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Abstract: (1) Background: Although the application of modern diagnostic tests and vaccination
against human papillomavirus has markedly reduced the incidence and mortality of early cervical
cancer, advanced cervical cancer still has a high death rate worldwide. Glycosylation is closely
associated with tumor invasion, metabolism, and the immune response. This study explored the
relationship among glycosylation-related genes, the immune microenvironment, and the prognosis
of cervical cancer. (2) Methods and results: Clinical information and glycosylation-related genes of
cervical cancer patients were downloaded from the TCGA database and the Molecular Signatures
Database. Patients in the training cohort were split into two subgroups using consensus clustering. A
better prognosis was observed to be associated with a high immune score, level, and status using
ESTIMATE, CIBERSORT, and ssGSEA analyses. The differentially expressed genes were revealed to
be enriched in proteoglycans in cancer and the cytokine–cytokine receptor interaction, as well as in the
PI3K/AKT and the Hippo signaling pathways according to functional analyses, including GO, KEGG,
and PPI. The prognostic risk model generated using the univariate Cox regression analysis, LASSO
algorithm and multivariate Cox regression analyses, and prognostic nomogram successfully predicted
the survival and prognosis of cervical cancer patients. (3) Conclusions: Glycosylation-related genes
are correlated with the immune microenvironment of cervical cancer and show promising clinical
prediction value.

Keywords: cervical cancer; glycosylation-related genes; immune microenvironment; prognosis;
prediction models

1. Introduction

Globally, cervical cancer (CC) is one of the most frequent cancers amongst women [1].
Although advancements in screening techniques and treatment measures have greatly
reduced the CC incidence and mortality in developed nations, CC remains a severe problem
in developing countries [2]. With the continuous improvement in therapeutic measures,
early CC is halted by surgery, achieving satisfactory results. However, metastatic CC is
difficult to cure and often displays a poor prognosis owing to individual variability among
patients. Recurrence and metastasis are pivotal hurdles in determining the survival and
prognosis of CC, and there is no effective molecular marker to predict the prognosis. Thus,
it is crucial to identify new biomarkers for the diagnosis and prognosis of CC.

The tumor immune microenvironment (TIME), including tumor cells, immune cells,
and cytokines [3], is now recognized as a key factor in the development of cancer and chemo-
resistance and has a significant impact on the expression of genes in cancer
tissues [4]. Tumor and immune cells interact in the TIME as an essential process, shaping
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the progression of various cancer types, including CC [5]. For the precise therapeutic im-
provement of CC, it is vitally necessary to have a thorough understanding of the connection
between the TIME and prognosis and to investigate innovative treatment approaches.

Studies have reported that some miRNAs and lncRNAs play a role in predicting CC.
One previous study constructed a two-miRNA risk score model with predictive potential,
providing new clues for the evaluation and treatment of CC [6]. In CC tissues and cell
lines, miR-99a-5p expression was reported to be downregulated [7]. A study innovatively
identified and validated four immune-related lncRNA signatures as predictors of CC [8].
In contrast to normal tissues, CC had significantly higher levels of EphA7 promoter methy-
lation. EphA7 hypermethylation is therefore a promising signature to detect and screen
CC [9]. Although these biomarkers can predict the survival and prognosis of patients with
CC to some extent, they do not completely solve the problem.

Glycosylation is an important aspect among various post-translational modifications
of proteins [10]. Glycosyltransferases and glycosidases regulate the majority of protein
glycosylation in eukaryotes through the secretory pathway. A glycosidic link is created
when the carbohydrates are transported to the protein’s amino acid residue [11]. Changes
in glycosylation have been implicated to be intimately correlated with tumor cell invasion,
metabolism, and immunity. A recent study reported that shortened O-Glycans could
increase proliferation, impede differentiation, and cause invasive behavior by impairing
cell–cell adhesion in adenocarcinomas [12].

