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Abstract: Due to the rich vascularization and lymphatic drainage of the pulmonary tissue, lung
metastases (LM) are not uncommon in patients with cancer. Radiomics is an active research field
aimed at the extraction of quantitative data from diagnostic images, which can serve as useful imaging
biomarkers for a more effective, personalized patient care. Our purpose is to illustrate the current
applications, strengths and weaknesses of radiomics for lesion characterization, treatment planning
and prognostic assessment in patients with LM, based on a systematic review of the literature.

Keywords: lung metastases; radiomics; oncologic imaging; computed tomography; positron
emission tomography

1. Introduction

The lung is the second commonest site for metastases from extra-thoracic cancers,
occurring in 20-54% of metastatic patients. Pulmonary involvement may result from direct
tumor invasion or from hematogenous or lymphatic spread of tumor cells. In the adult
population, the most frequent primary tumors that disseminate to the lung include breast,
colorectal, renal, uterine cancer, leiomyosarcoma and head and neck carcinoma. In limited
cases, the primary tumor origin cannot be identified.

Treatment options for patients with lung metastases (LM) include surgery, radiother-
apy, and local or systemic therapies. In recent years, the efficacy of systemic therapies has
improved due to advancements in treatment strategies and the introduction of molecular
targeted drugs. In parallel, the increasing availability of new therapeutic approaches has
created the need to identify beforehand which patients are eligible to a given specific
treatment or another, raising the requirements for proper disease staging to a more evolved
and complex level [1-9].
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Differentiating pulmonary metastases from primary or benign lung lesions is of
paramount importance. Among imaging modalities, multidetector computed tomography
(MDCT) and 18-fluorodeoxyglucose positron emission tomography/computed tomogra-
phy (*®F-FDG PET/CT) play a major role in the detection, characterization and follow-up
of lung cancer (either primary or LM). While MDCT is the mainstay for morphological
assessment (allowing to evaluate features such as lesion size, morphology and growth
rate), '8F-FDG PET/CT can complement morphological imaging by providing functional
information related to tumor metabolism.

Despite advancements in MDCT and 8F-FDG PET/CT technologies, the diagnos-
tic accuracy of both modalities can be limited by false positive (e.g., increased contrast
enhancement or '8F-FDG uptake in non-neoplastic conditions, such as infections or inflam-
matory lesions) and false negative findings (as can happen, e.g., with poorly vascularized
malignancies and/or those with relatively low 8F-FDG metabolism). Lung biopsy is the
diagnostic gold standard to distinguish between primitive lung tumors or LM, but it is an
invasive technique that may not be performed in all cases, cannot be repeated indefinitely,
and may be burdened by more or less serious complications. Another inherent downside to
conventional biopsy is the fact that, even if guided by imaging, it can provide information
solely related to the specific tumor specimen from which cells are sampled, only allow-
ing a limited assessment of tumor heterogeneity with no ability to interrogate the whole
tumor structure [10-14].

Minimally invasive techniques for the quantitative evaluation of biomarkers [15-23]
and response to therapies [24-32] have emerged, such as liquid biopsy [33-38]. Radiomics
is an emerging methodology aiming to convert diagnostic images into information that
reflect pathophysiological properties of the tumor [39]. By tapping the computational
power of artificial intelligence (AI) systems, a large amount of information that go beyond
visual image assessment can be collected through the extraction and analysis of radiomics
features from medical images, obtained in a routine setting with conventional imaging
protocols (e.g., for tumor staging and follow-up). This approach has the potential to enhance
options to carry out patient-specific diagnostic and prognostic evaluations, allowing e.g., to
predict early treatment response and avoid undue over- or undertreatment depending
on the biological aggressiveness of each patient-specific disease, and paving the way to
a more individualized patient management [22,40-68]. Other advantages of radiomics
over conventional biopsy include the possibility to capture the tumor tissue in its entirety
(providing information regarding its clonal heterogeneity and the tumor microenvironment
along with its stromal component), to guide biopsy towards specific tumor areas, and
to be repeatable at virtually any time during the disease course, allowing longitudinal
monitoring with improved opportunities of optimizing treatment strategies [39,43—45].

