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Abstract: Background: Among the clinical predictors of a heart failure (HF) prognosis, different
personal factors have been established in previous research, mainly age, gender, anemia, renal insuffi-
ciency and diabetes, as well as mediators (pulmonary embolism, hypertension, chronic obstructive
pulmonary disease (COPD), arrhythmias and dyslipidemia). We do not know the role played by
contextual and individual factors in the prediction of in-hospital mortality. Methods: The present
study has added hospital and management factors (year, type of hospital, length of stay, number of
diagnoses and procedures, and readmissions) in predicting exitus to establish a structural predictive
model. The project was approved by the Ethics Committee of the province of Almeria. Results: A
total of 529,606 subjects participated, through databases of the Spanish National Health System. A
predictive model was constructed using correlation analysis (SPSS 24.0) and structural equation
models (SEM) analysis (AMOS 20.0) that met the appropriate statistical values (chi-square, usually
fit indices and the root-mean-square error approximation) which met the criteria of statistical sig-
nificance. Individual factors, such as age, gender and chronic obstructive pulmonary disease, were
found to positively predict mortality risk. Isolated contextual factors (hospitals with a greater number
of beds, especially, and also the number of procedures performed, which negatively predicted the
risk of death. Conclusions: It was, therefore, possible to introduce contextual variables to explain the
behavior of mortality in patients with HF. The size or level of large hospital complexes, as well as
procedural effort, are key contextual variables in estimating the risk of mortality in HF.

Keywords: SEM analysis; heart failure; biomedical factor; in-hospital factors; epidemiology; mortality

1. Introduction

Heart failure (HF) is a syndromic process with high prevalence and rising incidence,
especially in Western countries. In Spain the prevalence was, in 2019, 1.89 (CI95% 1.70–2.08)
with an incidence rate of 2.78 new cases per 1000 people and year [1], having projected a
30% increase in 2035 [2], mainly due to ageing, although in France it has increased especially
among young adults (36–59 years) [3]. It is currently the most frequent cause of hospital
admission in patients over age 65 and constitutes 5% of total hospital admissions in Spain
during recent years. The most common hospital access for patients with decompensated
HF is through the emergency department [4], and from this department the stabilized
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patient may be discharged to home, or admitted to a hospital ward or short-stay unit [5]. In-
hospital mortality for decompensated HF worldwide was about 9–13% [6]. In our country,
studies such as Escobar et al. focused on hospitalized patients of internal medicine and
showed in-hospital mortality at 9.5%; these percentages may significantly increase when
a geriatric population is being considered—potentially as high as 11% mortality [7]. In
Spain, hospital mortality during admissions for acute HF is variable and constitutes a major
problem from the point of view of public health and cost efficiency, putting a strain on
healthcare expenditures [1,2,8].

On one hand, we must consider that the improved care and survival of ischemic
heart disease in recent years constitute true breakthroughs in cardiology, but increased
survival of ischemic heart disease results in very high rates of HF with this aetiology, not to
mention the increase that comes along with the unrelenting aging of the population. It is
important to keep in mind that HF is not a unique nosological process, but it is one step in
the physiopathological route of multiple morbid entities and pathologies, resulting in its
extreme prevalence.

To date, there are only two epidemiological, populational studies of HF in Spain
(Cortina et al.) [9], in the region of Asturias and the Price Study nationwide [10]. In-hospital
estimates of mortality are more reliable than populational estimates, and, despite the high
levels of mortality in HF, there are no explanatory models with a predictive component
that are founded on large clinical-administrative databases such as the Basic Minimum
Data Set (BMDS). The BMDS is a clinical-administrative database of obligatory use in all
the hospitals of the Spanish National Health System that is complete with data from the
clinical history of the patients. From these databases, different categories can be established
according to the “diagnosis-related groups” (DRGs). The DRGs are a system of classification
of patients that allows the relating of the casuistry of treated patients with their cost. This
system allows classification into categories (DRGs) with the isoconsumption of resources.

Nor is there any approach based on structural equations methodology so that we
may gain knowledge of how variables at different levels interact to influence mortality in
these patients.

The main objective of this study was to determine whether it is feasible to develop a
structural model to understand the functioning of direct and intermediate factors associated
with in-hospital mortality due to decompensated HF in Spain. A secondary objective was
to determine the role of 30-day readmission as a contextually dependent variable and its
relationship with in-hospital mortality.

