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Abstract: Purpose: Due to poor prognosis and immunotherapy failure of skin cutaneous melanoma
(SKCM), this study sought to find necroptosis-related biomarkers to predict prognosis and improve
the situation with predicted immunotherapy drugs. Experimental Design: The Cancer Genome Atlas
(TCGA) and The Genotype-Tissue Expression Program (GTEx) database were utilized to recognize the
differential necroptosis-related genes (NRGs). Univariate Cox (uni-Cox) and least absolute shrinkage
and selection operator (LASSO) Cox analysis were utilized for prognostic signature establishment.
The signature was verified in the internal cohort. To assess the signature’s prediction performance,
the area under the curve (AUC) of receiver operating characteristic (ROC) curves, Kaplan-Meier
(K-M) analyses, multivariate Cox (multi-Cox) regression, nomogram, and calibration curves were
performed. The molecular and immunological aspects were also reviewed using single-sample
gene set enrichment analysis (ssGSEA). Cluster analysis was performed to identify the different
types of SKCM. Finally, the expression of the signature gene was verified by immunohistochemical
staining. Results: On basis of the 67 NRGs, 4 necroptosis-related genes (FASLG, PLK1, EGFR, and
TNFRSF21) were constructed to predict SKCM prognosis. The area’s 1-, 3-, and 5-year OS under
the AUC curve was 0.673, 0.649, and 0.677, respectively. High-risk individuals had significantly
lower overall survival (OS) compared to low-risk patients. Immunological status and tumor cell
infiltration in high-risk groups were significantly lower, indicating an immune system that was
suppressed. In addition, hot and cold tumors could be obtained by cluster analysis, which is helpful
for accurate treatment. Cluster 1 was considered a hot tumor and more susceptible to immunotherapy.
Immunohistochemical results were consistent with positive and negative regulation of coefficients in
signature. Conclusion: The results of this finding supported that NRGs could predict prognosis and
help make a distinction between the cold and hot tumors for improving personalized therapy for
SKCM.

Keywords: skin cutaneous melanoma (skcm); necroptosis; prognosis; bioinformatics; tumor
microenvironment

1. Introduction

Skin cutaneous melanoma (SKCM) is a destructive malignant tumor and one of the
important obstacles to extending life expectancy [1]. In 2020, 324,635 new cases were
diagnosed with melanoma worldwide, and 57,043 patients died from the disease [2]. And
its characteristic is featured by complicated mutation load, and a highly immunogenic
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microenvironment, showing different sensitivity to immunotherapy. Besides, the antibody-
mediated blockade of the programmed cell-death protein 1 (PD-1) immune checkpoints
treatment only showed response rates ranging from 20% to 40% in melanoma patients [3].
In general, malignant melanoma has been divided into four histopathological subtypes: su-
perficial spreading melanoma (SSM), nodular melanoma (NM), acral lentiginous melanoma
(ALM), and lentigo maligna melanoma (LMM) [4]. Although primary histology types have
obvious clinical and biological differences, the effect of these subtypes on immunotherapy
remains unclear [5]. Multiple studies have classified melanoma according to the expression
of characteristic genes, showing good guidance for the efficacy of targeted and immune
therapies [6–8].

Necroptosis is a recently discovered form of cell death that is similar to necrosis in
that it is characterized by the loss of cell membrane integrity and the release of cellular
contents into the surrounding tissue. However, necroptosis is a form of programmed cell
death that is triggered by specific cellular signaling pathways [9]. RIPK1 and RIPK3, as
well as their target, MLKL, are required to initiate necroptosis [10–12]. Research has shown
that necroptosis enhances CD8+ leukocyte-mediated anti-tumor immunity by activating
RIPK1 and RIPK3 in the tumor microenvironment (TME) [13]. Seifert L et al. have shown
that necroptosis promotes macrophage-induced immunosuppression of T cells, thereby
inhibiting tumor cell metastasis in pancreatic cancer [14]. Since necroptosis represents a
novel cell death form controlled by the specific signal transduction pathways, it provides
a molecular target for therapeutic interventions [15]. Accumulating evidence revealed
that necroptosis is associated with a variety of human diseases, including inflammatory,
neurodegenerative, autoimmune diseases, and cancer, strengthening the concept that
targeting necroptosis in cancer could be a viable therapeutic method [16,17]. Besides, a
novel naphthalene derivative has shown promise in the treatment of melanoma by inducing
necroptosis [18].