Our aim is to explore the current literature regarding the potential of radiomics in the
field of diagnosis, treatment planning and outcome prediction of LM.

2. Methods

We systematically searched the literature to assess the role of radiomics in the man-
agement of LM from diagnosis to prognosis. We searched the PubMed (https://pubmed.
ncbi.nlm.nih.gov, assessed on 20 November 2022) and Scopus (https://www.scopus.com,
assessed on 20 November 2022) databases using a combination of the following search
terms: ((“radiomics” OR “machine learning”) AND (metastases OR metastasis) AND
(“lung” OR “pulmonary”)). The search period ranged from January 2015 to November
2022, and the search was performed on 20 November 2022. Only articles written in English
language were selected. The search was restricted to “article, abstract and keys” in the
Scopus database.

To improve the quality of inclusion criteria, we followed the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [69]. The radiomics
quality score (RQS) was calculated to assess the characteristics and the quality of the
methodology of the studies taken into consideration, as described by Lambin et al. [70].


https://pubmed.ncbi.nlm.nih.gov
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3. Results

All retrieved publications (n = 890) were separately uploaded to EndNote™, and all
duplicate records were eliminated (1 = 281).

Two reviewers (M.G., L.E) manually screened all articles by title and abstract, and if
eligible, their full text was retrieved. Exclusion criteria were as follows: (1) animal studies,
(2) reviews, posters and conference papers, (3) entries related to predicting the onset of LM
from primitive tumors, and (4) entries related to computer aided detection of LM.

544 studies were excluded due to having irrelevant titles and abstracts. Of the remain-
ing articles, 43 were excluded due to being conference papers, posters and reviews, 2 due
to being related to LM detection, 3 due to being animal studies, and 9 due to being related
to predicting the onset of LM from primitive tumors (Figure 1).

PubMed Scopus
(n=318) (n=572)

Records identified through database searching

(n=2890)
Records after duplicates removed
(n=609)
Irrelevant titles and
abstract
(n=544)
Full text assessed for
eligibility
(n=65) Full text excluded
- conference papers, posters and reviews
m=43)
- studies related to LM detection
m=2)
- prediction of LM from primitive studies
n=9)
- animal studies
Articles included for the (=3
analysis
m=29)
Evaluation of Distinguishing Prognostic
mutational status histological subtypes assessment
m=1) n=06) (m=1)

Figure 1. PRISMA flow chart illustrating the inclusion and exclusion criteria for article search.

Finally, 8 articles were collected and divided into the following categories: (1) dis-
tinguishing histological subtypes (1 = 6), (2) evaluation of mutational status (n = 1) and
(3) prognostic assessment (n = 1) (Table 1).
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Table 1. Methodology and main findings of the 8 articles selected. ML = Machine Learning.

