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Abstract: There is an increasing need for inexpensive and rapid screening tests in point-of-care clinical
oncology settings. Herein, we develop a swab “dip” test in saliva obtained from consenting patients
participating in a lung-cancer-screening programme being undertaken in North West England. In a
pilot study, a total of 211 saliva samples (n = 170 benign, 41 designated cancer-positive) were ran-
domly taken during the course of this prospective lung-cancer-screening programme. The samples
(sterile Copan blue rayon swabs dipped in saliva) were analysed using attenuated total reflection
Fourier-transform infrared (ATR-FTIR) spectroscopy. An exploratory analysis using principal compo-
nent analysis (PCA,) with or without linear discriminant analysis (LDA), was then undertaken. Three
pairwise comparisons were undertaken including: (1) benign vs. cancer following swab analysis;
(2) benign vs. cancer following swab analysis with the subtraction of dry swab spectra; and (3) benign
vs. cancer following swab analysis with the subtraction of wet swab spectra. Consistent and remark-
ably similar patterns of clustering for the benign control vs. cancer categories, irrespective of whether
the swab plus saliva sample was analysed or whether there was a subtraction of wet or dry swab
spectra, was observed. In each case, MANOVA demonstrated that this segregation of categories is
highly significant. A k-NN (using three nearest neighbours) machine-learning algorithm also showed
that the specificity (90%) and sensitivity (75%) are consistent for each pairwise comparison. In detailed
analyses, the swab as a substrate did not alter the level of spectral discrimination between benign
control vs. cancer saliva samples. These results demonstrate a novel swab “dip” test using saliva as a
biofluid that is highly applicable to be rolled out into a larger lung-cancer-screening programme.
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1. Introduction

In a growing worldwide population, the (self-)management of chronic diseases, such
as cancer, diabetes and neurodegenerative conditions, will become increasingly important.
Critical to this will be a need for rapid and simple screening and/or diagnostic method-
ologies towards patient triage. Especially since the COVID-19 pandemic, hospital settings
are over-burdened and there is an urgent need to develop approaches to allow routine
testing to provide a rapid and informed indication, either in a home setting, in a primary
care setting, such as a GP’s surgery, or at the entrance to A&E [1]. Such a methodology
needs to be easy to implement, accurate in its output, readily interpretable for a non-expert,
inexpensive, given the volume of testing required, repeatable and quick [2].
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Vibrational spectroscopy, including attenuated total reflection Fourier-transform in-
frared (ATR-FTIR) spectroscopy, combined with chemometrics, has the potential to be
translated to a variety of clinical settings [3]. The basis of this sensor-based approach is
that a fingerprint spectrum can be derived from a biological sample based on its chemical
bond composition; a reference range of what constitutes a benign control condition can
be constructed and predictive analyses can suggest the likely outcome of spectra that fall
outside this [4]. Readily accessible biofluids, such as blood plasma/serum, saliva or urine,
are considered ideal for clinical implementation due to routine methods of collection, as
well as minimal sample preparation. Biofluid-based ATR-FTIR spectroscopy approaches
have been used for diagnosing, screening or monitoring the progression/regression in a va-
riety of disease conditions [5,6]. We have previously shown the diagnostic capability of this
approach to detect brain tumours, both primary and metastatic, from blood plasma with
an accuracy of 88–100% [7]. It is also possible to employ saliva analysed using ATR-FTIR
spectroscopy to distinguish from normal through to Barrett’s oesophagus, dysplasia up to
adenocarcinoma. Within the normal vs. adenocarcinoma groups, this is with sensitivities
from 89 to 100% and specificity of 60 to 100% [4].