However, the precise role of necroptosis regulators in the prognosis of SKCM and
underlying molecular mechanisms remains unknown. Therefore, it is imperative and
attractive to develop clinical signatures of necroptosis to assist cancer treatment. Meanwhile,
we identified the immune microenvironment and potential drug treatment modalities of
SKCM patients under novel subtypings.

2. Materials and Methods
2.1. Online Data

TCGA database was utilized to obtain RNA transcriptome (RNA-seq, FPKM) data
for 1 normal skin tissue and 374 melanoma cases, as well as related clinical informa-
tion and Copy number variation (CNV) data (https://portal.gdc.cancer.gov/repository,
accessed on 15 January 2022). After entering the website, click the “Repository” but-
ton, and select the SKCM sample after the web page jumps. Then, users could selected
the “transcriptome profiling”, “clinial”, and “copy number variation” to downloaded
RNA-seq, clinical information, and CNV data, respectively. The GTEx database was
used to obtain the other 233 RNA-seq normal skin tissues (ID: Skin, Not Sun Exposed,
https://www.xenabrowser.net/, accessed on 15 January 2022). In UCSC XENA website,
users needed to select the datasets module to jump to GTEX project. Next, click the “GTEX
phenotype” button to extracted normal skin transcriptome data. The TCGA and GTEx
datasets were merged and batch corrected for subsequent analysis.

2.2. Clinical Tissue Specimens

The three cases of human SKCM tumors and normal tissues were collected from
the First Affiliated Hospital of Chongqing Medical University which never received any
preoperative radiotherapy or chemotherapy (2022.02–2022.06). All human tissues were
collected by national and institutional ethical guidelines and approved by the Ethics
Committee of First Hospital of Chongqing Medical University (2022-K31).

https://portal.gdc.cancer.gov/repository
https://www.xenabrowser.net/
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2.3. Analysis of Differentially NRGs

The Gene Set Enrichment Analysis (GSEA) database was used to obtain eight necrop-
tosis genes (gene set: M24779.gmt, http://www.gsea-msigdb.org/gsea/index.jsp, accessed
on 15 January 2022). Furthermore, from previous research, we finally extracted 67 NRGs
which are listed in Table S1 [19–21]. Then, genes were divided into mRNAs and lncRNAs
by Perl. Necroptosis-related lncRNAs were obtained by Spearman correlation. And, dif-
ferentially expressed necroptosis-related mRNAs (DNRGs) were extracted by using the
“limma” R package (|log2FC| ≥ 1 and p < 0.05). The correlation between the differential
expression of necroptosis-related mRNAs and lncRNAs in the merged matrix was analyzed
(coefficients > 0.4, and p < 0.001).

2.4. Genetic Mutation and Expression Variation Analysis

The “maftools” package was performed to show the mutation frequency and oncoplot
waterfall plot of DNRGs. The location of CNV alteration was performed using the “RCircos”
R package.

2.5. Construction and Validation of the necroptosis-Related Signature

Utilizing the clinical data of GTEx and TCGA samples, uni-Cox analyses were per-
formed to identify NRGs with survival differences (p < 0.05). Next, a 10-fold cross-validated
Lasso regression was performed. To prevent overfitting, a random stimulation was set up
1000 times each cycle. Then, a necroptosis-related signature was constructed. The following
formula was used to calculate the risk score:

risk score =
n

∑
k=0

coe f
(

genek
)
∗ expr

(
genek

)
The coef (gene) was an abbreviated form of the coefficient gene. The expr (gene) was

the expression of the gene. Sample in the model were divided into low- and high-risk
groups based on the median risk score. The ROC curves were performed by “timeROC”,
“survminer”, and “survival” R packages. The chi-square test was used to analyze the
relationship between the model and clinical features, as well as to assess the prognostic
value of the constructed signature.

2.6. Independence Factors and ROC

Uni-Cox and multi-Cox analyses were performed to determine whether the risk score
and clinical characteristics were independent variables in TCGA-SKCM cohort. ROC
analysis was utilized to compare the effects of clinical factors on prognosis.