Authors s L Patient Imaging . . R
[Reference #] Publication Year Objective 4 Modality Segmentation Feature Selection Method(s) Validation Method
Angus et al. 2021 To evaluate BRAF mutation in 103 CT Semiautomatic Workflow for Optimal Radiomics 100 x random-split
[71] LM from melanoma (in-house software) Classification (WORC) cross-validation
To predict LM in colorectal cancer . . .
Hu et al. . o . Semiautomatic Least Absolute Shrinkage and Tenfold
[72] 2019 patients with indeterminate 194 FDG-PET/CT MIM®) Selection Operator (LASSO) cross-validation
pulmonary nodules
Kirienko et al. 2018 fi:lf{ir;r:rlif dbiﬁizgc?rf;?flgy 534 CT Semiautomatic Linear Discriminant Direct and backward
[73] § tumor - (PET VCAR®) Analysis (LDA) elimination x100
to classify histological subtypes
Performed by commercial
software (AK®) after conversion
Liu et al To discriminate benign nodules Manual to Co-occurrence of Local
[74] ' 2021 from LM in patients with 57 CT (ITK-SNAP) Anisotropic Gradient Orientations 100X cross-validation
colorectal cancer (CoLIAGe) and combination of
Discrete wavelet transform and
Local binary pattern (DWT + LBP)
Random Forest (RF), logistic
. TO. pre.d.mt the efﬁcacy Qf Manual or regression, Suppf)rt Vector. No cross-validation
Miao et al. epirubicin combined with . . Machine (SVM), naive Bayesian
2022 . . . . 51 CT semiautomatic e . . performed on the best
[75] ifosfamide in patients with LM classification, decision tree
. (ITK-SNAP) e ML method (Forest)
from soft tissue sarcoma classifier, K-nearest
neighbor (KNN)
Shang et al. 2022 To filfferentlate LM from 78 + 35 cT Manual RE, SVM Tenfgld .
[76] different tumor types cross-validation
Minimum
. . . . Redundancy-Maximum
Zhof;gﬂet al. 2022 To dllslf;l“;‘itersefcfrg prmany 252 FDG-PET/CT Sg;‘?‘;ﬁf&‘gm Relevance (mRMR), Calibration curve
§ cancers Iro LASSO / multivariate
logistic regression
. . . RF, Distance Correlation (DC),
Zhou et al To differentiate primary lung Xtreme gradient boostin: Tenfold
ouetal 2021 tumors from LM lesions and to 769 CT Semiautomatic A reme gradient bOostng enod
[78] (Xgboost), gradient boosting cross-validation

classify histological subtypes

decision tree (GBDT), LASSO
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4. Discussion

Differentiating primary lung cancer from LM is of great clinical interest because of
the profound differences in their prognostic and therapeutic implications [79,80]. Fur-
thermore, a solitary pulmonary nodule may be more difficult to interpret in patients
with a history of cancer, as it may be a primary lung tumor, a metastasis, or a benign le-
sion [81-83]. From an imaging viewpoint, the ability to recognize various diseases based on
qualitative criteria relies on observer expertise and experience, whereas quantitative param-
eters, such as pulmonary nodule diameter and/or growth rate, are surrogate biomarkers
of malignancy [84-87].

In this context, 3 articles evaluated the role of radiomics in differentiating primary
lung tumors from metastases, of which 2 analyzed PET/CT images and 1 MDCT images.
Kirienko et al. [73] evaluated 534 patients who underwent IBE_FDG PET/CT for characteri-
zation of lung nodule or for staging of a suspected lung tumor before biopsy, with the aim
to evaluate the ability of radiomics to discriminate primitive lung tumor from LM and to
predict the histological subtypes among primary lung cancers. They demonstrated that
texture features obtained from PET images were able to differentiate between primary lung
cancer and metastases (AUC > 0.90), whereas the analysis of co-registered CT data showed
limited ability to distinguish between the two groups. Furthermore, the data obtained
from PET images showed higher ability to discriminate between histological subtypes
than those derived from CT images. More specifically, as to differentiation between pri-
mary subgroups based on CT features, the AUCs in the training and validation groups
were 0.81 £ 0.02 and 0.69 £ 0.04 for adenocarcinoma versus squamous cell carcinoma
or other histological subtypes, 0.85 £ 0.02 and 0.70 £ 0.05 for squamous cell carcinoma
versus adenocarcinoma or other histological subtypes, and 0.77 £ 0.03 and 0.57 &+ 0.05 for
other histological subtypes versus squamous cell carcinoma or adenocarcinoma. The same
analyses for the PET data revealed AUCs of 0.90 £ 0.10 and 0.80 = 0.04, 0.80 £ 0.02 and
0.61 & 0.06, and 0.97 £ 0.01 and 0.88 £ 0.04, respectively.