2. Materials and Methods
2.1. Participants

Design: A retrospective cohort study was designed using analytical observation of all
hospital stays for HF during the period 2008–2012. Two diagnosis-related groups (DRGs)
were studied: HF or shock without comorbidities (DRG 127) and complex HF (DRG 544),
with comorbidities. Geographic scope. The study was developed within the sphere of the
Spanish National Healthcare System, which has a decentralized structure in 17 autonomous
or regional healthcare systems whose information is centrally collected in the Ministry of
Health and Consumerism. Each of the autonomous systems has its own structure with
Basic Healthcare Areas that are in turn grouped into Primary Care Districts and Hospitals;
in our case, we have dealt exclusively with patients’ hospitalization episodes, and walk-in
patients were excluded.

2.2. Source of Information, Sample and Case Selection

The source of information was Spain’s Basic Minimum Data Set (BMDS) at discharge,
made available by the Ministry of Health, Consumerism and Social Policies [11]. This
database contains information from more than 300 hospitals in Spain and is built up from
the information contained in the medical records. Information about each hospitalization
is sent by the different hospitals to the Ministry of Health, where all the information is
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centralized. In each episode, administrative and clinical data are collected, especially the
diagnoses (the main one and up to 13 secondary ones), as well as up to 20 categories of
procedures performed on the patients. A total of 529,606 hospital stays were analyzed, the
total of all hospital stays from the period studied. Diagnostic and procedural coding was
carried out using the International Classification of Diseases, Ninth Revision, and Clinical
Modification (ICD-9-CM). The selection criteria consisted of extracting the patient stays
that were discharged under the DRGs 127 and 544, after applying the AP-DRG classifier,
version 21. DRG 127 accounted for 57.4% of the hospital stays (304,405 stays) and the
remaining 42.6% was accounted for by DRG 544 (225,561).

2.3. Variables

The main dependent variables were mortality, an individual-based variable, and read-
mission, a context-based variable. The variables studied were sociodemographic (age,
gender and healthcare region) and clinical (number of diagnoses at discharge “NDX” and
the number of procedures at discharge “NPR”). NDX was considered a proxy for comor-
bidity or disease burden while NPR was the proxy for therapeutic effort and procedural
complexity. In addition, we analyzed the type of admission (urgent vs. scheduled), as
well as hospital management variables (length of stay, hospital group and readmission).
The variables that, according to the evidence, are associated with a greater risk of mor-
bimortality from cardiovascular causes (diabetes, hypertension (HTA), dyslipemia and
obesity, especially) were considered. Other variables such as the existence of arrhythmias
(ARR), renal insufficiency (RI) and anemia, among others, were also considered to define
the patient’s comorbidities profile.

Only mortality that took place during hospitalization was taken into account. Read-
mission was counted when it occurred within 30 days after discharge, as long as it was
classified under the same DRGs and did not occur in a different calendar year. Unplanned
hospital admissions included any order for urgent hospital admission regardless of whether
the patient came to the hospital via the emergency department or through other channels.

2.4. Instruments and Procedure
Bioethics Committees

The appropriate confidentiality and good practices documents, as approved by the
Ministry of Health and Social Policies and in accordance with the legislation in force, were
signed. Subsequent use and transmission of data, from the Ministry to the researchers,
were anonymous and untraceable. The present investigation was evaluated and approved
by the Provincial Research Ethics Committee (Ref. 72/2018).

2.5. Data Analysis
2.5.1. Data Analysis Strategy

In order to address our main objective, and detect the factors that are associated with
in-hospital mortality for HF, we began with the hypothesis that each individual variable
in the linear model (age, gender and the main individual comorbidities) would have a
statistically significant effect on the intermediate variables in the model (length of stay,
NDX, NPR and context variables such as year and hospital group); these intermediate
variables would, in turn, have such an effect on the two main dependent variables, that is,
mortality in the individual dimension and readmissions in the contextual dimension.

2.5.2. Variables and Analysis Schema

The analysis schema defined two axes for the study of relations and associations
between variables, as seen in Table 1. On one hand, variables were analyzed according to
two large dimensions of each episode: variables in the individual dimension and variables
in the contextual dimension. The context variables were identified as year, hospital group,
length of stay, NDX and NPR, as well as readmissions, which was considered the dependent,
context variable; the remaining variables were considered variables characteristic of the
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individual (Table 1). On the other hand, our second axis of analysis classified variables as
predictor variables, mediating/process variables or outcome/criteria variables regardless
of the dimension to which they belonged.

Table 1. Constituent variables of the model classified along two axes, and coding of variables in this
investigation.

VARIABLES CLASSIFIED ALONG TWO AXES OF ANALYSIS

PREDICTORS VARIABLES MEDIATING VARIABLES CRITERIA VARIABLES

INDIVIDUAL VAR.

