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Abstract: In this research, we aimed to perform a comprehensive bioinformatic analysis of immune
cell infiltration in osteoarthritic cartilage and synovium and identify potential risk genes. Datasets
were downloaded from the Gene Expression Omnibus database. We integrated the datasets, removed
the batch effects and analyzed immune cell infiltration along with differentially expressed genes
(DEGs). Weighted gene co-expression network analysis (WGCNA) was used to identify the positively
correlated gene modules. LASSO (least absolute shrinkage and selection operator)-cox regression
analysis was performed to screen the characteristic genes. The intersection of the DEGs, characteristic
genes and module genes was identified as the risk genes. The WGCNA analysis demonstrates that
the blue module was highly correlated and statistically significant as well as enriched in immune-
related signaling pathways and biological functions in the KEGG and GO enrichment. LASSO-cox
regression analysis screened 11 characteristic genes from the hub genes of the blue module. After the
DEG, characteristic gene and immune-related gene datasets were intersected, three genes, PTGS1,
HLA-DMB and GPR137B, were identified as the risk genes in this research. In this research, we
identified three risk genes related to the immune system in osteoarthritis and provide a feasible
approach to drug development in the future.
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1. Introduction

Osteoarthritis (OA) is a multifactorial disease affecting millions of people world-
wide [1]. The gold standard in the clinical management of OA patients is joint replacement
surgery in the terminal stage of the disease [2]. Timely intervention is requisite in the early
stage of the disease. However, due to the complicated pathogenesis of osteoarthritis [3],
there currently is no effective medical treatment except for pain management. Thus, the
mechanism of osteoarthritis urgently needs to be clarified.

In recent years, there has been quite some effort in identifying disease markers and
predicting the clinical prognosis of osteoarthritis using computational tools. Han et al. first
combined WGCNA and immune infiltration in analyzing osteoarthritis-related datasets [4].
Meng et al. made comprehensive use of LASSO regression and SVM-RFE (support vector
machine recursive feature elimination) followed by experimental methods and demon-
strated the crucial function of PDK1 in regulating the progression of osteoarthritis [5].
Moreover, computational tools also imply a powerful future in terms of predicting dis-
ease progression. Janvier etc. reported a new strategy where the progression of knee
osteoarthritis could be predicted through assessing the trabecular bone texture in differ-
ent locations of the knee [6]. Khaled applied use of the Logitboost model in analyzing
gray level co-occurrence and local binary patterns to accurately forecast pathological
progress [7]. Therefore, computational tools are of great potential in deciphering the secret
of osteoarthritis.
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The innate immune system has been reported to participate in OA progression [8]. For
instance, the macrophages M1 and M2 play different roles in cartilage degradation and
regeneration [9]. The T cells secret cytokines and growth factors to impact the extracellular
matrix (ECM) [10]. Natural killer (NK) cells exert immunoregulatory effects on the immune
response by promoting inflammation [11]. Therefore, it is necessary to determine the
expression and distribution of immune cells in osteoarthritis joints.

Synovial lesions contribute to cartilage erosion to a great extent [12]. Immune cells are
also significant in synovial inflammation and impact the cartilage through cross-talk [13].
Pro-inflammatory T cells contribute to cartilage matrix degradation from the beginning of
the disease [14]. Mast cells can promote inflammation or induce chondrocyte apoptosis in
different phases [15]. However, immune cell infiltration differences between the synovium
and cartilage have not been studied yet.

In this research, we first combined advanced bioinformatics methods to comprehen-
sively analyze the gene expression and immune cell infiltration in the synovium and
cartilage of healthy people and OA patients. Our results for the first time combine datasets
from different sources and demonstrate that immune cell infiltration differs significantly in
the synovium compared to the cartilage. Collectively, we offer a new strategy in identify-
ing disease markers of osteoarthritis based on focusing prominently on immune-related
genes and provide three characteristic genes for future drug development and susceptible
population screening.