2.7. Nomogram and Calibration

The clinicopathological information (age, gender, T, M, N, tumor stage) and risk score
were utilized to set up a nomogram for the 1-, 3-, and 5-year OS of SKCM patients by using
the “rms” R package. Then, correction curves based on the Hosmer-Lemeshow test to
illustrate whether the prediction outcome showed good consistency with the practical.

2.8. Gene Set Enrichment Analyses

The GSEA software (Version: 4.1.0) was used to identify the significantly enriched path-
ways and functions between different subgroups. After submitting the transcriptome matrix
and selecting genesets, and performed 1000 permutation (genesets: Kegg.v7.4.symbols.gmt,
p < 0.05 and FDR < 0.25).

2.9. TME and Immune Checkpoints Analyses

The available computational algorithms for immune infiltration estimation fall into two
main categories: gene signature- (xCell, MCP-counter) and deconvolution- (CIBERSORT,
TIMER, EPIC, quanTIseq) based approaches. Then, we calculate the immune infiltration

http://www.gsea-msigdb.org/gsea/index.jsp
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statuses among the SKCM patients using these algorithms. And, the ssGSEA analysis
was applied. Wilcoxon signed-rank test, “limma”, “scales”, “ggplot2”, and “ggtext” R
packages were used to analyze the differences in the content of immune infiltrating cells.
The results were displayed in a bubble chart. Furthermore, TME scores and immune
checkpoint activation between the two subgroups were also determined using the “ggpubr”
R package.

2.10. Potential Therapeutic Medicine

To determine the immunotherapy response of each SKCM patient, the half-max inhibitory
concentration (IC50) was determined using the the “Limma”, “ggpubr”, “ggplot2”, and
“pRRophetic” R package (https://www.cancerrxgene.org/, accessed on 15 January 2022).

2.11. Clusters Based on Four Prognostic Signature Genes

The TCGA-SKCM patients were classified by using the “ConsensusClusterPlus” R
package based on prognostic gene expression. Principal component analysis (PCA), T-
distributed stochastic neighbor embedding (t-SNE), and K-M analysis were constructed to
verify the discrimination and accuracy of the subtypes by using “survival” and “survminer”
R package.

2.12. Immunohistochemical Staining (IHC)

Paraffin sections were dewaxed and rehydrated. Next, endogenous peroxidase and
nonspecific binding sites were blocked with 10% bovine serum albumin (AR0009, Boster,
Wuhan, China) for 60 min. Then, all sections were incubated with rabbit anti-FASL (1:200,
Abways), EGFR (1:500, Abcepta, Suzhou, China), DR6 (1:500, Abcepta, Suzhou, China),
and PLK1 (1:500, Proteintech, Wuhan, China) antibody overnight at 4 ◦C. Subsequently,
binding was conducted with the corresponding peroxidase-conjugated secondary antibody
(A21020, Abbkine, Wuhan, China) and incubated at 37 ◦C for 30 min.

3. Results
3.1. The Genetic Mutation Landscape and Expression of Necroptosis Genes in SKCM

The research process of the study is shown in Figure 1. After extracting GTEx and
TCGA matrix, we obtained 175 normal skin tissues and 471 SKCM samples. According
to the expression of differentially expressed mRNAs and lncRNAs between normal and
SKCM samples, we finally obtained 53 DNRGs and 489 related lncRNAs (correlation coeffi-
cients >0.4 and p < 0.001). Of the DNRGs, 20 mRNAs (HSPA4, APP, USP22, TLR3, PANX1,
MYCN, TNFRSF1B, BCL2, HSP90AA1, SPATA2, ITPK1, ZBP1, PLK1, SLC39A7, TERT, LEF1,
TNFRSF21, CDKN2A, FASLG, ALK) were upregulated, and 8 mRNAs (GATA3, EGFR,
DIABLO, CFLAR, ID1, RIPK3, TARDBP, RNF31) were downregulated (|Log2FC| > 1,
FDR = 0.05 and p < 0.05) (Figure 2A). The network figure and data between necroptosis-
related mRNAs and lncRNAs were drawn and listed in Figure S1 and Table S2. The
genetic landscape of DNRGs in the waterfall plot was performed by the “maftools” R
package in Figure 2B. The waterfall plot is a visualization tool for presenting gene muta-
tion data. We show the mutations of DNRGs in TCGA-SKCM samples, with each point
representing a sample and the color representing the mutation type. Waterfall plots can
help researchers rapidly identify high-frequency mutation loci and significant mutation
patterns. Figure 2C,D illustrate the significance of CNV and the relationship between it
and the location of necroptosis regulators on the chromosome.

https://www.cancerrxgene.org/
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Figure 1. Flow diagram of the study. Figure 1. Flow diagram of the study.

