hypertensive heart and chronic kidney disease, malignant, with heart failure and chronic
kidney disease stage I through stage IV, or unspecified

404.03 Hypertensive heart and chronic kidney disease, malignant, with heart failure, and with
chronic kidney disease stage V or end-stage renal disease

404.11 Benign hypertensive heart and renal disease with congestive heart failure

404.12 Benign hypertensive heart and renal disease with renal failure

404.13 Benign hypertensive heart and renal disease with congestive heart failure and renal failure

404.91 Hypertensive heart AND chronic kidney disease with congestive heart failure

404.92 Hypertensive heart and renal disease with renal failure

404.93 Hypertensive heart and renal disease with both (congestive) heart failure and renal failure

428.0 I50.9 Congestive heart failure

428.1 I50.1 Left-Sided Heart Failure

428.20 I50.20 Heart Failure, Systolic

428.21 Acute systolic heart failure

428.22 I50.22 Chronic systolic heart failure

428.23 I50.23 Acute on chronic systolic heart failure

428.30 I50.30 Heart Failure, Diastolic

428.31 Acute diastolic heart failure

428.32 I50.32 Chronic diastolic heart failure

428.33 I50.33 Acute on chronic diastolic heart failure

428.40 I50.40 Unspecified combined systolic (congestive) and diastolic (congestive) heart failure

428.41 I50.41 Acute combined systolic and diastolic heart failure

428.42 I50.42 Chronic combined systolic and diastolic heart failure

428.43 I50.43 Acute on chronic combined systolic and diastolic heart failure

428.9 I50.9 Heart failure
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HEART FAILURE

HISTORY OF HYPERTENSION

ICD9 Code ICD10
Code

997.91 I10-I15

401.9 I10

401.1

HISTORY OF MYOCARDIAL INFARCTION

ICD9 ICD10 Description

410.82 Acute myocardial infarction of other specified sites, subsequent episode of care

410.8 Acute myocardial infarction of other specified sites, episode of care unspecified

410.9 I21.3 Acute myocardial infarction

410.7 I21.4 Acute subendocardial myocardial infarction

410.1 Acute myocardial infarction of the other anterior wall, episode of care unspecified

I21.02 ST elevation (STEMI) myocardial infarction involving the left anterior descending
coronary artery

I21.3 ST elevation (STEMI) myocardial infarction of an unspecified site

I21.4 Non-ST elevation (NSTEMI) myocardial infarction

410.92 Acute myocardial infarction, unspecified site, subsequent episode of care

I21.19 ST elevation (STEMI) myocardial infarction involving other coronary arteries of the
inferior wall

410.71 Acute myocardial infarction, subendocardial infarction, initial episode of care

410.72 Subendocardial infarction, subsequent episode of care

410.4 Acute myocardial infarction of the other inferior wall, episode of care unspecified

I21.09 ST elevation (STEMI) myocardial infarction involving other coronary arteries of the
anterior wall

410.41 Acute myocardial infarction of the other inferior wall, initial episode of care

410.51 Acute myocardial infarction of the other lateral wall, initial episode of care

410.01 Acute myocardial infarction of the anterolateral wall, initial episode of care

410.6 True posterior wall infarction, episode of care unspecified

I21.29 ST elevation (STEMI) myocardial infarction involving other sites

410.91 Acute myocardial infarction, unspecified site, initial episode of care

410.11 Acute myocardial infarction of the other anterior wall, initial episode of care

410.21 Acute myocardial infarction of the inferolateral wall, initial episode of care

410.31 Acute myocardial infarction of the inferoposterior wall, initial episode of care

410.81 Acute myocardial infarction of the other specified sites, initial episode of care

I21.11 ST elevation (STEMI) myocardial infarction involving the right coronary artery

I22.2 Subsequent non-ST elevation (NSTEMI) myocardial infarction

410.61 True posterior wall infarction, initial episode of care

410.12 Acute myocardial infarction of the other anterior wall, subsequent episode of care

410.32 Acute myocardial infarction of the inferoposterior wall, subsequent episode of care

410.42 Acute myocardial infarction of the other inferior wall, subsequent episode of care

410.02 Acute myocardial infarction of the anterolateral wall, subsequent episode of care

410.52 Acute myocardial infarction of the other lateral wall, subsequent episode of care
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HEART FAILURE