In a study performed on 769 patients, Zhou et al. [78] showed that '8F-FDG PET/CT
features allowed to distinguish primary lung tumors from LM (AUC = 0.98), and that
the results derived from the CT dataset were generally poorer than those obtained from
the PET dataset. Furthermore, they achieved a good performance in discriminating lung
adenocarcinoma from squamous cell carcinoma (AUC = 0.89) by using a combination of
gradient boosting decision tree (GBDT) feature selection method with GBDT classification
in the PET dataset. The combination of the GBDT feature selection method with the random
forest (RF) classification had the highest AUC of 0.83 in the CT dataset. Of note, most of the
decision tree (DT)-based models were overfitted, revealing that the classification method
was inappropriate for usage in clinical practice.

In the aforementioned papers, the poorer performance obtained with CT data could
be due to the fact that the CT dataset used for anatomical localization of PET/CT scans had
a lower tissue contrast resolution (resulting from the lack of intravenous contrast material
administration) and a lower overall quality than regular MDCT images used for radiological
diagnosis, possibly introducing a bias in the determination of radiomics features. However,
these findings could underscore the ability of texture analysis of PET images to detect the
expression of underlying biological processes as revealed by an increased '®F-FDG uptake.

Zhong et al. [77] analyzed MDCT images of 97 s primary lung cancers and 155 LM, and
constructed a nomogram model integrating clinical data, imaging characteristics (such as
distribution of lesions, central or peripheral type, contours, and spiculation), and radiomics
features. They achieved an excellent (0.94 and 0.90 in the training and validation cohorts,
respectively) discriminative capability to distinguish LM from second primitive lung cancer
in patients with a history of cancer. The radiomics model alone had good discriminative
performance, with an AUC of 0.87 (95% confidence interval, 0.81-0.92) in the training set
and 0.76 (95% confidence interval, 0.67-0.85) in the validation set. Moreover, the decision
curve analysis (DCA) showed that the comprehensive model had a higher clinical value
than that without the radiomics score.
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At primary tumor staging or follow-up, patients frequently present with pulmonary
nodules with indeterminate characteristics, such as <1 cm in diameter, single or double, no
typical CT signs of malignancy, and no elevation of '®F-FDG standardized uptake value
(SUV) at PET-CT imaging. These indeterminate lung nodules usually undergo long-term
follow-up, bringing additional cost and patient anxiety and possibly delaying treatment.
Therefore, a noninvasive diagnostic tool allowing a reliable and immediate characterization
of such lesions would fulfil a highly unmet clinical need.

Hu et al. [72] evaluated 194 patients with colorectal cancer and MDCT finding of at
least one indeterminate pulmonary nodule sized 5-20 mm in diameter. Three models were
generated (i.e., a clinical model with significant clinical risk factors, a radiomics model
with radiomics features constructed by the least absolute shrinkage and selection operator
(LASSO) algorithm, and a clinical-radiomics model with significant variables selected
by the stepwise logistic regression) to quantitatively assess the risk of such patients to
develop LM. A nomogram was built based on the best performing model, and DCA was
applied to test the clinical usefulness. The rad-score DCA showed more benefit than clinical
DCA (based on N stage, chronicity, and size of the nodule) in predicting the risk of LM.
Moreover, the clinical-radiomics nomogram was successfully developed with a favorable
discrimination in the training cohort (AUC = 0.92, 95% confidence interval: 0.88-0.97) and
the validation cohort (AUC = 0.92, 95% confidence interval: 0.85-0.98) and good calibration,
and it achieved the greatest clinical usefulness, being capable of discriminating LM from
non-metastatic nodules (84.9% sensitivity and 91.1% specificity in the training cohort). A
higher nodal stage was found to be a significant predictor of metastases in patients with
colorectal cancer and indeterminate pulmonary nodules (warranting a closer monitoring
for early detection and follow-up of LM in this patient subset), and metachronous nodules
were closely correlated with LM occurrence and had an excess predictive impact compared
with N stage.