Typically, the sample to be analysed needs to be placed on a substrate before it is
applied to the sensor to facilitate infrared (IR) spectral acquisition, and there are several
substrate types to facilitate this [8]. Alternatively, the sample, such as a biofluid (just
1 µL required), can be applied directly to the diamond sensor of an ATR-FTIR device [9].
In other cases, the sample can be applied to a substrate such as an aluminium-coated
glass slide [10]. A biofluid in this case would need to be aliquoted onto a substrate in a
discrete spot and then allowed to dry for a couple of hours. For the non-expert practitioner,
this increases the handling of biological material and might be a potentially error-prone
methodology. An approach pioneered by our group is the notion of a “dip” test whereby
a sterile swab is placed in the biofluid in question and after mixing, is then applied to
the sensor of the ATR-FTIR spectrometer [1]. Advantages of this approach are familiarity
(amongst clinical staff such as nurses or doctors) due to similarities with other testing
regimens, achievable consistency for the non-expert practitioner and ready ease-of-use in a
typical clinical setting. A potential disadvantage is that the swab material will have its own
underlying IR spectral signature, but we would contend that many substrates would give
rise to an absorbance spectral profile in the biological fingerprint region. If this underlying
“contaminating” spectral signature is consistent, it should remain possible to extract and
interpret the overlying biological spectra and this should be sufficient for an interpretable
screening and/or diagnostic test.

This investigation was nested in a prospective study of patients attending the Black-
pool Targeted Lung Health Check, similar to others being carried out in the North of
England [11]. These patients have been pre-selected based on multiple factors, including
age and smoking history, to be deemed ‘at risk’ of lung cancer. Once they have undergone
health checks, patients that trigger a low-radiation-dose computed tomography (CT) scan
for further investigation will be consented to take part in this study. This was performed by
the nurse undertaking the initial assessment and consenting them for involvement within
the screening pilot. Once consented, patients were asked to provide saliva for testing by
spitting into a sterile universal container. The saliva was tested on a portable IR spectrom-
eter. Chemometric analysis, to develop predictive models to allow the determination of
sensitivities and specificities for saliva for the diagnosis of lung cancer, was undertaken.
This study was nested in a true clinical setting. It is not an artificially constructed scenario
where one compares lung cancers vs. benign. This is a real-world setting wherein all the
people coming into clinic are “at-risk”. This addresses the challenge clinicians face world-
wide: how does one pick out the small number of disease states that require intervention
from the large mass of individuals with complex co-morbidities?

Given the large-scale prevalence of lung cancer within the North West of England, and
its selection to be part of the National Lung Cancer Screening pilot due to the high cancer
inequality seen, this study was developed to run alongside this pilot. This allows us to test
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the potential benefit of this alternative technique, either as an aid to or in the replacement
of the more intensive and expensive screening pilot. This study aims to determine if saliva
can provide a useful screening tool for the detection of lung cancer, within a real-life clinical
setting, to translate it into a clinically useful and viable diagnostic test, which benefits
patients. Our initial objective, using a substantial subset of the study participants recruited
into the trial, was to determine whether employing a swab as part of the methodology
would give a robust and consistent approach for routine spectral analysis.

2. Materials and Methods
2.1. Lung-Cancer-Screening Programme and Participant Recruitment

This study was carried out in agreement with the Helsinki declaration and full ethical
approval was obtained (HRA IRAS ref: 276081; REC ref: 20/PR/0390; London Bridge
REC). All procedures and possible risks were explained to participants before they pro-
vided written consent. The study was nested in a prospective study of people invited
to attend the National Lung Cancer screening pilot in the Blackpool area of North West
England. These potential participants were pre-selected to be deemed ‘at risk’ of lung
cancer, based on multiple factors including age and smoking history. Once they had un-
dergone health checks, those participants that trigger a CT scan for further investigation
were consented, if willing, to take part in this study. This was performed by the nurse
undertaking the initial assessment and consent for involvement within the screening pilot.
The rationale for this approach was to provide a mixture of both suspected cancer and
non-cancer patients. All participants had a CT scan and those that exhibited no lung
lesions were immediately assigned to the benign group. A visible lesion triggered an
urgent oncology referral. Participants who underwent surgery were proven to have cancer
following histopathology undertaken by a Consultant Histopathologist. A small number
of participants had radiotherapy; these were also assigned as cancer. Additionally, some
participants sent for oncology referral had benign lesions; these individuals were assigned
to the benign group. All participants were followed for up to 2 years in order to validate
these outcomes. A total of 211 saliva samples (n = 170 benign, 41 designated cancer pos-
itive) were randomly taken in the order in which they entered the clinic (i.e., there was
no selection of participants in order to avoid bias) during the course of this prospective
lung-cancer-screening programme.