410.62 True posterior wall infarction, subsequent episode of care

410.5 Acute myocardial infarction of the other lateral wall, episode of care unspecified

410.7 Acute myocardial infarction, subendocardial infarction

410.5 Acute myocardial infarction of the other lateral wall

410 Acute myocardial infarction of the anterolateral wall

410 Acute myocardial infarction of the anterolateral wall, episode of care unspecified

410.8 Acute myocardial infarction at other specified sites

I21.01 ST elevation (STEMI) myocardial infarction involving the left main coronary artery

410.2 Acute myocardial infarction of the inferolateral wall, episode of care unspecified

410.3 Acute myocardial infarction of the inferoposterior wall, episode of care unspecified

I22 Myocardial Infarction

2.4. Outcomes

The primary outcome of the present analysis was either a HF readmission or all-cause
mortality within 1-year of discharge. The secondary outcome was all-cause mortality
within 1-year of discharge. The first occurrence of readmission or death after discharge
was taken to be the event time. Patients were followed through November 2017, though
censoring did not occur during the time-horizon of interest. Therefore, a binary outcome
variable was defined for analysis, indicating whether each event occurred within 1-year
of discharge.

2.5. Statistical Analysis

Continuous variables are presented as mean and standard deviation, whereas categor-
ical variables are counts and percentages (%). Statistical tests were performed to test for
differences between the outcome groups for the primary and secondary outcomes. p-values
were considered statistically significant at the 0.05 level. To examine the discriminatory
ability of the LHFRS stratification, Kaplan–Meier curves were estimated, and log-rank tests
were performed to assess differences in survival curves. The Akaike information criterion
(AIC) was used to estimate the likelihood of the model to predict/estimate the future values.
Finally, the LHFRS score was directly used in the calculation of the concordance probability
(C-index, area under the curve [AUC]). The R statistical software (R Core Team (2018).
R: A language and environment for statistical computing. R Foundation for Statistical
Computing, Vienna, Austria) were used for data analysis. This study complies with the
Declaration of Helsinki, and an Institutional Review Board (IRB) approval was obtained.

3. Results

Of the 9207 patients in the analysis, 49.5% were male, 67.9% were Caucasian, and 28.4%
were African-American. Table 2 displays the univariate summaries of each risk-factor and
each demographic attribute at the admission level. All p-values appear to show statistically
significant differences among the levels of each outcome.

Figure 1A shows the Kaplan–Meier curves with 95% confidence bands for the primary
and secondary outcomes stratified by the computed LHFRS. Empirically, the curves overall
appear to be well-separated and in a fairly consistent order. The log-rank test for both
outcomes produced a p-value < 0.001.
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Table 2. A univariate summary of risk-factors in addition to demographic variables at the admission
level. Counts (percentages) were computed for categorical variables and the mean (SD) for continuous
ones. For categorical variables, a Chi-square test of independence was performed. For numeric
variables, a Wilcoxson rank-sum test was performed. p-values testing differences among outcome
groups are also displayed.

Variable

Outcome

1-Year HF Readmission
or Death p-Value 1-Year Death

i-Value

No Yes No Yes

Gender

Female 3172 (50.9%) 3291 (46.5%)
<0.01

4742 (49.1%) 1721 (47%)
0.03Male 3055 (49.1%) 3791 (53.5%) 4907 (50.9%) 1939 (53%)

Race

African-American 1911 (30.7%) 2347 (33.1%)

<0.01

3356 (34.8%) 902 (24.6%)

<0.01
Caucasian 4067 (65.3%) 4471 (63.1%) 5895 (61.1%) 2643 (72.2%)

Other 119 (1.9%) 83 (1.2%) 173 (1.8%) 29 (0.8%)
Missing 130 (2.1%) 181 (2.6%) 225 (2.3%) 86 (2.3%)

Age at admission 72.52 (14.49) 75.4 (14.28) <0.01 71.91 (14.5) 79.69 (12.7) <0.01

Hypertension

No 2874 (46.2%) 4232 (59.8%)
<0.01

4826 (50%) 2280 (62.3%)
<0.01Yes 3353 (53.8%) 2850 (40.2%) 4823 (50%) 1380 (37.7%)

Myocardial infarction

No 5154 (82.8%) 5414 (76.4%)
<0.01

7745 (80.3%) 2823 (77.1%)
<0.01Yes 1073 (17.2%) 1668 (23.6%) 1904 (19.7%) 837 (22.9%)