Imbalanced glycosylation can influence the immune system in recognizing tumor cells
and can modify glycan-binding receptors to induce an immunosuppressive response [13].
One of the primary characteristics of tumor cells is the glycosylation of the glycoproteins
and glycolipids found on the cell surface. Tumor cells express glycosylation differently
from the way in which normal cells do. As a result of the large number of different types of
glycosylation-dependent lectin receptors expressed by immune cells, these cells are able
to detect changes in glycosylation in the environment, which may induce immunosup-
pression [13]. Tumor cells can also camouflage themselves by expressing host-derived
glycosylation and affect the expression of antigen-presenting cells, M2 macrophages, T
cells, and NK cells, thereby promoting immune escape [14]. Carbohydrate Lewis antigens
can attach to carcinoembryonic antigens expressed in colon cancer cells and combine with
C-type lectin expressed in macrophages and immature dendritic cells to induce innate
immune suppression [15,16]. The aggregation of Treg cells, the minimal infiltration of
effector T cells, and the activity of NK cells are all strongly correlated with the sialylated
structure of melanoma cells and the progression of the tumor in vivo [17]. The glyco-
sylation of tumor cells usually occurs in the early stage of tumor development. In the
prophase lesions of different types of tumors, some tumor-related glycosylation expression
has been observed [18]. Therefore, the importance of glycosylation in cancer warrants
further investigations to unmask the novel aspects of this hallmark.

In CC, the use of virus-induced glycosylated peptides for vaccines was originally
reported more than four decades ago [19]. Recent research has discovered how glyco-
sylation contributes to the development of CC and underscores the prospects of viable
methods in distinguishing individual differences [20]. O-linked GlcNAcylation is used to
influence major metabolic pathways [21]. Interestingly, elevated O-GlcNAcylation in CC
was linked to increased cell proliferation and decreased cellular aging. Therefore, reducing
O-GlcNAcylation could prevent the phenotypic transformation of HPV-18-transformed
HeLa CC cells after treatment with appropriate inhibitors [22]. Glycans play key roles in
the pathological processes of tumorigenesis and advancement. There is reduced expression
of fucosylation in CC cytoplasmic proteins compared to normal tissues [23]. During car-
cinogenesis, dysregulated glycosyltransferases synthesize aberrant glycosylation structures,
supporting tumor progression. Previous studies have demonstrated that differentially
expressed genes (DEGs) of glycosyltransferase can predict the overall survival (OS) of
pancreatic ductal adenocarcinoma patients and can be identified as prognostic markers [24].
Other studies have revealed that the expression of genes involved in glycosylation is very
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different in breast cancer compared to normal breast tissue [25]. Glycosylation-related
genes have exhibited large expression variations between breast cancer subtypes, which
may be associated with patient prognosis. However, the role of glycosylation-related DEGs
in CC has remained poorly understood.

In this study, to investigate whether glycosylation-related genes are associated with
differences in the TIME and prognosis of patients with CC, we thoroughly analyzed
glycosylation-related DEGs in CC. A signature was developed to assess the prognostic
value of glycosylation-related genes in CC. Our work is anticipated to offer new insights
into the targeted therapeutic approach for CC.

2. Methods
2.1. Datasets and Samples

Glycosylation-related genes and CC samples were acquired from the Gene Set En-
richment Analysis (GSEA) Molecular Signatures Database and TCGA-GDC database. The
following were the inclusion requirements: (a) samples with a CC diagnosis; (b) samples
with a gene expression matrix and mapped clinical data; and (c) samples with all relevant
clinical data, including age, FIGO stage, risk, and histopathological grade (Table 1). Samples
without follow-up information were disqualified. Patients obtained from the TCGA-GDC
database were randomly classified into training and testing cohorts for identification
and validation.

Table 1. Clinical and Pathologic Characteristics of The Patient with Cervical Cancer.

Variable

Training Dataset Validation Dataset

Total
Risk Group

χ2 p Value
Total

Risk Group

χ2 p ValueLower Higher Lower Higher

n = 130 n = 70 n = 60 n = 128 57 71

Age, y
≤45 57 31 26

0.012 0.913
65 29 36

0.000 0.984>45 73 39 34 63 28 35
FIGO stage

I 70 37 33
0.060 0.807

76 36 40
0.610 0.435II–IV 60 33 27 52 21 31

Grade
G1 11 9 2

4.780 a 0.189

7 3 4

0.171984 a 0.918
G2 60 31 29 67 31 36
G3 58 29 29 54 23 31
G4 1 1 0 0 0 0

a, Likelihood Ratio.