2.2. Saliva Collection and Swab Analysis

For all participants, demographic data (age, gender, pre-existing medical conditions,
symptoms, date of symptoms’ onset) were collected for NHS records; these will be ac-
cessible as the study progresses and more outcomes are known. Once consent has been
given, participants were requested to provide saliva for testing by spitting into a sterile
universal container. Samples were transported to the laboratory within 24 h where they
were frozen at −20 ◦C until preparation for analysis. For the purpose of spectral analysis, a
plain sterile rayon-tipped swab (Ref no.: 155C; Copan, Italy) was placed in the thawed (at
room temperature) saliva sample to be tested and mixed, prior to spectral interrogation of
the swab. The swab was applied directly to the ATR ZnSe crystal for spectral analysis—this
was found to be an extremely convenient means of handling this biological material. Whilst
there are contributing peaks from the swab, our objective was solely to develop a technique
capable of giving a yes/no answer to the possibility, or not, of lung cancer being present.

2.3. ATR-FTIR Spectral Analyses of Swabs

FTIR spectra data (wavenumber range 4000–650 cm−1) for each swab were obtained
by directly placing the saliva swab on a portable Agilent Cary 630 FTIR Spectrometer
equipped with an ATR ZnSe crystal (Agilent, Santa Clara, CA, USA) and Microlab PC
software run from a dedicated computer laptop. Each whole spectrum contains 1798 points
(1.86 cm−1 spectral resolution). For every ATR-FTIR spectroscopic measurement, three
spectra were obtained from each saliva swab. Each swab analysis was performed with
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32 co-additions, interspersed with 32 background scans. After each analysis, the swab was
removed from the crystal and the crystal was cleaned with miliQ water and 70% alcohol,
thus avoiding inter-sample contamination. Only a single swab analysis in the spectral
dataset generated outliers (Figure 1).
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Figure 1. Raw mid-infrared spectra derived using ATR-FTIR spectroscopy. Saliva samples were
obtained from consented participants in a lung-cancer-screening programme. Following transport
to the laboratory, a sterile Copan blue rayon swab was dipped in the saliva sample, whereupon the
swab was then analysed on the IR spectrometer. From each saliva sample, three independent spectral
measurements were taken. For comparison, spectral measurements in triplicate from five separate
swabs, wet (in milli-Q water; blue) or dry (green), are shown. In all measurements taken, only one
obvious outlier was noted (in the benign control category) and this was excluded from subsequent
analyses. y-axes are Absorbance (a.u.).

2.4. Computational Analysis: Pre-Processing and Chemometrics

All data analytics were performed using python and available libraries. Spectral
pre-processing for data analysis consisted of Savitzky–Golay (SG) smoothing (window of
7 points, 1st-order polynomial fitting) and 2nd derivative followed by vector normalization.
SG smoothing corrects for random noise, 2nd derivative corrects for baseline distortions and
vector normalization corrects for physical differences between samples such as thickness,
light scattering and concentrations.

Principal component analysis (PCA) was used for exploratory analysis. PCA reduces
the pre-processed spectral dataset into a small number of principal components (PCs),
responsible for the majority of data variance. Each PC is composed of scores and loadings;
the former is used to access similarity/dissimilarity patterns among samples and the latter
to identify spectral features (wavenumbers), associated with class separation and, therefore,
possible spectral biomarkers.

PCA models were built using the PCA software tool for python available on Github [12].
Further visualisation of the key discriminating wavenumbers is demonstrated in the form
of a biplot produced in python using mpl toolkits (mpl_toolkits.mplot3d.axes3d.Axes3D at
0×1e215e3e580).

