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Abstract: (1) Background: Coronary artery stenting leads to local inflammation, disturbs vasomotion,
and slows endothelialization, increasing vascular thrombus risk. We used a pig stenting coronary
artery model to assess how peri-interventional triple therapy with dabigatran ameliorates these
effects. (2) Methods: In a total of 28 pigs bare-metal stents were implanted. Four days before the
percutaneous coronary intervention (PCI), we started 16 of the animals on dabigatran, maintained
through 4 days after the procedure. As controls, the remaining 12 pigs received no therapy. In both
groups, dual antiplatelet therapy (DAPT) (clopidogrel, 75 mg plus aspirin, 100 mg) was administered
until animals were euthanized. Just after the PCI and on day 3 after the procedure, we performed
optical coherence tomography (OCT) in eight animals in the dabigatran group and four controls and
euthanized them. We followed the eight remaining animals in each group with OCT and angiography
for one month before euthanizing them and performed in vitro myometry and histology on harvested
coronary arteries from all animals. (3) Results: The dabigatran group showed a significantly increased
vasoconstriction at 3 days after PCI (10.97 ± 3.85 mN vs. 7.32 ± 5.41 mN, p = 0.03), but we found no
differences between endothelium-dependent and -independent vasodilatation. We also found no
group differences in OCT, quantitative angiography, or histomorphometry findings. (4) Conclusions:
Starting a short course of dabigatran just before PCI and continuing for a 3-day window along with
usual post-PCI DAPT is associated with enhanced vasoconstriction after bare-metal stent implantation
without reducing neointimal formation at one month.

Keywords: vasomotor function; neointimal formation; dabigatran; preclinical; bare metal stent

1. Introduction

Treatment of stenotic coronary artery disease with a metallic coronary stent is con-
sidered the gold standard for symptomatic patients [1]. This percutaneous coronary in-
tervention (PCI) induces vascular injury, however, leading to local inflammation, altered
vasomotion, and enhanced neointimal hyperplasia [2]. To address the limitation of in-stent
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re-stenosis, drug-eluting stents (DES) were introduced to inhibit in-stent cellular prolif-
eration [2]. Furthermore, treatment with dual antiplatelet therapy (DAPT) is required to
prevent thrombotic events during the process of endothelialization over the stent struts.
Adding an anticoagulant to DAPT in patients at risk for atherothrombotic events is linked
to better ischemic outcomes compared with using either as monotherapy, but bleeding risk
is increased [3,4].

We hypothesized that a dabigatran-related reduction in thrombin levels would lead to
dampened inflammatory activation after local vascular injury. Using a pig coronary artery
model, we previously showed that initiating triple anticoagulant therapy with aspirin,
clopidogrel, and dabigatran just before DES implantation and continuing the therapy for a
short time afterward resulted in improved endothelium-dependent vasodilatation, faster
strut endothelialization, and reduced expression of MCP-1 [5]. However, the short-term
periprocedural triple therapy showed no effect on neointimal proliferation in the longer
term, at one month.

Following on that study, we sought to assess whether the results were attributable
to dabigatran alone or to the effects of the antiproliferative drug on the DES, as well. For
this purpose, we analyzed the effect of triple therapy (dabigatran plus DAPT) initiated just
before and continued for a short time after coronary stenting with bare metal stents (BMS)
in a pig coronary artery model.

2. Materials and Methods
2.1. Drug Dosing

On the day before the intervention, juvenile domestic pigs (n = 28) with an average
weight of 32.6 ± 2.3 kg were orally administered a loading dose of DAPT (clopidogrel,
300 mg plus aspirin, 100 mg). Animals then received daily DAPT (clopidogrel 75 mg plus
100 mg aspirin) until they were euthanized (see below). Of the 28 pigs, 16 were randomized
to received triple therapy (the addition of dabigatran to DAPT), and the remaining 12 served
as controls, receiving only DAPT. Dabigatran (20 mg/kg dabigatran given orally twice
daily, or about 600 mg two times a day, similar to a human dose of 2 × 150 mg) was begun
4 days before stenting to ensure a steady-state serum level, as pigs can have delayed or
decreased absorption of this drug [6]. The dabigatran group also continued with triple
therapy to day 4 after the intervention because previous work has shown detection of
MCP-1 through this period following blood vessel injury [7] (Figure 1).