2. Materials and methods
2.1. Collection of Datasets

We used the keywords “synovium”, “osteoarthritis” and “cartilage” to screen the
appropriate datasets in the Gene Expression Omnibus database (GEO). Finally, we selected
GSE55235, GSE55457 and GSE82107 as the datasets for synovium-related analysis and
GSE57128, GSE117999 and GSE169077 for cartilage-related analysis. It should be noted
that datasets only involving the groups “healthy” and “osteoarthritis” are rare. Thus, we
excluded rheumatoid arthritis samples from a few datasets.

2.2. Merge and Batch Effect Removing of the Datasets

We utilized the R package inSilicoMerging [16] to merge the datasets. The before-
merge and after-merge matrix are shown in Supplementary material “Merge Matrix”.
Furthermore, the empirical Bayes method [17] was used to remove the batch effects. The
batch-removed matrix is shown in Supplementary material “Remove_Batch”.

2.3. Differentially Expressed Genes (DEGs) Analysis

We utilized the R package Limma [18] to analyze the DEGs. Specifically, we first
utilized the Imfit function to find the multiple linear regression of the datasets. Then, we
used the eBays function to compute moderated t-statistics, moderated F-statistics, and
log-odds of differential expression by the empirical Bayes moderation of the standard errors
towards a common value. Finally, we acquired the differential significance of each gene.
We set the fold change as 1.5 and the p-value as <0.05 to screen the target genes. The data
are shown in Supplementary material “DEGs”.

2.4. Immune Cell Infiltration Analysis

To explore the infiltration of immune cells in synovium and cartilage tissues, we
utilized the CIBERSORT [19] method in the R package IOBR [20] (a computational tool for
immune–oncology biological research) to analyze each sample’s 22 different immune cell
scores. The correlation analysis was conducted using the Pearson method. We considered
p < 0.05 as statistically significant. The original data are shown in Supplementary material
“Cell infiltration”.
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2.5. Weighted Gene Coexpression Network Analysis (WGCNA)

We first utilized the expression matrix to calculate each gene’s median absolute de-
viation (MAD) and excluded 50% of the lowest MAD genes. Then, we used the good-
SampleGenes method of the R package WGCNA to exclude outlier samples and genes.
Subsequently, we constructed a scale-free co-expression network. Furthermore, we merged
modules with a distance of less than 0.25. Module eigengene (ME) and gene significance
(GS) were used to correlate clinical phenotypes and module genes. We set the MM threshold
as 0.8, GS threshold as 0.1 and weight threshold as 0.1 to screen the hub genes.

2.6. Protein-Protein Interaction Network (PPI)

We depicted the PPI network using the online website String. (https://cn.string-db.
org/ accessed on 12 November 2022) String is a free online tool that can calculate the
network between specified proteins.

2.7. Functional and Pathway Enrichment

We utilized the Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene on-
tology (GO) enrichment method to analyze the screened genes. For KEGG functional
enrichment analysis, we adopted KEGG rest API to acquire the latest gene annotation and
for GO functional enrichment analysis, we utilized the gene annotation in the R package
org.Hs.eg.db (version 3.1.0). The analysis was performed using the R package clusterPro-
filer (version 3.14.3). We set the minimum gene set as 5, the maximum gene set as 5000 and
considered p value < 0.05 and FDR < 0.25 statistically significant. The results are shown in
the bubble diagram.

2.8. Characteristic Gene Screening by LASSO-Cox Regression Analysis

We utilized the R package “glmnet” to perform a regression analysis of the datasets.
In this research, we set the survival time as a constant 100, “Healthy” as 0, and “OA”
as 1. Thus, we could perform a regression analysis integrating gene expression and OA.
The lambda score was 0.027675908746789. The original data are shown in Supplementary
material “LASSO-cox”.

2.9. Verification of the Targets

We selected the cartilage dataset to perform a correlation analysis between risk genes
and OA phenotype-related genes using the Pearson method to verify the reliability of the
genes we screened. p value < 0.05 was considered statistically significant.

2.10. Statistical Analysis Software

R software (Austria) was used to calculate the statistical significance.