Liu et al. [74] analyzed radiomics features from contrast enhanced MDCT images to
differentiate benign nodules from metastatic pulmonary nodules from colorectal cancer.
A total of 320 nodules sized less than or 1 cm in diameter were evaluated, of which
200 metastatic nodules were included in the training cohort, 60 benign nodules in one
verification cohort, and 60 metastatic nodules in another verification cohort. All nodules
were divided into four groups according to their maximum diameter. Through cross-
validation on 100 experiments, 11 features remained stable for more than 90 times in LM,
but not in benign nodules. Such stability may be related to the essential characteristics
of metastatic nodules, possibly representing a relevant factor to distinguish metastatic
pulmonary nodules from benign ones. Of note, 8 of 11 features belong to ‘CoLIAGe’ (i.e.,
Co-occurrence of Local Anisotropic Gradient Orientations), a radiomics descriptor that
identifies differences in the local entropy pattern and can differentiate subtle pathology
differences from similar morphological manifestations, unlike morphological descriptors
(such as shape and edges), which can be similar in small benign nodules and metastatic
nodules.

Shang et al. [76] explored the role of radiomics to differentiate lung metastatic nodules
from breast, colorectal and renal cancer by means of MDCT radiomics features. They
performed a retrospective analysis including 252 LM from 78 patients, which were ran-
domly divided into a training cohort (n = 176) and a test cohort (1 = 76). The metastases
originated from colorectal cancer (n = 97), breast cancer (n = 87), and renal carcinoma
(n = 68), and additional 77 LM were used for external validation. A three-class model was
built using the LASSO method, showing a good discriminative performance for the various
tumor histotypes (AUC: colorectal cancer LM vs. renal carcinoma LM 0.84, breast cancer
LM vs. colorectal cancer LM 0.80, breast cancer LM vs. renal carcinoma LM 0.94), along
with AUCs of 0.77, 0.78, and 0.84 in the external validation cohort. Interestingly, breast
cancer LM showed a low value of normalized run variance, maximum probability, and
dependence nonuniformity. This may indicate more homogeneity in texture patterns, possi-
bly due to dense fibrous tissue hyperplasia in breast cancer lesions, as compared with renal
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carcinoma (which is prone to intratumor hemorrhage and necrosis/cystic degeneration)
and colorectal cancer (which tends to have fewer stroma elements inside it).

Treatment options for LM may include local therapies, such as thermal ablation
techniques and stereotactic ablative body radiation [88-96], chemotherapy [97,98] and, in
selected cases, surgery [99-101]. The introduction of new systemic treatments, including im-
munotherapy and target therapies, has improved the prognosis of patients with metastatic
tumors, but only a subset of mutated patients can benefit from such treatments [102]. Angus
et al. [71] attempted to detect radiomics features related to BRAF mutations in LM from
melanoma in patients undergoing pre-treatment MDCT. 540 radiomics were extracted from
169 lung lesions detected in 103 patients (51 BRAF-mutant, 52 BRAF-wild type), and a
combination of machine learning methods was used to build BRAF decision models based
on radiomics features and Lung Image Database Consortium (LIDC) criteria. No radiomics
features were found to be able to differentiate BRAF-mutant and BRAF-wild type LM, with
models based on radiomics features and LIDC criteria performing as poorly as guessing.
A potential explanation for this finding it that as the NRAS and BRAF genes are both
involved in the MPAK pathway, activating mutations of the NRAS gene in BRAF-wild type
melanoma or the BRAF gene in BRAF-mutant melanoma may lead to a similar phenotype.

To our knowledge, only Miao et al. [75] evaluated the role of radiomics to predict prog-
nosis in patients with LM. They investigated radiomics features from contrast-enhanced
MDCT examinations of 51 patients to predict the effectiveness of epirubicin combined
with ifosfamide as first-line treatment in LM from soft tissue sarcoma. Lung metastases
were used as target lesions (total n = 86), and patients were split into a progression group
(n =29), a stable group (1 = 34), and a partial response group (1 = 23). In total, 851 radiomics
features were extracted for each target lesion, and then narrowed down to 2 radiomics
features (wavelet-HHH_First Order Mean and wavelet-LHL_GLRLM Long Run Low Grey
Level Emphasis) by dimensionality reduction. Such features were used to build a decision
tree classifier model with a good predictive value (AUC = 0.91, 95% confidence interval:
0.858-0.969 in the training group, and AUC = 0.85, 95% confidence interval: 0.72-0.96 in
the testing group). This finding has a relevant practical value because, if there is a high
likelihood of disease progression according to the predictive model, alternative treatment
strategies can promptly be enacted, potentially improving disease-free survival and overall
quality of life.