For anesthesia, we began with 0.04 mg/kg atropine, 12 mg/kg ketamine-hydrochloride,
and 1 mg/kg xylazine, deepening the effect with facemask administration of isoflurane
and O2. After animals were intubated, ongoing anesthesia consisted of a mixture of isoflu-
rane (2–3.5 vol%), O2 (1.6–2.5 vol%), and N2O (0.5 vol%). All animals were continuously
monitored for blood pressure and O2 saturation and with electrocardiography. After sur-
gical preparation of the right femoral artery to allow insertion of a 7F introducer sheath
(Radifocus Introducer II, Terumo Medical Corporation, Somerset, NJ, USA), we performed
arteriotomy under sterile conditions. Unfractionated heparin was administered during the
procedure based on activated clotting time (range, 200–300 s).

The Ethical Committee on Animal Experiments of the University of Kaposvar, Hun-
gary, approved the study based on accepted animal care and use principles (NIH publica-
tion No. 86-23, revised 1985). The study was conducted in the Institute of Diagnostics and
Oncoradiology, University of Kaposvar, Hungary.

2.2. PCI

After a 7F guiding catheter (Medtronic, Minneapolis, MN, USA) was introduced into
the left coronary artery ostium, coronary angiography with a nonionic contrast agent
was performed. To place the stent, a guiding wire (Cordis, Miami Lake, FL, USA) was
introduced into the left anterior descending and left circumflex coronary arteries. The
stainless steel tubular stent with a low strut thickness [8] (80 µm; Tsunami, Terumo Corp,
Tokyo, Japan) (diameter, 3.2 ± 0.3 mm; length 20.6 ± 5.5 mm) was implanted into one



J. Pers. Med. 2023, 13, 280 3 of 9

or the other, alternately, following previously published guidelines [9]. After stents were
placed, intracoronary imaging was performed using intravascular OCT (C7-XR imaging
system; St. Jude Medical, LightLab Imaging, Inc, Westford, MA, USA), with an image
catheter (Dragonfly™, St. Jude Medical, LightLab Imaging, Inc.) positioned distal to the
stent. Contrast (4 mL/s) was flushed continuously through the guiding catheter for blood
clearance with motorized pullback. To capture and digitally store all images for later
analysis offline, we used the ILUMIEN System (St. Jude Medical, St. Paul, MN, USA).
After the procedure, the arteriotomy was ligated, the skin closed in two layers, and animals
allowed to recover.

Figure 1. Study design. LAD: left anterior descending coronary artery; LCx, left circumflex artery;
BMS: bare metal stent.

2.3. Follow-Up

Day 3 was selected for the first follow-up for two reasons. First, the first 4 days
after PCI represent the window of risk for the highest thrombus burden [10]. Second,
upregulation of MCP-1 expression is seen only during this initial window after vascular
injury [7,11,12]. A second (and final) follow-up took place at one month, which is similar
to follow-up at 6 months in humans [9,13,14]. Throughout all follow-up periods, animals
received DAPT, with dabigatran added for the triple-therapy group for the first 4 days
after stent placement. We performed coronary angiography and OCT at follow-up. For the
first follow-up at 3 days, we euthanized eight pigs from the triple-therapy group and four
from among controls. The remaining eight animals in each group were euthanized at the
second follow-up (one month). All euthanasia was conducted using saturated potassium-
chloride (10 mL), after which hearts with stented arteries were explanted for histological
and myometric analyses.

In preparation for these studies, the coronary vessels were dissected carefully and cut
into segments (containing the stent and proximal and distal to it). To flush segments, we
used physiological saline.

For in vitro studies of vasomotor response, the segments proximal and distal to the
stent were cut into 4-mm rings and analyzed immediately. As an unstented comparator,
we used a 4-mm ring taken from the untreated right coronary artery (RCA).

To prepare day 3 samples for histomorphometric and histopathological analyses, we
cut the stented segments into halves and fixed one in 4% formalin, following by embedding
in Technovit 9100. We placed the other half in RNAlater for 24 h at 4 ◦C and then stored
it at −20 ◦C for quantitative real-time PCR (qPCR). Samples from the second, one-month
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follow-up also were embedded in Technovit 9100 for histology, then cut into slices 4–6 µm
thick, followed by staining (hematoxylin–eosin, MOVAT pentachrome).