PCA is an unsupervised technique that reduces the spectral data space to PCs respon-
sible for the majority of variance in the original dataset. Each PC is orthogonal to each other,
where the first PC accounts for the maximum explained variance followed by the second
PC and so on. The PCs are composed of scores and loadings, where the first represents
the variance on sample direction, thus being used to assess similarities/dissimilarities
among the samples, and the latter represents the contribution of each variable for the model
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decomposition, thus being used to find important spectral markers. This technique looks
for inherent similarities/differences and provides a scores matrix representing the overall
“identity” of each sample; a loadings matrix representing the spectral profile in each PC;
and a residual matrix containing the unexplained data. Scores information can be used for
exploratory analysis providing possible classification between data classes.

PCA was the method of choice for analysing swab samples spiked. It is simple, fast
and combines exploratory analysis, data reduction and feature extraction into one single
method. PCA scores were used to explore overall dataset variance and any clustering
related to the limit of detection, while the loadings on the first two PCs were used to derive
specific biomarkers indicative of the infection category.

Linear discriminant analysis (LDA) is a classifier with a linear decision boundary,
generated by fitting class conditional densities to the data and using Bayes’ rule. The model
fits a Gaussian density to each class, assuming that all classes share the same covariance
matrix. The fitted model can also be used to reduce the dimensionality of the input by
projecting it to the most discriminative directions, using the transform method.

PCA followed by LDA [13] is a combined technique leading to dimensionality reduc-
tion followed by classification. Since PCA is an unsupervised dimensionality reduction
method, it is difficult to further analyse the differences among groups only from the results
of PCA. Therefore, the best classification performance can be demonstrated by applying
supervised dimensionality reduction with LDA on the basis of PCA. The combination of
PCA and LDA not only reduces the original data dimensionality, maximizes the spectral
differences between categories, and improves the accuracy of identifying the differences
between groups, but also improves the deficiency of LDA overfitting. The pre-processed
spectral data were subsequently subjected to multivariate analysis by PCA-LDA. Herein,
PCA was first performed on the spectral data, and 10 principal components (PCs) were
extracted from each spectral data (containing >95% of the variable information within the
original dataset, which can replace the original variables for LDA), and the extracted PC
data were subjected to LDA.

2.5. Application of a Machine-Learning Algorithm: K-Nearest Neighbours

The application of k-nearest neighbours (k-NN) was performed using software from
scikit-learn. The k-NN is a kernel-based classifier, which requires user-supplied kernel
parameters to operate, this being the number of neighbours for k-NN. These parameters
should be judiciously selected to ensure effective use of the classifiers in the appropriate
kernel complexity avoiding under- and over-fitted operation conditions. Here, it is carried
out by minimising the misclassification rate (MR) of the classifier for both the training and
testing datasets. This is based on the rationale that, while the MR of the training dataset
is expected to continuously fall as the kernel complexity increases, the MR of the testing
dataset is expected to reach a minima before it rises as the kernel complexity increases,
indicating that it has failed to predict the class of new unseen observations. A high MR for
the testing dataset with a low kernel complexity indicates underfitting, whereas a high MR
for the testing dataset with a high kernel complexity indicates overfitting. It implies that the
suitable kernel complexity occurs at the kernel parameters that result in the minimum MR
for the testing dataset [14]. Specific to this work, the range of complexities tested for k-NN
was 1 to 400 neighbours. The k-NN models output in the validation set (blind spectra)
are used to calculate quality metrics or figures of merit in order to evaluate the model
classification performance. Metrics such as accuracy (total number of samples correctly
classified considering true and false negatives), sensitivity (proportion of positive obser-
vations correctly classified) and specificity (proportion of negative observations correctly
classified) are calculated [15].
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2.6. Statistical Analyses

Multivariate analysis of variance (MANOVA) was performed on PCs using the
MANOVA software in python (https://www.statsmodels.org/dev/generated/statsmodels.
multivariate.manova.MANOVA.html; accessed on 1 September 2022).