* RDW (%)

<15 3218 (51.7%) 2438 (34.4%)
<0.01

4561 (47.3%) 1095 (29.9%)
<0.01>=15 3009 (48.3%) 4644 (65.6%) 5088 (52.7%) 2565 (70.1%)

* RDW: red blood cell distribution width.
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Figure 1. (A) Kaplan–Meier curves for the primary and secondary outcomes stratified by the
computed Larissa Heart Failure Risk Score (LHFRS); (B) Percent of patients experiencing each
outcome stratified by the Larissa Heart Failure Risk Score (LHFRS) classification.
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Figure 1B reiterates the discriminatory ability of the LHFRS by showing the proportion
of observed admissions resulting in primary/secondary outcomes at 1-year. It appears the
overall trend indicates a consistent relationship between the LHFRS and the risk of the
outcome(s). The bootstrapped-validated AUC for the logistic regression model for each
outcome using restricted cubic splines for RDW revealed a C-index of 0.64 both for the
primary and secondary outcomes, respectively.

Figure 2 shows the non-linear effect found by the model on each outcome, stratified by
combinations of HTN and MI groups. The effects are consistent with the original paper [11]
in that patients with a history of MI and no history of HTN are at the highest risk for
either event.
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Figure 2. Three-knot cubic spline of red blood cell distribution width (RDW) stratified by hypertension
(HTN) and myocardial infarction (MI) groups for the primary and secondary outcomes.

We also examined the importance of RDW, HTN, and MI on the primary and secondary
outcomes. Logistic regression models were built while modeling the effect of RDW with
a three-knot restricted cubic spline. For both outcomes, all variables were found to be
statistically significant, including the non-linear effect of RDW on each outcome. The
importance of each variable was then ranked by the amount of increase in AIC upon
the removal of each variable from the full model. Figure 3 shows the ranked variable
importance for each outcome. In both outcomes, RDW was by far the most influential
variable in predicting the outcome, followed by the history of HTN and the history of MI.
Since all ‘Importance’ measures are positive, this indicates that all variables are influential
in explaining the outcomes.
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Figure 3. Relative variable importance rankings on the primary and secondary outcomes measured
by the increase in Akaike information criterion (AIC) upon removal of each variable from the
full model.

The next step was to investigate the sensitivity and specificity of the LHFRS using a
less granular threshold (≤2 versus >2). LHFRS values above 2 were accompanied by low
sensitivity and high specificity, as depicted in Table 3.

Table 3. Examining the sensitivity/specificity of using a less granular threshold of the LHFRS
(<=2 vs. >2) for: (a) all-cause death or rehospitalization for heart failure; (b) all-cause death.

Death or HF Re-Hospitalisation

Yes No

LHFRS
>2 3201 1702

≤2 3881 4525

Sensitivity [(95% CI)] = 0.452 (0.44, 0.464), Specificity [(95% CI)] = 0.727 (0.716, 0.738)

Death

Yes No

LHFRS
>2 1797 3106

≤2 1863 6543

Sensitivity [(95% CI)] = 0.491 (0.475, 0.507), Specificity [(95% CI)] = 0.678 (0.669, 0.687)

4. Discussion

The present analysis was an external validation of the discriminatory ability of LHFRS
in a large population of patients with HHF. Although the performance of LHFRS for the
primary endpoint (HF rehospitalizations and/or all-cause mortality) and for the secondary
endpoint (all-cause mortality) within 1 year from the initial hospitalization was found
to be moderate, the model can be used as a reliable tool for the early detection of high-
risk patients as those with a high LHFRS (i.e., 4, n = 1044) exhibited significantly worse
outcomes in comparison to those with a low LHFRS (i.e., 0, n = 2430).

This score consists of three variables (RDW, HTN history, and MI history) that have
established prognostic value. RDW is a simple parameter of the complete blood count
test (CBC) that expresses the variability of the size of red blood cells (RBCs) and has been
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traditionally used for the classification of different types of anemia [13]. However, over
the last few years, there has been evidence that increased RDW is associated with a poor
prognosis in patients with coronary artery disease, stroke, diabetes, and HHF [14]. In our
study, patients with increased RDW (≥15%) manifested significantly higher event rates
compared with those with RDW values < 15%. Interestingly, as shown in Figure 2, a further
increase in RDW beyond 15% is also associated with an incremental risk of adverse events.