3. Results
3.1. Intersection of Multiple Datasets

The datasets were obtained from GEO. GSE55235, GSE55457 and GSE82107 provided
information for transcriptome sequencing of synovium tissues, while GSE57128, GSE117999
and GSE169077 provided the same for cartilage. The samples were from a healthy popula-
tion and osteoarthritis patients. We utilized the R package inSilicoMerging [16] to merge
the datasets. (Figure 1A,C) As is shown in the box plots and density graphic, the sam-
ple distributions of the datasets were quite different. Then, we used the empirical Bayes
method [17] to adjust the batch effects of the merged datasets. (Figure 1B, D) This figure
indicates that the batch effect was removed effectively. The median was on a line in the
box plots, and the mean and variance were close in the density graphic. In conclusion, we
successfully merged three independent datasets, thus avoiding the analysis error of using
different datasets.

https://cn.string-db.org/
https://cn.string-db.org/
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Figure 1. Dataset integration. The results are shown in box plots and density graphics. GSE55235,
GSE55457, GSE82107: before merge (A), after merge (B), GSE57128, GSE117999, GES169077: before
merge (C), after merge (D).

3.2. Differentially Expressed Gene Analysis

Limma is a widely used analytical method to screen differentially expressed genes [18].
We obtained 422 up-regulated genes and 596 down-regulated genes in the synovium
dataset (Figure 2A), while 50 up-regulated genes and 11 down-regulated genes were in the
cartilage dataset (Figure 2B). The expressions of the top 20 genes are shown in heat maps
(Figure 2C,D). These results correspond with the mainstream view that the pathological
and functional changes of the articular synovium occur first, even before visible cartilage
changes [21]. Thus, we selected the synovium database as the further research object in
this research.

3.3. Immune Cell Infiltration Analysis

To explore the function of the immune system in osteoarthritis, we first performed
immune cell infiltration analysis using the CIBERSORT method. The results of the stacked
bar graphic show that the main infiltrative immune cell in both synovium and cartilage was
the M2 macrophage (Figure 3A,C). Noticeably, no statistically significant changes could be
observed in the cartilage tissue. However, the infiltration of γδT cells, resting mast cells
and M0 macrophages increased in osteoarthritis synovium tissues while the infiltration of
resting memory CD4+ T cells and activated mast cells was reduced (Figure 3B,D). These
results suggest that varying degrees of immune cell infiltration might play a vital role in
the pathogenesis of synovial inflammation in osteoarthritis.
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Figure 2. Differentially expressed gene analysis: volcano plot of the synovium dataset, (A); heat map
of the synovium dataset, (B); volcano plot of the cartilage dataset, (C); and heat map of the cartilage
dataset, (D).

3.4. WGCNA Analysis

We obtained 19 co-expressed modules represented by different colors (Figure 4A).
Notably, the grey module was considered to not be assigned to any of the modules. The
soft threshold was 5, and the scale-free topology model fit degree was 0.86 (Figure 4B). In
addition, the average connectivity was 12.26 (Figure 4C). We noticed that light green, blue
and light yellow were of statistically significance in all the positive correlated modules
(Figure 4D). Based on these findings, we selected these three modules for further KEGG
and GO functional enrichment analysis.
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3.5. Functional and Pathway Enrichment for the Modules

We performed KEGG enrichment for each module. The light-yellow module is in-
volved mainly in the PI3K-Akt signaling pathway and ECM-receptor interaction (Figure 5A).
The enrichment of the blue module consists mainly of human T-cell leukemia virus 1 infec-
tion, Th1, Th2, Th17 cell differentiation, B cell receptor signaling pathway, autoimmune
thyroid disease and inflammatory bowel disease (Figure 5B), which indicate that the blue
module is highly related to the innate immune system. The result of the enrichment of the
light green module is of no statistical significance (Figure 5C). Therefore, we selected the
blue module as the object of further research. We then performed GO enrichment specific
to the blue module (Figure 5D). The functions with the most statistical significance were
closely related to the immune system process and immune response. The scatter plot of the
blue module exhibited a satisfactory linear correlation between the clinical phenotype and
the blue module genes (Figure 5E). We then extracted the hub genes of the blue module
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and drew a PPI network, which indicated that most of the hub genes interacted with each
other (Figure 5F). These results suggest that the blue module is of great potential as the
objective module for further characteristic gene identification.