2.2. Identification of Molecular Subgroups

According to the expression matrix of glycosylation-related genes, consensus clus-
tering was carried out using the R program “Consensus Cluster Plus” to divide patients
into two clusters [26]. Survival analysis between the two subgroups was also performed to
assess the correlations among their survival rates.

2.3. Immune Analyses

Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis illustrates major signaling
pathways [27]. The Estimation of STromal and Immune cells in MAlignant Tumor tissues
using Expression data (ESTIMATE) algorithm was used to determine the stromal score,
immune score, and estimation score [28]. To quantify the relative proportions of differ-
ent types of immune cells in the tumor sample, CIBERSORT was applied for analysis [29].
The enrichment of immune-infiltrating cells and the expression of immune-related functions
were analyzed via single-sample gene set enrichment analysis (ssGSEA) [30]. Statistical
significance was defined as a p value and/or FDR ≤ 0.05.
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2.4. Functional Analyses

DEGs were screened using the package of R language (|log2FC| > 0.585 and adj.
p Val < 0.05). Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes
(KEGG) analyses were used to analyze the enriched pathways [31]. GO analysis determined
biological processes, cellular components, and molecular function. Protein–Protein Inter-
action (PPI) network analysis was subsequently utilized to implement hub gene analysis
according to the number of nodes [32].

2.5. Establishment and Validation of the Risk Model

The size of prognostic genes previously filtrated was narrowed down using univariate
Cox regression analysis [33] and least absolute shrinkage and selection operator (LASSO)
analysis [34]. The minimum lambda was regarded as the optimal value. Multivariate Cox
regression [35] analysis determined several significant genes in establishing a risk model.
The risk score was calculated using the following formula: Risk score = ΣExpn × βn, where
Expn represents the expression value of each gene and βn represents the coefficient of
the gene. Next, groups with high and low risk were separated. Survival analysis was
performed using the Kaplan–Meier approach, and the predictive validity of the risk model
was assessed using the receiver operating characteristic (ROC) [34]. A nomogram was
constructed according to the status, age, FIGO stage, risk, and histopathological grade of
CC patients.

3. Results
3.1. Identification of the Two Subtypes with Different OS

In total, 246 glycosylation-related genes were acquired. A total of 146 and 145 clinical
samples were randomly classified into the training and testing cohorts, respectively. The
Consensus Cluster Plus R package was used to cluster the CC patients in the training cohort.
At K = 2, the optimal cluster stability was determined (Figure 1A–C). In total, clusters 1
and 2 each contained 180 patients and 126 patients, respectively. Cluster 1 showed better
OS (p = 0.0003234; Figure 1D). These results indicated that CC patients could be classified
into two subtypes with different OS.

3.2. Glycosylation of Proteins Can Affect Immune Function in the Two Molecular Subtypes

KEGG enrichment analysis showed that more pathways related to the glycosylation
process were found in cluster 2 compared to cluster 1; accordingly, more immune-related
pathways were found in subgroup 1 (Figure 2A). Thus, genes involved in glycosylation
modification also act in the immune system. To investigate the association of glycosyla-
tion with the immune status, immune analyses were performed to explore differences in
immunity between the two subgroups. According to the results of the ESTIMATE algo-
rithm, CC patients in cluster 1 had significantly higher immune and ESTIMATE scores,
and no appreciable differences were found in the stromal scores of patients in the two
clusters (Figure 2B). In addition, the numbers of CD8 T cells, activated memory CD4 T
cells, monocytes, M1 macrophages, resting dendritic cells, and resting mast cells were
significantly higher in cluster 1 than in cluster 2, which was reversed as resting memory
CD4 T cells, M0 macrophages, and activated mast cells showed no statistical significance
for other immune-filtrating cells (Figure 2C).

Moreover, ssGSEA analysis illustrated that immune levels differed prominently be-
tween the two clusters, with cluster 1 having a comparatively high immune status, except
for T helper 2 cells, while others were significantly higher in cluster 1 (Figure 2D). Moreover,
cluster 1 showed significantly higher scores of immune activation and immunosuppression
than cluster 2, except for the type II IFN response (Figure 2E). Cluster 1 had a higher
immune status.
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Figure 1. Clustering analysis based on the expression of glycosylation-related genes. (A–C) Consensus
clustering for k = 2; (D) Patient survival curves for the two subgroups.