Age HTA

Mortality
Gender PE
Anemia Arrhythmias

Renal Insufficiency
Diabetes

CONTEXTUAL VAR.
Year Length of Stay

ReadmissionHospital Group Num- of Diagnoses
Num- of Procedures

VARIABLES STUDIED ACCORDING TO CONTEXT

Patient variables In-hospital context variable

Age (years) Year (2008 to 2012)
Gender (M/F) (%) Hospital Group (administrative status, I to IV)

Anemia (%) Length of stay (number of days of hospital stay)
Renal insufficiency (%) NDX (number, continuous discrete)

Diabetes (%) NPR (number, continuous discrete)
Hypertension (%) Readmissions (Yes/No)

Pulmonary Embolism (%)
Arrhythmias (Yes/No)
Dyslipidemia (Yes/No)

COPD (%)
Exitus (%)

Note: NDX: Number of diagnoses at discharge. NPR: Number of procedures at discharge. COPD: chronic
obstructive pulmonary disease.

As can be observed in the second part of Table 1, the variables are grouped into two
distinct columns: individual variables and context-specific variables. For each of them, the
way they are measured is indicated (percentages, yes/no values, specific categories in the
case of polytomous variables and exact values in the case of quantitative variables).

Sociodemographic information was obtained from the variables year, age, gender
and autonomous region (Spain). Administrative-type elements were assessed through the
variables length of stay, 30-day readmission in the same DRG, type of admission (emergency
vs. scheduled) and type of discharge (alive vs. exitus). Readmission was counted when
it occurred within 30 days after discharge and in the same DRG. From a clinical point of
view, we used the NDX as a proxy variable for the patient’s comorbidity, and the NPR to
estimate the procedural complexity and therapeutic effort of each episode and the main
clinical comorbidities associated with HF episodes.

2.6. Statistical Analysis

For the statistical analysis, variables were treated as follows, according to the dimen-
sion being analyzed: (1) first, the initial variables were the predictor variables (PV), and
the process and outcome variables were mediating variables (MV); (2) second, the process
variables were the predictor and the outcome variables exitus (death) and readmission
were the criteria variables (CV), according to the dimension of analysis.

Two types of analysis were carried out in order to determine the variables to be in-
cluded in the structural linear model. First, bivariate analysis was carried out; Student’s
t test was used to test the equality of means hypothesis for independent samples or analysis
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of variance. In cases where they could not be applied, the Mann–Whitney or Kruskal–
Wallis nonparametric test was applied, as appropriate (see Table S1 of the Supplementary
Material). The chi-square test was used for comparison of qualitative variables. Relation-
ships between quantitative variables were determined through Pearson correlations (see
Supplementary Material). Second, uni- and multi-variate inferential analysis was carried
out between the variables established in the rational model. Inferential statistical analyses
(multivariate analysis, MANOVAs) were carried out using SPSS (v. 23.0) for Windows. A
selection of the most relevant results is shown in this text.

Once the variables were identified, a structural equations model was finally developed.
AMOS (v. 23.0) for Windows was used for structural validity analysis and for constructing
the structural prediction model—specifically, in verification of the structural linear predic-
tion hypothesis (path analysis). We attempted to replicate the same analysis scheme as in
a previous paper (de la Fuente et al. 2019 [12], with a different sample and problem. In
model 1, we tested the relationships of the 17 variables, without constructing second-level
latent variables. In models 2 and 3, predictive relationships between the latent variables
or defined dimensions were tested, with different predictions between them. In model 2,
predictive relationships were established that were less significant. Finally, model 3 showed
the most robust ones, with acceptable overall significant effects.

To interpret the confirmatory factor analysis (CFA) and the structural equation model
(SEM) fit, we assessed model fit by first examining the comparative fit index (CFI), normed
fit index (NFI), incremental fit index (IFI), relative fit index (RFI) and the root-mean-square
error of approximation (RMSEA). Sample size adequacy was checked using the Hoelter
index (Tabachnick&Fidell, 2001). The analyses were conducted using the AMOS Program
(IBM, USA). CFI values equal to or more than 0.90 were taken to indicate an acceptable and
close fit to the data (McDonald & Marsh, 1990). RMSEA values equal to or below 0.05 and
0.08 were taken to indicate close and acceptable levels of fit, respectively (Jöreskog&Sörbom,
1993 [13]. Keith (2006) [14] proposed the following research benchmarks for direct effects
(direct linear prediction between one variable and another) in the form of beta coefficients:
less than 0.05 is considered too small to be meaningful, above 0.05 is small but meaningful,
above 0.10 is moderate and above 0.25 is large. For indirect effects (linear prediction
between one variable, through another), we used Kenny’s (2012) [15] definition of an
indirect effect as the product of two effects; using Keith’s benchmarks above, we propose
an educationally meaningful small indirect effect = 0.003, moderate = 0.01 and large = 0.06.
Direct values refer to the direct linear prediction of one variable over another. Indirect
effects refer to indirect linear prediction, or of a variable through another intermediate. This
can occur between latent variables or between a latent variable and another observable
through another latent.