Low blood pressure is a negative risk factor, whereas HTN may serve as a protective
mechanism in HHF patients, contrary to what is observed in the normal population [15].
The concept of “reactive hypertension”, which proposes the occurrence of a functional
cardiac reserve during acute physiologic stress, may be a logical explanation. Patients with
impaired functional cardiac reserve and lower blood pressure, even in acute situations
(i.e., admission for HF), demonstrate a worse prognosis in comparison to those with
higher values of blood pressure [16]. Gheorghiade et al. reported that low blood pressure
(<120 mm Hg) at admission was an independent risk factor for an unfavorable prognosis
in the participants of the OPTIMIZE-HF registry [17]. In our study, patients with no history
of HTN were at highest risk for 1-year adverse outcomes.

The history of MI is also a risk factor for a poor prognosis [18]. The strong association
between HF and MI was demonstrated in the Valsartan in Acute Myocardial Infarction
Trial (VALIANT) registry, which reported a denovo HF rate of 10.3% in 11,040 stable MI
patients during the median 25-month follow-up [19,20]. Regarding our analysis, patients
with a history of MI exhibited a higher risk for the primary and secondary endpoints in
comparison to those without a history of MI. However, MI history was found to be the least
influential variable of LHFRS in predicting the outcomes. This may be attributed to the
Cleveland Clinic's successful quality of care performance, as depicted by the low mortality
rates among patients who had percutaneous coronary intervention (PCI) procedures and/or
presented with acute MI, the short door-to-balloon time, and the 100% administration of all
guideline-recommended categories of medical therapy before and after PCI [21]. Thus, it is
possible that the performance of LHFRS was “underestimated” in this patient population
with unique characteristics and quite different from the central Greece patient cohort used
to derive the LHFRS. Furthermore, the modest performance of the LHFRS can partially be
explained by the fact that ~45% of patients have an LHFRS equal to 1 or 2; as shown in
Figure 1B, these risk groups are nearly indistinguishable.

In the current study, a history of HTN was observed in 46.6% of patients, which
is higher than that found in the ADHF/NT-proBNP score (42.9%) [22], comparable to
that reported in the ESCAPE study (47%) [23] and ELAN-SCORE (51%) [24], and lower
than that presented in the ESC-HF-LT registry (65.6%) [4] and the OPTIMIZE-HF score
(72%) [25]. Moreover, in our study, the percentage of MI history was 20.6%, similar to
that observed in the OPTIMIZE-HF study (22%) [25] and lower compared to the EFFECT
study (37.9%) [26] and the ESCAPE study (44.4%) [23]. The baseline characteristics of the
population included in the current study are different from the population examined in our
previous report, as far as the race and the percentage of HTN history [11]. Interestingly, our
study primary (all-cause mortality and/or HF rehospitalization) and secondary (all-cause
mortality) endpoints were found to be higher and similar compared to the ESC-HF-LT
registry (53.2% vs. 36% and 27.5% vs. 23.6%, respectively) [4]. Both study endpoints are
generally considered robust and well accepted [27].

An interesting review and meta-analysis by Ouwerkerk et al. [28] showed that the
mean C-statistic of the risk prediction models in HF was 0.66 ± 0.0005 in general,
0.63 ± 0.001, and 0.71 ± 0.001 with respect to the endpoints of mortality or rehospitalization
(combined) and mortality (independently), respectively, which is similar to the current
analysis of the LHFRS performance. An external validation of the SENIORS elderly HF risk
model at the RICA registry revealed C-statistics of 0.60 and 0.66 for the primary (all-cause
mortality or cardiovascular hospitalization) and secondary (all-cause mortality) endpoints,
respectively [29]. The validation of the EFFECT score and of the more recent AHEAD
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Score exhibited a C-index of 0.76 and 0.631 for the endpoint of 1-year all-cause mortality,
respectively [26,30].