3.2. Construction and Validation of a Necroptosis-Related Prognostic Signature

The uni-Cox analysis (Figure 3A) determined that 8 genes related to necroptosis were
significantly correlated with OS (p < 0.05). Then, we show the differential expression of
these genes using a heat map in Figure 3B. To avoid overfitting of the prognostic signature,
we performed Lasso regression on these genes which were associated with necroptosis
in SKCM. Lasso regression is a type of linear regression that uses a regularization term
known as the λ penalty. The λ penalty encourages the coefficients of the model to be
sparse, meaning that many of them will be zero. This can be useful for feature selection in
high-dimensional datasets, as it can help to identify the most important features. The Lasso
regression algorithm is typically implemented by minimizing the mean squared error of
the model subject to a constraint on the sum of the absolute values of the coefficients. By
calculating the penalty parameter (λ) according to the minimum requirement, we found that
the model could be constructed after retaining the 4 genes and their correlation coefficients
(Figure 3C,D). The details of genes and coefficients were shown in Table 1. The risk score
formula was used to compare low-risk and high-risk groups of patients in the training,
testing, and complete sets. The distribution of risk score, survival status, and survival
time, as well as relevant expression standards were analyzed. All findings showed that
the prognosis was poorer for the high-risk group (Figure 4A–L). In addition, the same
results were obtained in clinicopathological features which were extracted from the TCGA
database (Figure S2).
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Figure 2. Expression and genetic mutation of necroptosis regulators in SKCM. (A) The volcano
map indicated the expression of necroptosis genes in SKCM (red: High expression, green: Low
expression). (B) The waterfall plot indicated mutation frequency and classification of necroptosis
genes in TCGA-SKCM cohort. (C) The circle plot shows the location of necroptosis regulators CNV
on chromosomes. (D) The lollipop chart display the CNV frequency of necroptosis genes in SKCM.
The height of the column represented the alteration frequency.

Table 1. The coefficients of signature genes.

Gene Name Coefficient

FASLG −0.367

PLK1 0.287

EGFR 0.202

TNFRSF21 −0.118
FASLG, Fas ligand; PLK1, Polo like kinase 1; EGFR, Epidermal growth factor receptor; TNFRSF21; TNF receptor
superfamily member 21.
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Figure 3. The development of a necroptosis-related gene signature. (A) The forest plot shows the
extraction of prognostic genes using Uni-Cox regression analysis. (B) The heat map shows the
expression profiles of 8 prognostic genes. Wilcoxon signed-rank test, *** p < 0.001. (C) The LASSO
model employs 10-fold cross-validation to exclude collinearity from severe variable optimization and
simplification models. (D) Partial-likelihood deviance changes the curve with Log(λ), and the smaller
this value indicates that the model fits better.