3. Results and Discussion

Lung cancer remains the third most common cancer in the UK (CRUK), with rates
in Blackpool (North West England) of approximately 160 new cases per year [16]. Whilst
rates across England have fallen, those in this region have remained consistently above
average [16]. The commonest means by which individuals are diagnosed is through
attendance at A&E [17]. As a consequence, Blackpool has recently been selected by NHS
England as one of the pilot sites to develop screening for lung cancer. Nesting our study in
this prospective screening programme is an ideal means of trialling the clinical translation
of this methodology. To our knowledge, this is the first trial of ATR-FTIR spectroscopy with
chemometrics in an NHS-ratified and -funded screening programme.

The study contained herein set out to develop a new rapid and non-invasive method
of lung cancer detection that could, it is hoped, be used as part of a screening test designed
to pick up disease earlier, possibly before an individual has symptoms. This could allow
people to be treated earlier, with the aim of improving survival [18]. In line with a developed
protocol, patients that were selected for lung cancer screening attended a lung health check
clinic. Those that then require a CT scan, based upon the health check results were asked
to also take part in this study. Once consented in line with ethics, they provided a sample
of saliva in a sterile pot. The saliva was then transported to the laboratory and stored at
−20 ◦C until analysis whereupon a sterile Copan blue rayon swab was dipped into the
thawed sample prior to analysis using a hand-held mid-IR spectrometer. The results from
this test could be compared to the CT scan performed to see if this new tool can detect
cancer-positive patients. As patients without cancer outnumber those with cancer, the
use of all patients being scanned is important to provide a large number of non-cancer
samples. Another interesting novel aspect of this study is the fact that a genuine clinical
setting is employed with samples analysed based on the participants presenting in the
programme. Many studies trial the efficacy of test methods using sample collections
(e.g., biobanks) and design studies that are equally weighted between control benign and
variant (i.e., cancer). In a real-world clinical setting, control benign samples would most
typically vastly outweigh the number of variants. This investigation aims to simulate this
real-world setting.

Figure 1 shows all the raw IR spectra derived from saliva samples obtained from
participants designated either as cancer-free benign or cancer-positive (this included a
mixture of lung cancers and metastases to the lung from previous primary cancers). Except
for one outlier in a total of 211 study participant saliva samples (n = 170 benign control,
41 cancer-positive), remarkable consistency in the spectral signature is noted. For compar-
ison, IR spectra derived from wet (sterile milli-Q water) and dry swabs are shown (five
independent swabs, three spectra each). An underlying spectral signature from the swab
(wet or dry) is noted. Whilst one approach might be to modify sample preparation to
minimise substrate contributions [19], the approach contained herein accepts this on the
basis that it is consistent enough so that the overlying bio-fingerprint spectra of the saliva
samples provide the variables sufficient for chemometric diagnostics.

Figure 2 shows all the spectra from all the study participants used in this study fol-
lowing spectral pre-processing (Savitzky–Golay (SG) smoothing (window of seven points,
first-order polynomial fitting) and second derivative followed by vector normalization) [20].
Despite marked variation, good consistency in spectral appearance is noted. Of significant
note is that, following the subtraction of either the wet swab spectra or the dry swab spec-
tra, there remains a marked spectral bio-fingerprint. This strongly suggests that, despite
the presence of an underlying swab spectral signature following the mixing in the saliva
sample, it remains possible to extract a spectral bio-fingerprint from the study participant.

https://www.statsmodels.org/dev/generated/statsmodels.multivariate.manova.MANOVA.html
https://www.statsmodels.org/dev/generated/statsmodels.multivariate.manova.MANOVA.html
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It is this overlying spectral bio-fingerprint that potentially contains the participant features
that could indicate the presence or absence of disease.
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Figure 2. Spectral signatures of saliva samples following pre-processing. From benign control and
cancer saliva samples, three independent spectral measurements were taken. Spectral pre-processing
consisted of Savitzky–Golay (SG) smoothing (window of 7 points, 1st-order polynomial fitting) and
2nd derivative followed by vector normalization. This was undertaken with or without subtraction
of dry or wet (in milli-Q water) control swabs. y-axes are Absorbance (a.u.).