Figure 4. WGCNA cluster detection. Gene cluster (A) Independence of scale (B) Average connectivity
(C) Module−phenotype correlation heat map (D).
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Figure 5. Functional and pathway enrichment and module screen: KEGG enrichment of the light-
yellow module (A) KEGG enrichment of the blue module (B) KEGG enrichment of the light-green
module (C) GO enrichment of the blue module (D) GS−MM correlation scatter plot of the blue
module (E) PPI network of hub genes (F).
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3.6. Machine Learning for Prediction of High-Risk Genes

We utilized the LASSO algorithm to identify the characteristic genes of the 39 hub
genes (Figure 6A,B). We obtained 14 characteristic genes (shown in Supplementary material
“LASSO-cox result”) and intersected them with the DEGs and recognized immune-related
genes [18]. The final intersection consists of three genes, which are PTGS1, HLA-DMB
and GPR137B (Figure 6C). Then, we performed a correlation analysis of the risk genes
and recognized genes related to osteoarthritis phenotypes (Figure 6D). Noticeably, the co-
expression of MMP13 and these three genes are highly relevant and statistically significant.
However, the expression of MMP1 is of no obvious relation with these three genes.
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4. Discussion

Osteoarthritis (OA) is a disabling disease affecting millions of people worldwide [1].
The factors of OA are manifold and complicated and have not been clarified yet [22]. Exten-
sive low-grade inflammation has been recognized as a critical mediator in the progression
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of OA [23]. This differs from high-grade inflammation in rheumatic arthritis [24]. Biological
therapies that successfully block the inflammation cytokines in RA, such as anti-IL1β,
exhibited no promising prospect in the clinical management of OA [25]. Thus, it is urgent to
clarify the potential mechanisms of OA to provide new approaches in drug development.

With the rapid development of computer science, advanced bioinformatic analytic
methods have been applied in the identification of disease markers and decipherment
of pathological mechanisms in osteoarthritis. Since the debut of RNA-sequencing (RNA-
seq) technology more than a decade ago [26], it has been an indispensable tool in all
kinds of aspects in the genomics field [27]. Differential gene expression (DEG) analysis
is the most prominent application of the RNA-seq database [28]. Weighted correlation
network analysis (WGCNA) is an R package devised for identifying gene clusters that
consists of highly-correlated genes [29]. Based on these clusters, further application of
KEGG and GO enrichment analysis allows researchers to focus on the biological function
each cluster represents. For interested clusters, a machine learning method-LASSO re-
gression analysis is the optimal option to reduce the dimensionality and screen out the
most characteristic genes [30]. The innate system has been recognized to play a vital role
in osteoarthritis [8,31]. Consistent activation of pattern-recognition receptors (PRRs) and
damage-associated molecular patterns (DAMPs) produces prolonged inflammation [32].
Aging enhances the alterations of the innate system, which is termed “inflamm-aging” [33].
Macrophages and T cells are reported to be the primary immune cell group in the syn-
ovium and cartilage [8]. In vivo studies demonstrated that accumulation and activation
of macrophages existed widely in OA patients’ synovia. The activation of macrophages
strongly correlates with osteophytes, joint narrowing and knee pain [34]. However, the
specific work pattern of the immune cells remains to be clarified.

Identifying potential disease markers of osteoarthritis has been a research hotspot in
different aspects. However, most reports only utilized limited, even single, datasets [35–37].
We believe that merging datasets from different sources could result in a more persuasive
conclusion. In this research, we integrated multiple datasets from GEO, which could
effectively eliminate the batch difference of studies worldwide. The differentially expressed
gene analysis found that the amount of DEGs in synovium outpaces that of cartilage.
Under a 1.5-fold change, the amount of DEGs (422 up-regulated genes and 596 down-
regulated genes) in the synovium is nearly 20 times as high as the amount in the cartilage
(50 up-regulated genes and 11 down-regulated genes).