3. Results
3.1. Descriptive Analysis

We analyzed 529,606 hospitalization episodes under DRG 127 (noncomplex HF) and
DRG 544 (complex HF with comorbidity), from the years 2008–2012. The mean age of the
patients was 79.02 years (SD 10.64). Patients were hospitalized for a mean length of stay
of 7.28 days (SD 4.50) and were discharged with 9.31 recorded diagnoses (SD 2.89). They
were submitted to 2.61 (SD 2.62) procedures during hospitalization.

The sample included 296,013 female patients (55.9%). Of the total sample, 95.6% of the
hospital admissions were unplanned (urgent) and 10.2% (53,862 patients) died during their
hospitalization. The global analysis showed that 17.2% of the episodes involved patients
who were experiencing readmission to hospital for HF.

Considering the ICD9-CM codes used, the most prevalent were 428.0 (55.8%), 428.1
(12.2%), 402.9 (9.3%) and 428.23 (1%), with the remaining codes associated with HF account-
ing for 21.7%.
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3.2. Bivariate Association

Many significant relations of bivariate association appeared between the different
variables (p < 0.001). These associative relationships served to establish the later model of
predictive linear relations. Most of these associations are physiopathologically coherent
and have a low level of correlation, but they are associations that allow the establishment
of the second-level model. In this sense, the positive association of gender (women) with
hypertension and negative with the existence of COPD is noteworthy. Similarly, the NDX
was positively associated with the existence of diabetes, the year in which the coding
was done (“year”), HTA, dyslipemia and length of stay. Finally, mortality (“exitus”) was
associated with age, renal failure and correlated with short stays and negative correlation.
See Table 2.

Table 2. Correlation between variables (n = 529.606).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1. Age
2. Gender 0.221
3. Anemia 0.075 0.054
4. RI 0.055 −0.065 0.108
5. Diabetes −0.090 −0.050 0.022 0.032
6. Year 0.096 0.005 0.098 0.051 0.085
7. HospGr −0.042 −0.007 0.016 −0.013 0.018 0.019
8. HTA 0.033 0.136 −0.030 −0.041 0.137 0.121 0.023
9. PE 0.011 0.010 −0.003 −0.012 −0.004 0.007 −0.009
10. Arrhy 0.070 0.038 −0.018 −0.033 −0.058 0.097 0.012 0.035 0.007
11. Dyslip. −0.103 0.003 −0.010 −0.010 0.139 0.151 0.031 0.143 −0.007 −0.024
12. COPD −0.029 −0.227 −0.033 −0.088 −0.021 0.013 −0.033 −0.005 −0.005 −0.018
13. Stay −0.027 0.006 0.079 0.032 0.032 −0.041 0.067 −0.024 0.016 0.020 −0.014 0.037
14. NDX −0.012 −0.046 0.221 0.051 0.252 0.390 0.095 0.178 0.019 0.224 0.224 0.146 0.179
15. NPR −0.029 −0.010 0.101 −0.013 0.051 0.202 0.006 0.052 0.023 0.082 0.073 0.028 0.198 0.369
16. Readm −0.009 −0.027 0.027 0.040 0.032 0.024 −0.003 −0.022 0.003 −0.012 0.004 0.025 0.002 0.043 −0.029
17. Exitus 0.116 0.009 −0.004 0.106 −0.034 −0.004 0.010 0.079 0.062 −0.008 −0.056 −0.007 −0.107 0.003 −0.002 0.040

Note: All values are significant at p < 0.001.

3.3. Linear Relations: Structural Prediction

The results of structural analysis or pathway analysis (SEM) showed an acceptable
model of relationship between variables. Three relationship models were tested with
17 variables, but only the third showed adequate indices. The relationship parameters of
both models are presented below (Table 3).

Table 3. Models of structural linear of second-level results of the variables.