3.3. Nomogram Analysis

The hazard ratio (HR) of the risk score and 95% confidence interval (CI) in uni-Cox
regression were 1.919 and 1.511–2.437 (p < 0.001, Figure 5A). The multi-Cox regression were
2000 and 1.556–2.569 (p < 0.001, Figure 4B), respectively. Furthermore, two other indepen-
dent parameters were also found to be independent prognostic indicators, T stage (1.496
and 1.267–1.766; p < 0.001) and N stage (1.658 and 1.315–2.091; p < 0.001) (Figure 5B). Based
on three independent prognostic factors (risk score, T stage, and N stage), a nomogram for
predicting the 1-, 3-, and 5-year OS incidence of SKCM was developed (p <0.05 in multi-Cox)
(Figure 5C). The quality of a prediction model can be evaluated by considering two aspects:
discrimination and calibration. Discrimination is mainly used to reflect the differentiation
ability of the prediction model, which is to evaluate how sure the model is to determine
the ability of the predicted patient to occur the event. Calibration refers to the consistency
or approximation degree between the actual probability of the outcome and the predicted
probability. The former can be evaluated by AUC, while the latter can be evaluated by
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calibration chart. Then, a calibration plot was constructed for 1-, 3-, and 5-years to ascertain
whether the nomogram demonstrated a good correlation with predictedOS (Figure 5D).
According to the coincidence degree of the dashed line of the ideal model and the result of
the model prediction line in Figure 4D, it suggested that the nomogram could be predicted
relatively well in the entire cohort for the OS rates. However, we need to evaluate our
signature further.
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Figure 4. The prognostic performance of the 4 necroptosis-related genes model. (A–C) K-M analysis
depicting the OS between low- and high-risk groups in the train, test, and entire sets, respectively.
(D–F) The distribution of the risk scores in the three cohorts. (G–I) Each patient’s survival status
between low- and high-risk groups in the three cohorts. (J–L) The expression of 4 NRGs in the
three cohorts.

3.4. Evaluation of the Risk Signature

The sensitivity and specificity of the signature were evaluated by illustrating the AUC
curves. The 1-, 3-, and 5-year AUCs of the entire set were 0.673, 0.649, and 0.677 (Figure 5E).
On the basis of the 3-year ROC data, the clinical information and risk score had superior
predictive abilities (Figure 5F).
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Figure 5. Nomogram and assessment of the risk signature. (A,B) Uni- and multi-Cox analyses of
clinical characteristics and risk score with OS in TCGA-SKCM cohort, respectively. (C) The nomogram
that integrated the T, N, and risk score predicted the probability of the 1-, 3-, and 5-year OS. (D) The
calibration curves for nomogram. The ideal nomogram is shown by a dashed diagonal line. (E) The
1-, 3-, and 5-year ROC curves of the entire sets. (F) The 3-year ROC curves of risk score and clinical
characteristics.

3.5. GSEA Analyses

GSEA software was used to explore the differences in biological functions between two
risk subgroups. The top five pathways in the high- and low-risk group in the entire set were
performed in Figure 6A (p < 0.05; FDR < 0.25; |NES| > 1.5). In high-risk group, base exci-
sion repair, lysine degradation, purine metabolism, cell cycle, and pyrimidine metabolism
were enriched. While in low-risk group, we found antigen processing and presentation,
autoimmune thyroid disease, chemokine signaling pathway, cytokine-cytokine receptor in-
teraction, and natural killer cell mediated cytotoxicity were highly expressed. These results
suggest that disturbances in amino acid metabolism and cell cycle regulation are closely
associated with high-risk patients. Conversely, low-risk patients were more likely to suffer
from dysregulation of the immune and inflammatory environment. Therefore, according to
the different potential biological backgrounds of patients with different subtypes, we need
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to further explore the immune microenvironment and possible therapeutic drugs between
the subgroups.
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3.6. Analysis of Immune Factors and Clinical Treatment in Risk Groups

Different platforms of the immune cell bubble chart indicated that the high-risk group
had fewer immune cells, such as T cell CD4+ (non-regulatory) at QUANTISEQ, B cell
memory, B cell plasma, T cell CD8+ naïve, NK cell resting, myeloid dendritic cell activated,
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mast cell activated at ABS, and B cell naïve, B cell memory, T cell CD4+ naïve, T cell CD4+
memory resting, M0 macrophage, M2 macrophage at CIBERSORT (p < 0.05) (Figure 6B,
Table S3). Since significant differences between two subgroups were observed in the multi-
platform immune infiltration, we further proceeded to analyze immune scores. The high-
risk group had a lower immune score and a lower ESTIMATE (microenvironment) score
compared to the low-risk group, suggesting a different TME (Figure 6C). Besides, ssGSEA
also indicated the high-risk group had a lower immune function and immune infiltration
status (Figure S3). In immune checkpoint analysis, the majority had better activation in low-
risk groups (Figure S4). Also, we found there had several immunotherapeutic drugs with
significant differences between the two subgroups (Figure S5). These results demonstrated
the effectiveness of our signature in immunotherapy and clinical application.