Then, we performed immune cell infiltration using CIBERSORT bioinformatics analy-
sis to determine whether the immune cells infiltrated differently in tissues from healthy
people or OA patients. Unexpectedly, immune cell infiltration in the OA and healthy
cartilage exhibited no noticeable difference. Han et al. reported significantly different
immune cell infiltration in osteoarthritis, specifically the infiltration of T cells and cytotoxic
lymphocytes [4]. We reviewed the datasets selected in the report and found that they not
only incorporated the datasets including articular cartilage but also the meniscus. However,
we insist that meniscus lesions are a consequence as osteoarthritis develops into its terminal
stage [38]. Hence, we suppose that in the research concerning identifying risk factors, it is
inappropriate to include the meniscus.

Research targeting immune cell infiltration in the synovium has seldom been reported.
What attracted us most was the significant increase in γδT cells in the inflammatory syn-
ovium tissues. The γδT cell plays a vital role in the innate immune system [39]; they mainly
develop in the thymus and exert major histocompatibility complex (MHC) unrestricted
antigen recognition [40]. Activated γδT cells participate in the innate immune process
via producing inflammatory mediators [41], which might explain the crucial condition of
the inflammation response existing widely in joints with varying degrees of osteoarthritis.
Based on these results, we made a reasonable assumption that the immune system might
exert its function primarily through the synovial tissues.

Another noteworthy point is that even though the expression of the immune cells in
chondrocytes is of no significant difference, the activation of the specific immune cell is dif-
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ficult to analyze using transcriptome sequencing datasets. We noticed that the macrophage
is the prominent cell type in cartilage, and whether it is active in disease progression needs
to be researched further. Considering the proinflammatory and anti-inflammatory effects
of the different statuses and kinds of macrophages [42], experimental methods are critical
concerning these cells.

To explore the correlation between co-expression genes and the clinical phenotype in
healthy and OA synovium tissues, we performed WGCNA analysis. In this research, we
discuss the gene modules mainly positively correlated with synovial inflammation. The
KEGG enrichment of the three most significant modules indicated that the blue module is
highly relevant to the immune system. Subsequent GO enrichment also verified this result.
We screened the hub genes in the blue module as the candidate risk genes.

The LASSO-cox method was utilized to perform regression analysis to acquire the
optimization model [43]. We acquired 11 characteristic genes, ADA2, APLP2, CTSS, FBP1,
GLB1, GPR137B, HLA-DMB, ITGAM, LGMN, NCKAP1L, PTGS1, TLR7, TMEM51 and
TYROBP. Then, we intersected the DEGs and characteristic genes, recognizing immune-
related genes [44]. We finally acquired three risk genes, PTGS1, HLA-DMB and GPR137B.
Highly-expressed PTGS1 levels in the synovium promote migration and invasion and
inhibit the cell apoptosis of inflammatory synovial cells [45]. HLA-DMB is a prognostic
factor in rheumatoid arthritis [46]; however, its role in the processing of osteoarthritis has
not been clarified yet. In a genome-wide association study, GPR137B was reported to be
correlated with hereditary susceptibility for rheumatoid arthritis [47]. Thus, these three
genes could be potential targets in future research on osteoarthritis.

To verify the function of the target genes in osteoarthritis, we performed a matrix
correlation analysis of the risk genes and OA phenotype-related genes in the cartilage
datasets. Interestingly, the result indicates that the risk genes are highly relevant to MMP13
expression and have remarkable statistical significance. This result is consistent with a
theory that chondrocytes probably secrete MMP13 in the cartilage. In addition, the three
genes did not correlate with MMP1, which is secreted mainly by synovial cells [48].

This research has a few limitations that have the potential to be research goals in the
future. Biological verification must be performed to confirm our results, at least in an
animal model. Additionally, we noticed that γδT cell infiltration in the synovial tissue was
not researched thoroughly. An establishment of a reliable synovium–cartilage axis model is
urgently needed.

Collectively, our research analyzed the immune-related genes in the synovium and
cartilage tissues of the healthy population and OA patients. First, we demonstrated that
the transformation of immune cell infiltration might mainly exist in the synovium and not
the cartilage. These results support the opinion that changes in the synovium might appear
before cartilage erosion. In addition, we provided three genes as potential disease markers
and future drug development targets.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jpm13020367/s1. Supplementary File S1: Merge_Matrix, Re-
move_Batch, DEGs, cell infiltration and LASSO_cox.
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