2.4. Analyses

For all analyses, treatment group was masked.

2.4.1. Quantitative Coronary Angiography

For quantitative coronary angiography after stent placement and at follow-up, we
used a computer-assisted quantitative arteriographic edge-detection algorithm (ACOM.PC,
Siemens, Erlangen, Germany).

2.4.2. OCT

To perform OCT measurements, we used LightLab Imaging software, as previously
described [15]. To quantify the peri-strut tissue burden, i.e., structures on the struts most
likely to be a thrombus and/or fibrin, we used a semi-quantitative score [5].

2.4.3. Histomorphometry and Histopathology

For the specifics of the histopathology and histomorphometry analyses, see the
Supplementary Materials.

2.4.4. qPCR

We used qPCR to quantify MCP-1 and PAR-1 levels in the stented segments, with
stent-free RCA as control. Tissue first was placed in RNAlater (Qiagen, Hilden, Germany)
and then mRNA reverse transcribed to cDNA with QIAGEN miScript RT kit (Qiagen,
Hilden, Germany). To quantify expression, we used qPCR with miScript SYBR®Green PCR
Kit (Qiagen, Hilden, Germany) on an Applied Biosystems 7500 Real-Time PCR System
(Life Technologies, Carlsbad, CA, USA). We selected MCP-1 and PAR-1 because of their
suspected involvement in the development of in-stent restenosis. Target sequence primers
were designed with Primer3 (http://primer3.wi.mit.edu/primer3web_help.htm accessed
on 26 January 2022; Microsynth, Switzerland). To normalize target gene expression rates,
we used the averages of stably expressed housekeeping genes (ACTB, HPRT1, PPIA) as
endogenous controls. We calculated both relative gene expression level per the ∆∆Ct
method and changes relative to expression levels detected in the RCA samples.

2.4.5. Vasomotor Responses

A stent is a rigid metallic cage that has been reported to trigger changes in coro-
nary artery vasomotor function relative to systolic-diastolic movement, carrying the risk
of increased shear stress and resulting complications [16]. Thrombin inhibition and the
consequent disruption of thrombus formation and the inflammation cascade in the few
days following stenting could affect vasomotor function. To assess for such effects, we
used the 4-mm arterial rings from the stent-free proximal and distal segments, first re-
moving adhesive fat and connective tissues. Segments were mounted in a 15-mL tissue
bath (37 ◦C) of modified Krebs–Hensel it buffer solution (K3753, Sigma-Aldrich, Vienna,
Austria) [17,18]. We maintained the buffer with fresh solution supplied from a reservoir
dish via peristaltic pump (Ismatec REGLO Digital, IDEX, Germany) to ensure a steady-state
flow of 1.5 mL/min. The reservoir contents were refreshed with a 95% O2 and 5% CO2
mixture at pH 7.4.

We suspended the segments between 2 L-shaped metal pins (diameter, 0.4 mm) in a
myograph (Living Systems Instrumentation, Catamount R&D Inc, Saint Albans, VT, USA)
to measure coronary vessel isometric circular wall tension (Figure 2 and [17]). After being
allowed to stabilize for ~1 h, the segments were contracted to the maximum (milliNewtons,
mN) with endothelin-1 (30 nM/L). To achieve peak endothelium-dependent vasodilation,
we placed substance P (1 nM/L) into the bath. Smooth muscle sensitivity to external nitric
oxide (NO) was assessed with exposure in the bath to sodium nitroprusside (4 mM/L).

http://primer3.wi.mit.edu/primer3web_help.htm
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Vasodilation (vascular smooth muscle stiffness after PCI injury), whether endothelium-
dependent or not, is given as percent change of steady-state level contraction (mN/s/mN
units). The vasomotion experimental setup is visualized in our previous experiment [17]
(Figure 2).

Figure 2. Illustration of In Vitro Measurements of Coronary Vasomotor Reaction (A) Schematic
presentation of a bath chamber with a myograph and its L-shaped pins. A coronary vessel is mounted
on the pins. (B) Drugs added into the bath chamber. (C) Schematic of the coronary arteries and their
response to different compounds. (D) Representation of coronary vessel wall tension in response to
the different compounds.