The role of risk scores in HHF is of substantial value as they can be utilized as prognos-
tic tools and assist in clinical decision-making, especially in conditions where the decision
must be taken promptly and accurately. However, the majority of the risk scores con-
sist of multiple variables and require the utilization of sophisticated calculators, making
their adoption challenging in daily clinical practice [10]. For example, the risk models
derived from the OPTIMIZE-HF study, the EFFECT study, and the ESCAPE study in-
clude 12, 10, and 8 variables, respectively [23,25,26]. Our score is comprised of just three
variables, namely two questions from the patient’s medical history and one marker from
the CBC. All of these parameters are easily obtainable, widely available, and low-cost.
Therefore, the LHFRS can be practically implemented even by the emergency department.
Moreover, a persistent association between the LHFRS and the risk of adverse events
was reported in the present analysis, and score values > 2 demonstrated a good speci-
ficity for 1-year adverse outcomes. Hence, the utilization of LHFRS may facilitate clinical
decision-making (i.e., more aggressive decongestive strategies in “very high-risk patients”
with LHFRS ≥ 3), triage care plans (i.e., admission to the Intensive Care Unit) and close
follow-up. Furthermore, a distinct characteristic of LHFRS is its potential to discriminate
between the long-term risks of patients with HHF. Typically, HHF prognostic models are
developed to predict short-term outcomes [6,31] based on the fact that outcomes during
hospitalization or up to 6 months after discharge may seem more relevant to acute patholo-
gies such as HHF syndromes. Nevertheless, long-term outcomes are clinically relevant
(i.e., the Seattle HF Score) [32]. For instance, the administration of inotropes in an acute
setting may have desirable short-term but neutral or even harmful long-term effects [33,34].
Taken all together, LHFRS exhibited an acceptable discriminatory ability in the present
work, despite the fact that it is the most parsimonious long-term risk model in HHF
(Figure 4) [35].
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most parsimonious risk model in HF and includes only three variables (i.e., hypertension history,
myocardial infarction history, and red cell distribution width). Its estimation is very simple and
does not require the use of sophisticated calculators. The increase in the LHFRS (i.e., from 0 to 4) is
related to the incremental rise of unfavorable event risk. Abbreviations: LHFRS, Larissa heart failure
risk score; HTN, hypertension; MI, myocardial infarction; RDW, red blood cell distribution width.
Adapted with permission from Kitai T. et al. (2020), Copyright © 2023 Elsevier B.V., Ref. [35].

4.1. Limitations

This study has several limitations that need to be addressed. First, it is a retrospective
study, and hence the results depend on the accuracy of the data collection. Second, the
single-center nature of the present work in a high-volume tertiary center may limit its
generalizability in diverse clinical settings. This is especially true regarding the predictive
value of one of the constituents of the LHFRS, namely the MI history. However, most
likely, MI treatment is less efficient in “real-world” centers, increasing the predictive
value of the MI history and consequently of the LHFRS in this setting. Thirdly, patients
with Hg values < 10 g/dL were excluded, and, therefore, this score was not tested in
severely anemic patients. However, anemia, which may influence RDW values, was
present in only 18% of the HHF patients in Get With the Guidelines—Heart Failure [36].
The prognosis determined at admission may be affected by several post-discharge factors,
including medical interventions, revascularization, cardiac resynchronization therapy, and
implantable cardioverter defibrillator implantation. Assigning medical history by manual
chart review is timely but accurate. Assigning medical history from electronic databases
are challenging and dependent upon discrete searchable variables or complex algorithms
to extract specific medical histories. Various algorithms were utilized to develop methods
to determine medical history, including HTN and MI. Lastly, a number of predictive
models have been developed for HF patients based on artificial intelligence over the
last few years [37–39]. However, these models have important limitations, such as the
inability to account for time-to-event variations as well as the “interpretability issue”
(i.e., poor explanation of the predictions) [40].

4.2. Future Perspectives

The LHFRS has demonstrated the ability to predict risk in hospitalized HF patients
for subsequent events up to 1 year post-discharge, irrespective of the ejection fraction. An
elevated LHFRS at the time of HF hospitalization might prospectively identify patients with
advanced HF, a population with an increased risk of adverse outcomes [41]. Long-term
outcomes (1 year post-discharge) may be clinically important, especially with respect to
identifying advanced HF patients that are potential candidates for left ventricular assist
devices (LVAD) and/or heart transplantation. Furthermore, the combination of the LHFRS
with novel markers of prognosis in HF, such as spot urinary sodium, may be a fruitful area
of research [42].

5. Conclusions

LHFRS is easily calculated and can be utilized as a basis for risk prediction in patients
with HHF. An elevated LHFRS of ≥3 is associated with a 1-year mortality rate over
35%. Further studies investigating the role of this simple prognostic tool in HF patients
are needed.
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