Model Degrees of
Freedom Chi-Square p< NFI RFI IFI TLI CFI RMSEA Hoelter

0.05–0.01
1. 17 F (170–121): 49 157,341.89 0.001 0.825 0.454 0.825 0.454 0.854 0.063 341–385
2. 17 F (170–138): 32 71,268.011 0.001 0.921 0.621 0.921 0.621 0.921 0.052 524–607
3. 17 F (170–151): 19 1926.507 0.001 0.946 0.941 0.946 0.941 0.946 0.050 497–541

Note. Models 1 and 2 (complex with 17 factors); model 3 (simplified with 6 dimensions). NFI: normed fit index;
RFI: relative fit index; IFI: incremental fit index; TLI: Tucker–Lewis index; CFI: corporative fit index; RMSEA:
root-mean-square error of approximation.

3.4. Standardized Direct Effects

The second-order model showed significant predictions, simpler than the first, as the
factors were grouped in latent dimensions. See Table 4 and Figure 1.

Table 4. Standardized DIRECT effects (default model).

D1 D2 D3 D4 D5 D6

D1. PATIENS

D2. PATHOLOG. 0.136 0.582

D3. TYPE HOSPI 0.060

D4. YEAR 0.921
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Table 4. Cont.

D1 D2 D3 D4 D5 D6

D5. INTERVENT −0.122 0.131 0.870

D6. DEATH 0.103 −0.147 −0.887 0.713

Gender 0.974

Age 0.223

COPD −0.282

Diabetes 0.391

Dyslipemia 0.372

HTA 0.352

EP 0.027

HOSPGR 0.104

Year 0.358

ARR 0.234

IR 0.599

NDX 0.769

STAY 0.157

NPR 0.319

Anemia 0.195

READ 0.087

Exitus 0.170
Note: D1 = PRESAGE FACTORS OF PATIENS; D2 = PROCESS FACTORS OF PATTIENTS: ASSOCIATED
PATHOLOGIES; D3 = PRESAGE FACTOR OF CONTEXT: TYPE OF HOSPITAL;D4 = PROCESS OF CONTEXT:
YEARS; D5 = PROCESS OF CONTEXT: INTERVENTIONS; D6 = PRODUCT OF PATIENTS: DEATH; HTA
= arterial hypertension; ARR = arrhythmias; COPD = chronic obstructive pulmonary disease; YEAR = year;
HOSPGR = hospital group; EP = pulmonary thromboembolism; STAY = length of stay; NDX = number of
diagnoses; NPR = number of procedures; READ = readmission; EXITUS = death.

The D1 (PRESAGE FACTORS OF PATIENTS) dimension, made up of Age, Gender and
Anemia factors, appeared as a positive predictor of D2 (PROCESS FACTORS OF PATIENTS:
ASSOCIATED PATHOLOGIES) and D3 (PRESAGE FACTOR OF CONTEXT: TYPE OF
HOSPITAL), negative from D5 (PROCESS OF CONTEXT: INTERVENTIONS) and positive
from D6 (PRODUCT OF PATIENTS: DEATH).

The D2 dimension (PROCESS FACTORS OF PATIENTS: ASSOCIATED PATHOLO-
GIES), made up of diabetes, dyslipidemia and HTA, positively predicted D5 (PROCESS
OF CONTEXT: INTERVENTIONS), and negatively predicted D6 (PRODUCT OF PA-
TIENTS: DEATH).

The D3 (PRESAGE FACTOR OF CONTEXT: TYPE OF HOSPITAL) dimension, made
up of hospital group and EP, positively predicted D2 (PROCESS FACTORS OF PATIENTS:
ASSOCIATED PATHOLOGIES) and D4 (PROCESS OF CONTEXT: YEARS), but negatively
predicted D6 (PRODUCT OF PATIENTS: DEATH) with great force.

The D4 (PROCESS OF CONTEXT: YEARS) dimension, made up of the Year and ARR,
positively predicted D5 (PROCESS OF CONTEXT: INTERVENTIONS).

The dimension D5 (PROCESS OF CONTEXT: INTERVENTIONS), forced by NDX, length
of stance, NPR and anemia, positively predicted D6 (PRODUCT OF PATIENTS: DEATH).
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1 
 

 
Figure 1. Structural model of relationships of second-level with factors. Note. D1 = PRESAGE
FACTORS OF PATIENS; D2 = PROCESS FACTORS OF PATTIENTS: ASSOCIATED PATHOLOGIES;
D3 = PRESAGE FACTOR OF CONTEXT: TYPE OF HOSPITAL; D4 = PROCESS OF CONTEXT:
YEARS; D5= PROCESS OF CONTEXT: INTERVENTIONS; D6 = PRODUCT OF PATIENTS: DEATH;
AGE = age; GEND = gender; ANEM = anemia; DIAB = diabetes; HTA = arterial hypertension; ARR
= arrhythmias; COPD = chronic obstructive pulmonary disease; YEAR = year; HOSPGR = hospital
group; TEP = pulmonary thromboembolism; STAY = length of stay; NDX = number of diagnoses;
NPR = number of procedures; READ = readmission. EXITUS = death. RTI = renal insufficiency.