3.7. Distinguishing between the Different Subtypes and Precision Medicine in Clusters

Different clusters (also known as subtypes) may have distinct immune microenviron-
ments, resulting in varying immunotherapy responses [22]. Using the “ConsensusClus-
terPlus” R package, we regrouped the patients into two clusters based on the expression
of four NRGsin the signature (Figure 7A and Table S4). The K-M analysis demonstrated
that patients in cluster 2 had a superior OS rate compared to those in cluster 1 (p = 0.017,
Figure 7B). Besides, t-SNE and PCA analysis showed that the two subgroups could be
distinguished with high grouping reliability (Figure 7C,D). Also, cluster 1 had a higher
immune score as well as ESTIMATE (microenvironment) score, indicating a different TME
from cluster 2 (Figure 7E). A comparison of immune cell infiltration on different platforms
revealed a significant difference in immune infiltration between the two clusters (Figure 7F
and Table S5). A surprising finding was that nearly all immune checkpoints showed
greater activity in cluster 1 (Figure S6). Based on the above results, we could consider
cluster 1 as the hot tumor while cluster 2 as the cold tumor. Cluster 1 was more likely to
respond to immunotherapy when it was separated into hot tumors. In drug sensitivity
comparison, we found 25 immunotherapeutic drugs with different IC50 between different
clusters (Figure S7). In the future, we will look at precise drug therapy and immunotherapy
responses for SKCM patients.

3.8. Verify Signature Gene Expression by IHC

Immunohistochemical staining was performed to analyze the expression of signature
genes in 3 normal skin and 3 SKCM tissues. Due to the differences in model gene coefficients,
we consider DR6 and FASLG as negative regulators and PLK1 and EGFR as positive
regulators. In Figure 8, we found that immunohistochemical expression was positively or
negatively consistent with model gene coefficients.

Figure 7. Cont.
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Figure 7. Differentiation and exploration of cold and hot tumors. (A) Patients are divided into two
clusters by the “ConsensusClusterPlus” R package. (B) K-M analyses of OS in different clusters.
(C,D) The t-SNE and PCA analyses in cluster 1 and cluster 2, respectively. (E) The comparison of the
stromal score, immune score, and ESTIMATE score between clusters 1 and 2, respectively. (F) The
heat map of immune cells in clusters 1 and 2.
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4. Discussion

Previous studies have demonstrated that necroptosis plays a significant role in the pro-
gression and metastasis of melanoma [23,24]. Tumor therapy based on targeted necroptosis-
related factors is proven to be meaningful [25,26]. Our study analyzed the differential
necroptosis genes between melanoma and normal tissue and then constructed a prognostic
risk signature. Also, we identified potential LncRNAs associated with necroptosis. We
believe that these LncRNAs are involved in regulating the occurrence and development
of melanoma by participating in regulating the expression of necroptosis genes, which
needs to be confirmed by further experimental studies. After development of the sig-
nature, patients in SKCM cohort were regrouped into low- and high-risk groups. Then,
K-M analysis, GSEA, and IC50 prediction were used to prove the robust reliability of the
signature. Moreover, the nomogram results suggest that incorporating the values of the
multi-Cox regression model into the calculated risk score can accurately predict the prog-
nostic risk of patients. Although we found that risk groups could guide prognosis and
systematic treatments, we were unable to identify the different subtypes. Molecular types
and cluster classification of tumors are new and effective means to explore the treatment of
tumors [27,28]. In-depth study of the cancer genetic map and its correlation with clinical
symptoms and immune characteristics of patients is conducive to accurate diagnosis, prog-
nosis stratification, recurrence monitoring, and drug guidance. Therefore, it is necessary
to construct molecular subtypes with different immune and TME scores. Based on the
expression of NRGs, we successfully divided the patients into two subtypes. Surprisingly,
the two clusters have different immune microenvironments.