Exploratory analysis using PCA with or without LDA was then undertaken. Three
pairwise comparisons were conducted including: (1) benign vs. cancer following swab
analysis; (2) benign vs. cancer following swab analysis with the subtraction of dry swab
spectra; and (3) benign vs. cancer following swab analysis with the subtraction of wet swab
spectra. Within this prospective study of people invited to attend the National Lung Cancer
screening pilot in the Blackpool area of North West England, we used only those patients
who had had a CT scan, in order to ensure a comparison. Those with positive CT scans
were followed up via clinical records. Most had confirmed histology; others were treated
based on scan appearances following a multidisciplinary team (MDT) discussion. Either
was taken as a diagnosis of cancer, as this was the information provided to the patient.
Figure 3 shows the contributions to variance of each of the first 10 PCs in each pairwise
comparison. Remarkable similarity is noted for each pairwise comparison, irrespective of
benign vs. cancer following swab analysis (Figure 3A); benign vs. cancer following swab
analysis with the subtraction of dry swab spectra (Figure 3B); or benign vs. cancer following
swab analysis with the subtraction of wet swab spectra (Figure 3C). Figures 4–6 then show
the PCA scores plots for 2D (plotted on axes for PC2 and PC3) and 3D (plotted on axes for
PC1, PC2 and PC3) exploratory analyses. These show a consistent and remarkably similar
pattern of clustering for the benign control vs. cancer categories, irrespective of whether
the swab plus saliva sample is analysed or whether there is a subtraction for the wet or
dry swab. The critical aspect of this observation is that the blue rayon swab as a substrate
does not appear to influence the profile of the output results. In all cases also, MANOVA
points to marked significance in benign control vs. cancer samples (see Supplementary
Information Figures S1–S3). The separation between the categories is also examined by
employing PCA-LDA (using the first 10 PCs) in a 1D scores plot (Figures S1–S3). Herein,
the crossover samples (n = 14 aligning with benign controls) are more readily identifiable.
An examination of the study participant demographics did not highlight any consistency
in the profiles of these crossover samples; some were early-stage lung cancers, others were
metastases and one had two cancers (a primary lung cancer and a metastasis). However,
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again the pattern of separation is remarkably similar for the benign control vs. cancer
categories, irrespective of whether swab plus saliva sample is analysed or whether there is
a subtraction for the wet or dry swab.
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Figure 3. The contribution of the first 10 PCs to variance following PCA. Following pre-processing,
a scree plot was constructed for each of the three pairwise comparisons undertaken: (A) benign
vs. cancer following swab analysis; (B) benign vs. cancer following swab analysis with subtraction
of dry swab spectra; and (C) benign vs. cancer following swab analysis with subtraction of wet
swab spectra.
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Figure 4. Exploratory analysis of saliva samples on a swab following PCA. Pairwise comparison
of benign vs. cancer following swab analysis. PCA scores plots for 2D (plotted on axes for PC2
and PC3) and 3D (plotted on axes for PC1, PC2 and PC3) exploratory analyses are shown. Four
independent multivariate analysis of variance (MANOVA) tests were undertaken to test for signif-
icance of segregation (see Figure S1). Green spectral points, benign samples; Red spectral points,
cancer samples.
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Figure 5. Exploratory analysis of saliva samples minus a dry swab spectral signature following
PCA. Pairwise comparisons of benign vs. cancer following swab analysis with subtraction of dry
swab spectra. PCA scores plots for 2D (plotted on axes for PC2 and PC3) and 3D (plotted on axes
for PC1, PC2 and PC3) exploratory analyses are shown. Four independent multivariate analysis of
variance (MANOVA) tests were undertaken to test for significance of segregation (see Figure S2).
Green spectral points, benign samples; Red spectral points, cancer samples.
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sistency in the background swab spectral signature, this could conceivably introduce a 
level of variance so great as to increase the difficulty of extracting the features responsible 
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extraction of important biological information, despite the presence of contaminating 
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Figure 6. Exploratory analysis of saliva samples minus a wet swab spectral signature following
PCA. Pairwise comparisons of benign vs. cancer following swab analysis with subtraction of wet
swab spectra. PCA scores plots for 2D (plotted on axes for PC2 and PC3) and 3D (plotted on axes
for PC1, PC2 and PC3) exploratory analyses are shown. Four independent multivariate analysis of
variance (MANOVA) tests were undertaken to test for significance of segregation (see Figure S3).
Green spectral points, benign samples; Red spectral points, cancer samples.