3.5. Standardized Indirect Effects

The model also revealed the existence of multiple indirect predictions among the
variables. The dimension D1 (PRESAGE FACTORS OF PATIENTS), made up of gender and
age, has a positive influence on dimensions D2, D4 and D5, and on their factors of diabetes,
dyslipemia, HTA, EP, hospital group, year and ARR, as well as negative in D4 (IR, NDX,
length of stance, NPR) and D6 (exitus).

The second effect of interest is related to the fact that, while D2 (PROCESS FACTORS
OF PATIENTS: ASSOCIATED PATHOLOGIES) appeared as a positive predictor of D5
(PROCESS OF CONTEXT: INTERVENTIONS) and D6 (PRODUCT OF PATIENTS: DEATH),
D3 (FACTOR OF CONTEXT: TYPE OF HOSPITAL) was a positive predictor.

The dimension D4 (PROCESS OF CONTEXT: YEARS) appeared as a negative predictor
of D6 (PRODUCT OF PATIENTS: DEATH). Additionally, D5 (PROCESS OF CONTEXT:
INTERVENTIONS) appeared as an indirect predictor of D and factors (PRODUCT OF
PATIENTS: DEATH. See Table 5.

Table 5. Standardized Indirect Effects (Default model).

D1 D2 D3 D4 D5 D6

D1. PATIENS

D2. PATHOLOG. 0.035

D3. TYPE HOSPI

D4. YEAR −0.055

D5. INTERVENT 0.070 0.877

D6. DEATH −0.208 0.224 −0.417 −0.491
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Table 5. Cont.

D1 D2 D3 D4 D5 D6

Gender

Age

COPD

Diabetes 0.067 0.228

Dyslipemia 0.064 0.217

HTA 0.060 0.205

EP 0.002

Hospgrup 0.006

Year 0.020 0.330

ARR 0.013 0.216

IR −0.063 0.046 −0.101 0.892 0.825

NDX −0.055 0.140 0.938 0.930

Stance −0.008 0.021 0.138 0.137

NPR −0.016 0.042 0.280 0.278

Anemia −0.010 0.025 0.171 0.170

Reentry −0.009 0.007 −0.015 0.130 0.150

Exitus −0.018 0.013 −0.029 0.253 0.290
Note: D1 = PRESAGE FACTORS OF PATIENS; D2 = PROCESS FACTORS OF PATTIENTS: ASSOCIATED
PATHOLOGIES; D3 = PRESAGE FACTOR OF CONTEXT: TYPE OF HOSPITAL; D4 = PROCESS OF CON-
TEXT: YEARS; D5 = PROCESS OF CONTEXT: INTERVENTIONS; D6 = PRODUCT OF PATIENTS: DEATH;
AGE = age; GEND = gender; ANEM = anemia; DIAB = diabetes; HTA = arterial hypertension; ARR = arrhythmias;
COPD = chronic obstructive pulmonary disease; YEAR = year; HOSPGR = hospital group; TEP = pulmonary
thromboembolism; STAY = length of stay; NDX = number of diagnoses; NPR = number of procedures;
READ = readmission; EXITUS = death.

4. Discussion

The present study confirmed the role of individual and personal factors in the risk of
mortality due to HF. At the same time, and for the first time, it has been documented that
contextual factors are key to this risk estimation. It was possible to introduce contextual
factors in the elaboration of an explanatory and predictive model of mortality and, given
the heterogeneity in the characteristics and equipment of the hospital centers, we believe
that this represents a great advance in our knowledge of the risk of mortality due to HF.
More specifically, the size of the hospital complexes and the procedural effort was key to
the model obtained.

4.1. First Level Model

In-hospital mortality, as an undeniably individual variable, is represented and pre-
dicted by a number of elements that were already known, and by others that require further
explanation; at the same time, mortality is not only produced as a direct effect, but is
influenced by mediating variables pertaining to the individual and contextual spheres
(Supplementary Material, Model S1).

Thus, age is a direct predictor of mortality in HF; this being plainly understood and
present in certain statistical models of mortality [16–18], and it supports the plausibility
of the present model. Similarly, we observed that age predicted greater prevalences of
HTN and ARR, as would be expected from the physiopathological point of view [19]. We
feel that age is an ideal variable for testing the model, inasmuch as it fits the biological
plausibility and well-understood natural history of HF.