2.4.6. Statistics

Results of analyses of continuous parameters are given as means ± standard deviation
(SD). Student’s t-test or the nonparametric Mann-Whitney U test was used to evaluate
between-group differences. All analyses were performed with SPSS, version 23.0 (SPSS,
IBM Corporation, NY, USA), with p < 0.05 considered to indicate statistical significance.

3. Results
3.1. Measurements
3.1.1. Quantitative Coronary Angiography

We found no significant difference between groups in quantitative coronary angiography
parameters at any time point (baseline, after PCI, day 3, one month; Supplementary Table S1).

3.1.2. OCT

The groups also did not differ in OCT parameters (Supplementary Table S2). Stent
strut burden was statistically lower just after PCI in dabigatran versus control animals, but
had declined by day 3 (Table 1, Figure 3).
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Table 1. Tissue burden score per OCT just after PCI and at day 3.

Immediately after PCI Day 3 after PCI

Dabigatran group 3.17 ± 4.54 5.81 ± 3.27
Control group 11.60 ± 10.64 3.63 ± 1.41

P 0.044 0.120
Mean ± SD.

3.1.3. Histomorphometry and Histopathology

We found no differences between the triple-therapy and DAPT-only groups for any
histomorphometric or histopathological parameters (Supplementary Table S3), including
inflammation, injury score, or fibrin deposition at the day 3 and one-month follow-ups.
Both groups showed complete endothelialization by one month (Table 2).

Table 2. Histopathologic results at day 3 and at one month after PCI.

Inflammation Fibrin Deposition Endothelialization (%)
Day 3 1 Month Day 3 1 Month Day 3 1 Month

Dabigatran group 0.55 ± 1.01 1.67 ± 1.86 1.44 ± 0.73 0.50 ± 0.84 38.89 ± 30.90 100 ± 0
Control group 1.00 ± 1.15 0.38 ± 0.52 1.75 ± 0.50 0.88 ± 0.64 25.00 ± 20.41 100 ± 0

P 0.48 0.16 0.47 0.26 0.50 1.0
Mean ± SD.

3.1.4. Vasomotor Edge Response

Compared with controls, the dabigatran group showed a greater capacity for endothelin-
induced vasoconstriction at day 3. The groups were similar for endothelium-dependent
and -independent vasodilation (Table 3).

Table 3. Vasomotor edge responses. Vasomotor edge responses after addition of endothelin to
measure vasoconstriction, addition of substance P to measure endothelium-dependent vasodilatation,
and addition of Na-nitroprusside to induce endothelium-independent vasodilatation in control
unstented RCA and in coronary arteries bearing a BMS at day 3 and one month of follow-up.

Day 3 Non-PCI Coronary Day 3 BMS 1 Month BMS

Endothelin-induced constriction [mN]

Dabigatran group 11.18 ± 3.95 10.97 ± 3.85 9.03 ± 4.94
Control group 9.01 ± 2.46 7.32 ± 5.41 8.10 ± 3.14

P 0.54 0.03 0.45

Endothelium-dependent vasodilatation (substance P–induced vasodilatation [%])

Dabigatran group 78 ± 18 63 ± 28 59 ± 30
Control group 60 ± 34 72 ± 50 57 ± 29

P 0.07 0.53 0.82

Endothelium-independent vasodilatation (Na-nitroprusside–induced vasodilatation
[mN/s/mN])

Dabigatran group 0.15 ± 0.09 0.081 ± 0.047 0.15 ± 0.11
Control group 0.13 ± 0.06 0.097 ± 0.033 0.14 ± 0.06

P 0.42 0.33 0.47
Mean ± SD.

3.1.5. qPCR Results for MCP-1, PAR-1

In the dabigatran group at day 3, which was during triple-therapy treatment, in-stent
tissue MCP-1 expression was significantly upregulated after implantation. However, we
found no differences in PAR-1 expression between the treatment groups at day 3 (Table 4).
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Figure 3. Illustration of tissue burden on stent struts as seen via OCT at day 3 after PCI.

Table 4. qPCR analysis of MCP-1 and PAR-1 expression of stented tissue 3 days after bare-metal
stenting in dabigatran and control groups.