Figure 7 shows the most important wavenumbers responsible for separation along
the first 10 PCs for the three pairwise comparisons that were undertaken including: (A)
benign control vs. cancer following swab analysis; (B) benign control vs. cancer following
swab analysis with the subtraction of dry swab spectra; and (C) benign control vs. cancer
following swab analysis with the subtraction of wet swab spectra. The loadings plots
demonstrate how strongly a spectral wavenumber influences a PC (see Figure S4). For
each comparison, these are remarkably similar. This, again, lends further weight to our
hypothesis that a sterile blue rayon swab is an ideal substrate to allow for a dip test
in a biofluid such as saliva, which can then be readily and consistently applied to the
sensor on the IR spectrometer. This is a critical observation because, if there was a lack of
consistency in the background swab spectral signature, this could conceivably introduce a
level of variance so great as to increase the difficulty of extracting the features responsible
for discriminating between benign control and cancer in this screening approach. The
extraction of important biological information, despite the presence of contaminating
spectral peaks (e.g., paraffin wax from histological blocks), has been achieved in previous
studies [21,22].
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Figure 7. Loadings plots exhibiting the wavenumber contributing the most to variance along each
of the first 10 PCs. These were obtained following pairwise comparisons including: (A) benign vs.
cancer following swab analysis; (B) benign vs. cancer following swab analysis with subtraction
of dry swab spectra; and (C) benign vs. cancer following swab analysis with subtraction of wet
swab spectra.

Figure 8 shows the results from a k-NN (using three nearest neighbours) machine-
learning algorithm; the use of such machine-learning algorithms in lung cancer screening is
becoming popular [23–25]. A three nearest neighbours construction was employed for each
pairwise comparison (see Figure S5). The specificity (90%) and sensitivity (75%) obtained
using k-NN are consistent for each pairwise comparison undertaken using PCA or PCA-
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LDA: (A) benign vs. cancer following swab analysis; (B) benign vs. cancer following swab
analysis with the subtraction of dry swab spectra; and (C) benign vs. cancer following swab
analysis with the subtraction of wet swab spectra. Although this is a pilot sampling of a
larger project, this points to a test that would already be acceptable within a clinical setting.
This would fit well with the requirements of a lung-cancer-screening test where one also
wants to maximise benefits and minimise harm [26]. In an aging population, it is becoming
increasingly difficult to carry out extensive investigations using, for instance, imaging
techniques or molecular markers. A rapid and reagent-free test, that is inexpensive, readily
repeatable and equally applicable to extensive point-of-care testing as a triage-screening
tool, is hugely attractive. It is critical to consider the financial pressures and lack of medical
resources in the implementation of a screening intervention programme [27]; the ability
to roll out a test to the general population and to have the structure for a recall system
emphasises the need for a simplistic testing approach.
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Figure 8. Application of k-nearest neighbours (k-NN) as a machine-learning algorithm. Employing a
three nearest neighbours construction, this was undertaken for each of the three pairwise comparisons
undertaken: (A) benign vs. cancer following swab analysis; (B) benign vs. cancer following swab
analysis with subtraction of dry swab spectra; and (C) benign vs. cancer following swab analysis
with subtraction of wet swab spectra.