The female sex was statistically associated with an increased risk of mortality; we
believe this to be true because the age sectors affected by HF are predominantly female.
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Prevalence of mortality is systematically higher when we work with age groups where
there is a higher death rate for men, and the living population is primarily female—a
well-known phenomenon for many entities in epidemiology and demography. Finally,
we would emphasize that the female gender also predicts greater mortality by indirect
means, through ARR, most often found in elderly patients who, as we have noted, are
mostly women.

Patients who suffer from renal insufficiency also present a higher prevalence of mortal-
ity, as is documented in prior evidence [19–22]. Anemia is present in more than half of HF
patients, especially if there is renal insufficiency, and this is in relation to the degree of both
kidney and HF. The role of anemia in the literature is variable; it appears as an intermediate
variable not systematically associated with a long-term prognosis in the evidence reported
by other authors [23–27], although certain population registries have associated low levels
of hemoglobin with a poorer long-term prognosis [25]. Our results support anemia as
more of a marker associated with gender, renal insufficiency and probably poorer clinical
conditions than as a variable directly associated with mortality, in agreement with what
other authors have suggested [21–27].

PE, a classic, powerful predictor of mortality in HF, besides being a cause of death in
its most acute form [28,29], is marked indelibly as a predictor of mortality in our structural
model. Length of stay negatively predicts mortality and this fits into the logic defined
in prior studies [30]: the most seriously ill patients are those who die shortly after their
hospital admission; therefore, the subgroup of patients with very short hospital stays
normally presents high mortality rates.

Finally, larger hospitals (“Hospital Group”), as well as patients with a greater number
of medical and procedural complexities, also predict greater mortality. In this line, we
observe that not only individual variables but also context variables (length of stay, pro-
cedural effort and hospital group), become direct predictors of the prevalence of exitus
(see Supplementary Material). Other studies have examined the greater efficiency of small
hospitals in comparison to large complexes, especially when implanting pacemakers with
and without associated HF [31].

Mortality is also associated with the main contextual variable readmissions, whereby a
reasonable, logical connection is established between the two main dependent variables, one
from each dimension (individual vs. contextual). Thus, in our model, readmission predicts
greater probability of mortality, as is attested to and consistent with the previous literature,
mainly the CHARM study [17], where death rates clearly increase after hospitalizations for
HF even after adjusting for known mortality predictors; according to the literature, this risk
increases one month after discharge and continues to rise gradually. The structural model
must be supplied with a logical, plausible interpretation such that there is an obvious (but
mathematically evident) association where exitus negatively predicts readmissions—for
obvious reasons, but accounted for in the model from the mathematical viewpoint.

The study has found significant, direct, linear predictive relationships for the likelihood
of 30-day readmission for HF. Namely, the existence of anemia, RI, diabetes and COPD are
objectified as comorbidities that increase the risk of readmission, and this is well known
from the prior evidence and the literature [17,23,32]. In the same sense, a direct prediction
from NDX may be an expression that patients with greater diagnostic complexity and
comorbidities have a greater likelihood of readmission, while those who receive greater
therapeutic effort (NPR) present lower risk. The relationship between number and type
of comorbidities and the risk of readmission and in-hospital death has been explored by
different predictive models; they are assigned different weightings, but are a constant in
the modeling of these phenomena [16,33].

It is important to stress once again the role of contextual factors in the risk of readmission
(which in turn increases mortality). In this line of argument, the length of stay did not
decree an association that would allow predicting readmissions; we understand that this
can be interpreted as meaning that the short length of stay in the short-stay units does not
affect readmissions and, therefore, does not detract from their efficiency [34]. The direction



J. Pers. Med. 2023, 13, 995 11 of 14

of prediction for the proxy variables of comorbidity (NDX) and procedural effort (NPR) is
totally consistent with medical logic and biological plausibility. Thus, the more complex
patients, with a greater number of diagnoses and greater disease burden, are those with
the most readmissions and, secondarily, with a higher death rate; concurrently, those who
received greatest therapeutical effort have lower risk of readmission.

Indirectly, the year also significantly and directly predicts readmission, probably
because the group of readmitting patients is obviously more elderly (direct path) and
because NDX increases over the years in a population that is increasingly more aged and
complex (indirect path).

Readmission was predicted by a number of well-understood entities (anemia, RI,
diabetes, COPD) as well as by patients’ level of comorbidity (NDX).

Finally, it is important to note that readmission shows some apparently paradoxical
behaviors, as in a negative prediction from dyslipidemia and arrhythmias. This behavior
may be related to Jencks’ bias of underreporting, well known in this type of study using
clinical-administrative databases [35].