Despite its potential in providing an added value over conventional imaging ap-
proaches in the management of patients with LM and other cancers, radiomics is still far
from being universally adopted in clinical practice. This is due to several factors, including
a lack of harmonization of imaging protocols, clinical validation issues, and an overall
poor scientific quality of the studies in the field [43,45,103,104]. In line with this scenario, a
RQS of 27.8% (range 22.2-38.9%) was calculated for the 8 articles retrieved in this review
(Table 2), consistent with other reviews focused on radiomics [105-120].
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Table 2. RQS calculation for the 8 articles selected, based on the criteria illustrated by Lambin et al. [70].

Item

Criteria

Points

Angus et al.
[711

Hu et al.
[72]

Kirienko et al.
[73]

Liu et al.
[74]

Miao et al.
[75]

Shang et al.
[76]

Zhong et al.
(771

Zhou et al.
[78]

Image protocol quality—well-documented
image protocols (e.g., contrast, slice thickness,
energy, etc.) and/or usage of public image
protocols allow reproducibility /replicability
Multiple segmentations—possible actions are:
segmentation by different
physicians/algorithms/software, perturbing
segmentations by (random) noise, segmentation
at different breathing cycles. Analyze feature
robustness to segmentation variabilities
Phantom study on all scanners—detect
inter-scanner differences and vendor-dependent
features. Analyze feature robustness to these
sources of variability

Imaging at multiple time points—collect
individuals’ images at additional time points.
Analyze feature robustness to temporal
variabilities (e.g., organ movement, organ
expansion/shrinkage)

Feature reduction or adjustment for multiple
testing—decreases the risk of overfitting.
Opverfitting is inevitable if the number of features
exceeds the number of samples. Consider feature
robustness when selecting features
Multivariable analysis with nonradiomic
features (e.g., EGFR mutation)—is expected to
provide a more holistic model. Permits
correlating /inferencing between radiomics and
non radiomics features

Detect and discuss biological
correlates—demonstration of phenotypic
differences (possibly associated with underlying
gene-protein expression patterns) deepens
understanding of radiomics and biology
Cut-off analyses—determine risk groups by
either the median, a previously published cut-off
or report a continuous risk variable. Reduces the
risk of reporting overly optimistic results

+1 (if protocols are
well-documented)
+1 (if public protocol is used)

+1

+1

+1

—3 (if neither measure is
implemented)

+3 (if either measure is
implemented)

+1

+1

+1
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Table 2. Cont.
Item Criteria Points Angusetal. Huetal. Kirienko etal. Liu et al. Miao etal. Shangetal. Zhongetal. Zhouetal
# [71] [72] [73] [74] [75] [76] (771 [78]
Discrimination statistics—report discrimination +1 (if a discrimination statistics
statistics (e.g., C-statistic, ROC curve, AUC) and and its statistical sienificance
9 their statistical significance (e.g., p-values, are reported) 8 2 2 2 2 1 ’ 2 2
confidence intervals). One can also apply 1 (f a}a)lso an resamplin
resampling method (e.g., bootstrapping, hod techni phng lied
cross-validation) method technique is applied)
Calibration statistics—report calibration statistics +1 (if a calibration statistics
(e.g., calibration-in-the-large/slope, calibration and its statistical sienificance
10 plots) and their statistical significance (e.g., are reported) & 0 1 0 0 0 0 1 0
p-values, confidence intervals). +1 (if aplso an resamplin
One can also apply resampling method (e.g., method technique 112 a 5 lied)
bootstrapping, cross-validation) ! pp
Prospective study registered in a trial . -
1 database—provides the highest level of evidence :)—f7a(fr(21r d?é;:i?;;"i;ﬁ?j?:gﬁ 0 0 0 0 0 0 0 0
supporting the clinical validity and usefulness of iate tri 1g
the radiomics biomarker appropriate trial)
—5 (if validation is missing)
+2 (if validation is based on a
dataset from the same institute)
+3 (if validation is based on a
dataset from another institute)
+4 (if validation is based on
two datasets from two
Validation—the validation is performed without dISt.l nct institutes) .
.. . - +4 (if the study validates a
12 retraining apd w1thqut fadaptatlgn of t.he cut-off previously published 5 2 2 5 2 3 5 2
value, provides crucial information with regard signature)