This study set out to establish whether a sterile blue rayon swab could be used as a sub-
strate in a dip test for saliva samples obtained from participants in a lung cancer-screening
programme. Although the swabs themselves (wet or dry) exhibit a background spectral
signature in the bio-fingerprint mid-IR region, this was insufficient to negate objective be-
nign control vs. cancer discrimination. Remarkably similar discrimination is noted, with or
without subtraction of wet or dry swab spectral signatures, following exploratory analyses.
Lung cancer has traditionally affected smokers of an older demographic. Its prevalence is
higher in areas of deprivation due to its association with smoking and, as symptoms may
be vague or non-existent, in its early stages it can often present late [28]. With the advent
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of molecular pathology, genomic profiling of tumours has led to personalised treatments,
with huge increases in survival, even for metastatic patients [29,30]. The optimal lung
pathway, therefore, provides time points at which a person should be diagnosed, profiled
and referred for treatment in order to optimise outcomes [31].

This study is part of a larger prospective screening programme where a power calcula-
tion has been undertaken. The small sample size is a limitation herein, but we expect this
to be addressed as the screening programme progresses. Saliva as a liquid biopsy confers
many advantages in terms of its ease of acquisition and the non-invasive nature in which
it can be obtained. There is no need for a Research Nurse to take blood samples from a
patient (which, in older people, might be difficult), nor is there a need for a processing
laboratory if serum or plasma is needed. The major limitation is that one is relying on
surrogate biomarkers of disease to be present in the saliva. With growing evidence that the
oral cavity can be an indicator of overall health, evidence in this study points to the fact
that saliva might also indicate the presence or absence of lung cancer.

Even in this pilot study, exploratory analyses points to a test that already exhibits
adequate sensitivity and specificity for a point-of-care clinical setting. The standardisation
of this approach in a multi-centre trial would also be required [32]. Saliva appears to be an
increasingly promising liquid biopsy for cancer screening [33]. Equally, it appears that a
sterile swab (which many healthcare professionals will be familiar with) can be used as
a substrate to conveniently and safely apply this readily attainable liquid biopsy to the
ATR crystal in order to obtain a fingerprint spectrum. Harnessed to chemometric and
machine-learning algorithms, this approach has enormous potential as a rapid screening
and triage tool in point-of-care clinical settings. We now propose to roll this screening
approach out to the entire population, screening under this programme to ascertain its
performance in comparison with methods such as low-dose CT scans.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/jpm13071039/s1, Figure S1: Exploratory analysis of saliva
samples on a swab following PCA. Following pairwise comparisons of benign versus cancer, four in-
dependent multivariate analysis of variance (MANOVA) tests were undertaken to test for significance
of segregation. Separation between the categories is also examined employing PCA-LDA (using
the first 10 PCs) in a 1D scores plot.; Figure S2: Exploratory analysis of saliva samples, minus a dry
swab spectral signature, following PCA. Following pairwise comparisons of benign versus cancer,
four independent multivariate analysis of variance (MANOVA) tests were undertaken to test for
significance of segregation. Separation between the categories is also examined employing PCA-LDA
(using the first 10 PCs) in a 1D scores plot.; Figure S3: Exploratory analysis of saliva samples, minus
a wet swab spectral signature, following PCA. Following pairwise comparisons of benign versus
cancer, four independent multivariate analysis of variance (MANOVA) tests were undertaken to
test for significance of segregation. Separation between the categories is also examined employing
PCA-LDA (using the first 10 PCs) in a 1D scores plot.; Figure S4: The wavenumbers contributing the
most to variance along each of the first 10 PCs (87.2% total variance). Obtained following pairwise
comparisons: (A) benign versus cancer following swab analysis; (B) benign versus cancer following
swab analysis with subtraction of dry swab spectra; and, (C) benign versus cancer following swab
analysis with subtraction of wet swab spectra.; Figure S5: Application of k-nearest neighbours (k-NN).
A three nearest neighbours construction was undertaken for each of the three pairwise comparisons
undertaken: (A) benign versus cancer following swab analysis; (B) benign versus cancer following
swab analysis with subtraction of dry swab spectra; and (C) benign versus cancer following swab
analysis with subtraction of wet swab spectra.
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