4.2. Second-Level Model

In the simplified model, the relationships previously exposed have been verified with
greater clarity. It has been shown that dimension D1 (age, gender and COPD) positively
predicts D6 (DEATH). However, there are two dimensions that negatively predict D6
(DEATH); on the one hand, D2 (PATHOLOGIES) directly predicts D5 (INTERVENTIONS)
and, negatively, D6 (DEATH) and on the other, D3 (Hospital Group), which is the one
that most clearly predicts D6 (DEATH) in a negative way. This result would endorse
the importance of hospital groups to be a mediating variable between pathology and
death through the interventions carried out, with a clear increase during the ten years
analyzed. Furthermore, indirect predictions confirm this trend: although the pathologies
analyzed predict death associated with cardiovascular factors, large hospitals, with greater
interventions and their improvement over time (in the 10 years analyzed), have slowed
this probability. Consequently, hospital contextual factors have a very relevant weight to
modulate the prediction of death due to cardiovascular reasons (Supplementary Material,
Model S2).

4.3. Limitations

The present work has several limitations that need to be clearly stated and established.
First, the source of information (Minimum Basic Data Set) suffers from a series of well-
known problems which, in themselves, are both a challenge and a limitation.

On the one hand, the well-known Jencks bias [35] or under-coding of diagnoses corre-
sponding to chronic comorbidities can modify the strength and direction of the association
in some cases, as occurs in hypertension and dyslipidemia. In dealing with this limitation,
it is essential to review the literature and prioritize the clinical meaning of the associations
so as not to obtain spurious associations. In fact, some variables that had little consistency
in previous works were not considered (such as psychological disorders and previous
surgeries). Although there may be a selection bias, it is precisely the information bias of the
BMDS that may explain this underreporting more precisely [36]. Furthermore, there is no
“operative” definition for the diagnosis of certain comorbidities, so the fact that they appear
in the clinical history and have been coded by a medical specialist in documentation is the
only criterion for considering them valid. Consequently, this inclusion of comorbidities
based on the clinical history but not on exact definitions of the comorbidities, a limitation
imposed by the characteristics of the BMDS, should be assumed as a limitation of this study.

Finally, it should be recalled that, overall, this project may be affected by the limitations
inherent in the use of clinical-administrative databases.
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5. Conclusions

We conclude then, with reasonable support from prior evidence, and from logic and
the biological plausibility of how HF evolves, that it is possible to create a prediction model
of mortality in this entity and incorporate contextual factors to the extent that they prove
indispensable. We feel that once the theoretical models obtained from big databases take
contextual variables into account, any model based exclusively on individual variables will
inevitably lack elements that can explain part of the variability of this phenomenon.

The model finally obtained provides interesting information that explains the complex
relationships between mortality and FH.

Death is conditioned or predicted by multiple factors, but the weight of age, sex and
suffering from COPD pathology are determining factors according to our results.

Other variables are associated with lower mortality and provide interesting conclu-
sions. Mortality is lower the fewer diagnoses patients have coded, which translates into the
need to code more extensively those patients who die (usually brief and not very detailed
reports of very serious patients who die shortly after admission). It is also interesting from
the point of view of management that the larger hospitals report higher mortality than the
rest, all mediated by the intermediate variables studied.

Direct linear predictive relationships were found between 30-day readmission and
different predictors such as anemia, renal failure, COPD and diabetes. From a quantitative
point of view, reference is made to the concrete values shown in the “Standardized Direct
Effects” (Default model 1) tables on pages 21 and 22 of the Supplementary Material, where
the level of the standardized direct effect (and indirect effect on page 23) is given. Similarly,
the relationship between “Hospital Group” and diagnostic-therapeutic complexities is
statistically and methodologically consistent, as shown in the Supplementary Material.

From a forward-looking viewpoint, in addition to contributing a new modeling ap-
proach with an original outlook on the study of factors associated with HF mortality, we
feel that future studies and modeling of any aspect of HF should consider the importance
of the context. We must incorporate more contextual variables, make use of big data and
integrate multiple relational databases in order for clinical data about the individual to be
contextualized in an environment of external variables, where the accuracy of estimates
will undoubtedly be greater than with the exclusive use of individual variables.

We expect that the present study will constitute a point of departure toward new lines
of research where management-related, contextual and environmental variables become
elements that help improve the accuracy of our calculations. Strictly individual elements
cannot and should not be the only elements intervening in creation of models for entities
that are so complex and that form part of multiple morbid processes, as in the case of HF.
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