3.3. DEGs and Functional Analyses

In order to better investigate the underlying signaling pathways, functional analy-
ses were performed, and 1195 DEGs were discovered in total. The result of GO analysis
showed that the DEGs were more enriched in glycosylation, CC development, and bi-
ological processes related to the immune system, including the regulation of peptidase
and endopeptidase activity, epidermal cell and keratinocyte differentiation, and the hu-
moral immune response (Figure 3A,B). Meanwhile, some related cellular components and
molecular functions were also enriched (Figure 3A). Moreover, several signaling pathways,
including proteoglycans in cancer, cytokine–cytokine receptor interaction, the PI3K/AKT
signaling pathway, the Hippo signaling pathway, and HPV infection were identified to be
associated with glycosylation, the immune response, and CC (Figure 3C). PPI analysis of
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DEGs indicated that, compared with cluster 1, 565 genes were upregulated and 630 genes
in cluster 2 were downregulated (Figure 3E). We selected the top 30 DEGs based on the
number of nodes, including ITFB1 and SDC1, which were closely associated with the
proliferation, migration, and prognosis of CC [36,37] (Figure 3D,F).
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Figure 3. DEG and function assays. (A,B) Bubble diagram and circle plot visualizing the results of
GO analysis; (C) KEGG analysis exploring the enriched signaling pathways; (D) PPI analysis of DEGs;
(E) compared to cluster 1, the color of nodes reflects the upregulated genes (red) and downregulated
genes (blue) in cluster 2; (F) the top 30 DEGs with the largest numbers of nodes were chosen through
PPI analysis.

3.4. Risk Model Was Established in the Training Cohort

To establish the predictive model based on glycosylation-related genes in CC, we
conducted univariate Cox regression analysis. Potential genes were screened using LASSO
analysis, and 11 genes were selected with the optimal λ value (Figure 4A,B). Multivariate
Cox analysis identified nine genes based on the genes generated through LASSO anal-
ysis to establish the risk model. The risk score = (0.0500580626412369 × MGAT4B) +
(0.125800669064781 × FUT11) + (0.0302396698484961 × GALNT2) + (0.266509552440604
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× DPY19L4) + (−0.152265202480328 × PMM1) + (0.0625200342212958 × GALNT10) +
(−0.329088155870026 × MAN1C1) + (0.130257296074648 × COG3) + (−0.41914468450172
× DERL3). The risk model effectively classified CC patients into high- and low-risk groups
(Figure 4C,D). In the high-risk group, the heatmap revealed that six candidate genes had
a more general expression, except for PMM1, MAN1C1, and DERL3, and had a worse
OS (Figure 4E,G). As for the model diagnosis for the risk model, for 1, 3, and 5 years, the
area under the curve (AUC) of the ROC curve was 0.872, 0.865, and 0.841, respectively.
The risk model had accurate 1-year predictive capability (Figure 4F). Finally, the TIME in
both groups was assessed and the low-risk group had considerably higher stromal sores,
immune scores, and ESTIMATE scores (Figure 4H).]
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3.5. Risk Model Was Validated in the Testing and Total Cohorts

The testing cohort was separated into the high- and low-risk groups, and we validated
the model in the two groups (Figure 5A,B). The expression of nine candidate genes was
displayed on a heatmap with the same outcomes as the training cohort (Figure 5C). For 1, 3,
and 5 years, the area under the curve (AUC) of the ROC curve was 0.558, 0.705, and 0.819,
respectively (Figure 5D). The model demonstrated accurate 5-year predictive capability.
According to the survival analysis, the high-risk group had considerably worse OS in the
testing cohort (p = 0.011; Figure 5E). Similar to the training cohort, the low-risk group
had significantly higher immune scores and ESTIMATE scores (Figure 5F). In addition,
all 291 samples in the total cohort were analyzed to validate the constructed risk model
(Figure 6). The results were similar to those for the testing cohort.
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Figure 6. Validation of the risk model in the total cohort. (A,B) Assessments of the survival status
and risk scores in the two groups; (C) the risk gene expression in the total cohort; (D) ROC curve in
the total cohort; (E) survival curves of the CC patients in the two groups; (F) stromal, immune, and
ESTIMATE scores of the two groups. * p < 0.05; *** p < 0.001.
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The risk model and clinical data including the age, FIGO stage, risk, and histopatholog-
ical grade of CC patients were incorporated into a nomogram to more accurately predict the
prognosis of CC patients (Figure 7A). The risk score and clinical risk factors were endowed
with a certain score according to their impact on the prognosis in CC. The C-index of the
nomogram reached 0.736 (se = 0.04). We then validated the nomogram in all samples. As
for the diagnosis of the nomogram, the calibration curve showed consistency between the
expected and observed OS (Figure 7B).
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4. Discussion