Immunotherapy can improve treatment outcomes in cases of failure, but it is not
a solution for all diseases [16]. Due to the different tumor immune microenvironments,
immunosuppressive and immune activated, the outcomes of patients had a distinct re-
sponse to immunotherapy. Therefore, to improve the effectiveness of immunotherapy, two
different SKCM subtypes were introduced, referring to the immune-based classification of
tumors. Tumors with a high immune score were generally considered to be hot tumors,
often accompanied by high invasive characteristics, while tumors with a low immune score
were generally considered to be cold. In general, hot tumors have a higher response rate to
immunotherapy, such as PD-1/PD-L1 treatment, T cell-targeting immunotherapies, and
microbiome modulation [29,30]. Also, immune checkpoints are usually expressed at higher
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levels. And, we found that almost all 25 immune checkpoints were highly expressed in
hot tumors (such as LAG3, CD28, and CD80), except for VTCN1, which was only highly
expressed in cold tumors. Howerver, Cold tumors have the characteristic of lower tu-
mor mutational burden, poorer antigen presentation, and intrinsic insensitivity to T cell
killing [30]. And we noticed that the cold tumors were less sensitive to chemotherapy
drugs. This also prompted researchers to pay attention to whether the survival prognosis
of patients could be improved by switching patient classification, in addition to the com-
bination of chemotherapy drugs. So, it is extremely meaningful to identify hot and cold
tumors in SKCM patients.

In this study, four genes were constructed for our signature (FASLG, PLK1, EGFR, and
TNFRSF21). FASLG and TNFRSF21 have a negative coefficient. The coefficients for PLK1
and RGFR are positive. FASLG, also named, FASL, CD95L, is the ligand of FAS. The FAS
protein is a cell surface receptor that, when activated by binding to its ligand, FASL, initiates
a cascade of signaling events leading to cell death [31]. This FAS/FASL system plays a
critical role in the immune system, as well as in the development and progression of certain
diseases such as cancer. The study has shown that some organs overexpressed FASL to
protect themselves from harmful immune responses [32]. Besides, an in vivo study reported
that tumorigenesis was delayed in Fas-deficient LPR mutant mice [33]. TNFRSF21 (tumor-
necrosis factor receptor superfamily 21, as known as death receptor 6, DR6) in a lacking
animal model showed reduced tumor metastasis capability [34]. Strilic, Strilic B et al. also
revealed that the binding of amyloid precursor protein (APP) to DR6 positively regulates
the necroptosis pathway [34]. The interaction between APP and DR6 provides a new target
for anti-hematogenous tumor metastases [35]. PLK1 (Polo-like kinase 1) is a protein kinase
that plays a crucial role in cell division [36]. It is known to be overexpressed in many types
of cancer and is a target of several cancer therapeutics in clinical trials. Dysregulation of
PLK1 activity can lead to errors in mitosis and contribute to the development of cancer [36].
Analysis of melanoma patients with PLK1 in the TCGA database showed that high mRNA
levels were associated with worse survival [37]. Cholewa et al. found that using volasertib
(inhibitor of PLK1) induced a significantly delayed melanoma cell growth [38]. EGFR
(epidermal growth factor receptor) could be activated by its ligands, leading to undergoing
dimerization and phosphorylation, activating multiple downstream carcinogenic signaling
pathways [39]. And, a new study showed that activation of the EGFR-STAT3 signaling
pathway could be a novel therapeutic approach for melanoma [40]. Above all, these four
genes have the significance of predicting the prognostic risk of melanoma patients.

There are also some shortcomings and deficiencies in this study. First, the number
of clinical specimens available is limited, and tissue acquisition is difficult. Second, ad-
ditional prospective evaluation is required for the validation of this approach [41–43].
Above all, collecting additional clinical datasets would be our next step to further validate
the signature.

Furthermore, both necroptosis-related mRNAs and lncRNAs contribute to the initi-
ation of cell death. Necroptosis can induce cancer cell death in a manner independent
of caspase, bypassing apoptosis. LncRNAs usually play a role in regulating apoptosis-
related signaling pathways. Studying the potential relationships and mechanisms between
these small molecules is beneficial to immunotherapy and tumor research, which provides
hypotheses for future basic studies.

5. Conclusions

In conclusion, we performed comprehensive and systematic bioinformatics analysis
and identified the necroptosis-related prognostic gene signature for SKCM patients, which
will make great strides in personalized therapy and improve patient outcomes. The
containd regulators were also validated by using immunohistochemistry of clinical samples.
Our findings also establish a new classification of cold and hot subtypes for SKCM that
plays a crucial role in determining the prognosis of the disease. Further study should
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be conducted to verify the mechanisms and relationships, among necroptosis, lncRNAs,
immunity, and SKCM.
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