to credible clinical performance

+5 (if validation is based on
three or more datasets from
distinct institutes)

Datasets should be of
comparable size and should
have at least 10 events

per model

feature
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Table 2. Cont.

Item Criteria Points Angusetal. Huetal. Kirienko etal. Liu et al. Miao etal. Shangetal. Zhongetal. Zhouetal
# [71] [72] [73] [74] [75] [76] (771 [78]
Comparison to ‘gold standard’—assess the
extent to which the model agrees with/is
13 superior to the current ‘gold standard” method +2 0 0 0 0 0 0 0 0
(e.g., TNM-staging for survival prediction). This
comparison shows the added value of radiomics
Potential clinical utility—report on the current
14 and potential application of the model in a +2 0 2 0 0 2 0 2 0
clinical setting (e.g., decision curve analysis)
Cost-effectiveness analysis—report on the
15 cost-effectiveness of the clinical application (e.g., +1 0 1 0 0 0 0 0 0
quality adjusted life years generated)
+1 (if scans are open source)
+1 (if region of interest
segmentations are open source)
Open science and data—make code and data +1 (if code is open source)
16 publicly available. +1 (if radiomics features are 0 0 0 0 0 0 0 0
Open science facilitates knowledge transfer and  calculated on a set of
reproducibility of the study representative ROIs and the
calculated features +
representative ROls are
open source)
Sum of scores 9 13 8 14 9 10 10 10
(%) (25.0%) (36.1%) (22.2%) (38.9%) (25.0%) (27.8%) (27.8%) (27.8%)
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Moreover, in all studies patient enrollment was retrospective in design, validation was
performed on datasets from the same institutions, and data access was not granted to the
public. Three studies (37.5%) [55,56,68] evaluated the potential applicability of radiomics
models in a clinical setting by means of DCA. In most studies (75%) [71,72,74-77] multiple
segmentations were performed to evaluate the robustness of radiomics features in relation
to segmentation variability.

This review has some limitations. Firstly, we selected only studies in which radiomics
features had been obtained from LM, leaving out any studies related to LM prediction
from primitive tumors. Secondly, the high variability of the studies under investigation
(e.g., regarding methodology) makes it difficult to compare data across them.

5. Conclusions

Radiomics is a relatively recent field of research in rapid evolution, and the potential
use of radiomics for LM is a niche subfield, as demonstrated by the scarcity of studies
collected in this review. Their lack of clinical relevance assessment and their retrospective
design in a single center setting without external validation are shortcomings that currently
curtail the robustness and clinical applicability of the study findings. Furthermore, no
solid data have been collected so far demonstrating a correspondence between specific
textural features and biological processes and explaining it in terms of radiomics-pathology
correlations. In this setting, specific initiatives (such as the Image Biomarker Standard-
ization Initiative, IBSI) have been undertaken to promote the adoption of a standardized
approach for the definition, nomenclature, and calculation of radiomics features, resulting
in improved statistical reliability as long as calculation settings are harmonized too. A
greater standardization of radiomics methods and their validation on larger patient sam-
ples obtained from multicenter studies (possibly based on standardized image acquisition
protocols), as well as a better integration of radiomics software in real world clinical and
radiological environments [121-127], could be key to increase the role of radiomics in
diagnosis, treatment planning and individual outcome prediction in patients with LM.
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