Protein glycosylation refers to the enzymatic attachment of a glycosyl donor to the side
groups of amino acids [38]. It is one of the most abundant post-translational modifications
in eukaryotic cells, which is also a critical process involved in numerous gynecological
malignancies, including CC [39]. Glycosylation influences extensive aspects of the CC
biology, including cell–cell adhesion, cell surface expression, and cancer signaling.

CC cells can combine different O-glycosylation modifications and alter the expression
levels of proteins to govern their malignant phenotypes [40]. The Tn antigen refers to
GalNAc-Ser/Thr during the biosynthesis of mucin-type O-glycosylation. Mutations in
the Tn antigen exert a significant impact on tumor cell adhesion, immune evasion, and
migration [41]. The abnormal glycosylation profile and Tn-antigen-induced cell identifica-
tion both contribute to the pathogenesis of CC [42]. Glycosyltransferases are involved in
most glycans’ biosynthesis. The altered expression of glycosyltransferases in CC leads to
more aggressive characteristics and drug resistance [43].

Under normal conditions, cellular immunity is regulated by activation signals (co-
stimulatory molecules) and inhibition signals (immune checkpoints) [44] to maintain home-
ostasis. An immunosuppressive tumor microenvironment is produced as CC cells continue
to evade immune surveillance. It includes the upregulation of regulatory T cells (Tregs)
while downregulating anti-cancer activity by effector T cells, the loss of major histocompat-
ibility complex antigen presentation, and the upregulation of immune checkpoints [45].

The programmed cell death receptor (PD-1) on the external effector immune cells binds
the programmed cell death receptor ligand (PD-L1) produced by cancer cells. The PD-1/PD-
L1 axis is a major immune checkpoint mechanism [46]. According to a study, cisplatin-based
treatment can increase PD-L1 in CC, and utilizing a checkpoint blocker may help with tumor
cell regression [47]. Pembrolizumab, a PD-1 inhibitory antibody, has been authorized for
persistent, recurrent, or metastatic CC treatment [48]. In addition, glycosylation also plays
an important role in this pathway. Four glycosylation sites on PD-L1 in the extracellular
domain serve as the primary sites of N-glycan modification [49]. Via EGFR signaling and
EMT, 1,3-N-acetylglucosamine transferase 3 catalyzes the increase in interaction with PD-1
in triple-negative breast cancer [50,51]. Many cancer types, including melanoma, cervical
cancer, and non-small-cell lung cancer, have been discovered to exhibit PD-L1 glycosylation,
which is a typical characteristic of cancer [52]. Moreover, the extracellular domain of PD-1
also has four N-glycosylation sites, and glycosylation is necessary to preserve the stability
of the PD-1 protein and the location of the cell surface [53]. In T cells, PD-1 is extensively
N-glycosylated, and its particular type varies when the TCR is activated [54]. According to a
previous study, camdelizumab, a PD-1 antibody, can specifically bind N58 glycosylated PD-1
and block the PD-1/PD-L1 pathway [55]. Although checkpoint inhibitors have achieved
extraordinary progress in cancer [56,57], they have attracted researchers’ attention to the
exploration of predictive biomarkers for CC owing to their limited efficacy.