MCP-1 (Log Fold Change) PAR-1 (Log Fold Change)

Dabigatran group 0.84 ± 0.23 −0.24 ± 0.19
Control group 0.14 ± 0.50 −0.27 ± 0.31

P 0.045 0.84
Mean ± SD.

4. Discussion

Here we investigated how dabigatran as part of triple therapy affects the levels
of coronary artery inflammation and course of vessel healing after PCI with BMS. Our
main findings were an association of peri-interventional dabigatran with increased post-
PCI vasoconstriction, along with neointimal proliferation and peri-strut inflammation
comparable to controls.

In our previous experiment using the Nobori Biolimus A9–eluting DES, treatment with
dabigatran resulted in enhanced endothelium-dependent vasodilatation without relevant
effects on vasoconstriction or on endothelium-independent vasodilatation [5]. Given this
finding, in the absence of Biolimus A9, i.e., when using a BMS, dabigatran treatment has
different effects on vasomotion. Moreover, in both analyses, the change in vasomotion
among dabigatran-treated animals was present only after stent implantation. In the control
coronary arteries (i.e., RCA), dabigatran did not significantly affect vasomotion. Only after
vascular injury in combination with a BMS was vasoconstriction enhanced, whereas in
combination with DES, endothelium-dependent vasodilatation was enhanced. Of note, in
dabigatran-treated animals, BMS implantation resulted in upregulation of the proinflam-
matory MCP-1 in the stented tissue as compared with animals not treated with dabigatran.
This pattern is different from the previously described downregulation of MCP-1 in DES-
implanted tissue of dabigatran-treated animals [5]. However, in both scenarios—after
BMS or DES implantation—peri-strut inflammation as evaluated on histopathology did
not significantly differ between dabigatran-treated and control animals. The variations in
MCP-1 expression could explain the variations in vasomotor reaction with the different
stent platforms.

Paclitaxel-eluting DES has been associated with longer-term impaired vasomotor
function in a pig coronary artery model [17,19]. The proneness to endothelium-dependent
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vasodilatation was reduced in paclitaxel-eluting DES, but the same was not seen with BMS
and paclitaxel-eluting balloon–treated animals [16]. An earlier experiment yielded similar
results with paclitaxel-eluting DES, but histological markers of inflammation were more
pronounced. In agreement with previous reports, we found with BMS that histological
markers of inflammation did not differ significantly between dabigatran-treated and control
animals. In the same vein, in our previous experiment with a Biolimus A9–eluting DES [5],
histological inflammatory markers did not significantly change with use of dabigatran.
However, the downregulation of MCP-1 in dabigatran-treated animals – and most probably
the favorable vasomotor reaction, as a result—may be explained by the additional use of a
novel DES platform.

Although the use of BMS is obsolete in modern PCI [1] and these stents have been
completely replaced by newer generation DES, in low-resource regions, they are still
implanted because DES is cost-prohibitive. Thus, in addition to the academic interest in
the effect of a triple therapy in the absence of a stent-eluted drug, this scenario remains a
reality in some countries. As the population ages and the incidence of atrial fibrillation
consequently increases, PCI in patients requiring oral anticoagulation will increase as well.
Although this preclinical experiment certainly cannot be directly translated into clinical
practice, our data may suggest that BMS should not be combined with triple anticoagulatory
therapy given an apparent proneness to vasoconstriction, whereas our previous finding
supports use of a DES in this clinical setting, given the enhanced endothelium-dependent
vasodilatation we observed.

Limitations. This is an experimental study, so the findings require caution with
interpretation and should be considered hypothesis-generating. We used young, healthy
pigs for these studies, with arteries that likely did not reflect the atherosclerotic human
condition. In addition, juvenile pig arteries endothelialize rapidly after injury. Despite these
limitations, the similarities between human and pig arteries are sufficient to warrant use of
the latter in modeling PCI outcomes, and they are an established tool for such studies [9].

5. Conclusions

We found that peri-interventional triple therapy (dabigatran added to DAPT) in the
short term generated enhanced vasoconstriction after bare-metal stent implantation without
reducing neointimal formation at one month after PCI.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jpm13020280/s1, Table S1: Quantitative angiographic results
immediately after PCI with BMS (at day 3 and at 1-month follow-up); Table S2: Quantitative OCT
results immediately after PCI with BMS (at day 3 and at one-month follow-ups); Table S3: Histomor-
phometric results.
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