In our study, two molecular subgroups were identified through consensus clustering
according to the glycosylation-related gene expression matrix of CC patients. Immune
analysis showed that cluster 1 had a higher immune status, and poor prognosis among
CC patients in the high-risk group was found to be related to the immunosuppressive
tumor microenvironment. Then, the results of the function assay confirmed that the
expression of DEGs was associated with immune dysregulation and glycosylation. We
carried out univariate and multivariate Cox regression and LASSO analyses to investigate
the clinical value of these genes in CC further, and nine prognostic genes (MGAT4B,
FUT11, GALNT2, DPY19L4, PMM1, GALNT10, MAN1C1, COG3, and DERL3) were
finally identified to establish the risk model. High- and low-risk groups of CC patients were
identified according to the model. To check the efficacy of the constructed model, we further
validated these nine genes and our prognostic model in the testing and the total cohorts.
The AUC values of ROC for 5 years were 0.841, 0.819, and 0.815, respectively, in the training,
testing, and total cohorts, indicating that the constructed model was accurate in predicting
the prognosis. Survival analysis revealed that regardless of the cohort, the constructed risk
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model demonstrated a robust predictive level for the survival of CC patients. Significant
decreases in the ESTIMATE score and immune score were always accompanied by poor
survival. Therefore, the constructed risk model was proven to be significantly connected
with the TIME and possessed strong potential to forecast the prognosis of CC patients in
the training, testing, and total cohorts. Finally, a nomogram combining clinical features
and the risk score was also created and calibrated, which demonstrated excellent potential
in forecasting CC survival. The above results confirmed that the developed risk model
could accurately predict the prognosis in CC; TIME disorders, including lower immune
and ESTIMATE scores, were prevalent in individuals with poor prognosis.

Fucosyltransferase 11 (FUT11) has been reported as a new biomarker for CC
prognosis [58]. Mucin O-glycosylating enzyme (GALNT2) has been reported to exhibit
the capacity to serve as a novel biomarker for endometrial hyperplasia [59]. GALNT10
was found to be highly predictive of the OS of ovarian cancer [60]. Increased GALNT10
expression also promotes tumor growth by creating an immunosuppressive microenviron-
ment and is associated with poor clinical outcomes in those with high-grade ovarian serous
carcinoma [61].

Integrinβ1 (ITGB1) is markedly overexpressed in various malignancies and has been
reported as a prospective marker in predicting the effects of immunotherapy in gastric
cancer [62]. A previous study indicated that Syndecan 1 (SDC1) might be a novel immune-
related prognostic biomarker for pancreatic adenocarcinoma [63]. However, our study is the
first to illustrate that these glycosylation-related genes may have a functional involvement
in CC and are related to immune infiltration.

Furthermore, KEGG analysis revealed that the DEGs were prominent in the PI3K/AKT
signaling pathway, cytokine–cytokine receptor interaction, and Hippo signaling pathway.
By influencing cell survival, proliferation, and migration, the aberrant triggering of the
PI3K/AKT/mTOR signaling pathway can result in a malignant phenotype of cancer cells
and chemotherapy resistance [64]. It is crucial for the crosstalk between the virus and the
host cells in HPV-positive cancer cells. E6 and E7 have been found to have an activating
effect on AKT and mTOR [65,66]. Normally, cytokines are secreted glycoproteins that
promote cellular proliferation, differentiation, and apoptosis [67]. However, immuno-
suppressive cells are recruited when cytokines bind to their cognate receptors, resulting
in tumor invasion and metastasis [68]. The nuclear accumulation of downstream effector
factor YAP of the Hippo pathway stimulates the expression of EGF-like ligands (such as
TGF-α), which activates EGFR, thereby promoting the growth and invasion of CC. The
proteasome-dependent YAP protein can be prevented from degradation and maintained at
high levels in CC cells by HPV E6/E7 oncoproteins [69]. The Hippo pathway is significant
to cell–cell junctions, as well as [70] extracellular matrix attachment [71] and the TIME [72].

Our predictions were based on analyses of online databases, which is one limitation of
our study. As a result, additional experimental validation is required.

5. Conclusions

In this study, we discovered that the expression of glycosylation-related genes was
highly correlated with the TIME and enriched in several significant pathways in CC. Our
research might offer a new target for the prognosis of CC. Additional research on these genes
and associated signaling networks may reveal new perspectives on CC immunotherapy
and lead to better prognoses.
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