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Abstract: Stability analysis remains a fundamental step in developing a successful imaging biomarker
to personalize oncological strategies. This study proposes an in silico contour generation method for
simulating segmentation variations to identify stable radiomic features. Ground-truth annotation
provided for the whole prostate gland on the multi-parametric MRI sequences (T2w, ADC, and
SUB-DCE) were perturbed to mimic segmentation differences observed among human annotators. In
total, we generated 15 synthetic contours for a given image-segmentation pair. One thousand two
hundred twenty-four unfiltered/filtered radiomic features were extracted applying Pyradiomics,
followed by stability assessment using ICC(1,1). Stable features identified in the internal population
were then compared with an external population to discover and report robust features. Finally,
we also investigated the impact of a wide range of filtering strategies on the stability of features.
The percentage of unfiltered (filtered) features that remained robust subjected to segmentation
variations were T2w—36% (81%), ADC—36% (94%), and SUB—43% (93%). Our findings suggest that
segmentation variations can significantly impact radiomic feature stability but can be mitigated by
including pre-filtering strategies as part of the feature extraction pipeline.
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1. Introduction

Multi-parametric MRI (mpMRI), including T2-weighted (T2w), diffusion-weighted
imaging (DWI), and dynamic contrast-enhanced (DCE) images, has become an essential
tool for the detection and characterization of prostate cancer (PCa) [1–3]. Its role has
extended beyond tumor staging to encompass cancer detection and monitoring of dis-
ease progression during active surveillance (AS) [4–6]. The use of mpMRI in AS seems
particularly attractive. Combining morphological and functional images constitutes a
non-invasive tool for longitudinal monitoring of patients, interrogating the entire prostate
volume, and possibly giving information on the indolence or aggressiveness of the prostate
tissue. Presently, mpMRI is widely used in AS to assess an image-based risk stratifica-
tion score following the guidelines from the prostate imaging reporting and data system
(PI-RADS) [7]. However, this semi-quantitative approach relies entirely on standardized
acquisition and reporting guidelines.

The increasing use of mpMRI among patients in active surveillance makes radiomics
highly attractive. Radiomics is a quantitative approach to medical image analysis that aims
to capture information beyond what is visible to the naked eye [8,9]. Only a handful of
studies have investigated the utility of mpMRI radiomics features in the premise of AS.
Sushentsev, Nikita, et al. [10] examined the complementary value of radiomics features to
improve baseline prediction of PCa progression. Another study by Sushentsev et al. [11]
compared the performance of delta-radiomics [12] and MRI-derived PRECISE [13] scores
in progression prediction. Algohary, Ahmad, et al. [14] evaluated the performance of
radiomics in identifying the presence of clinically significant PCa in AS patients. A few
other studies [15,16] focused on clinical features and/or a chosen set of shape and first-
order features extracted from MRI sequences for progression prediction. Albeit, these
studies only included patients with MRI visible lesions wherein lesions served as the ROI
for extracting radiomics features. Since around half of the patients in AS population are
likely to show MR-visible lesions [17–19], this excludes almost half of the patients enrolled
in surveillance studies.

Furthermore, these studies only considered features extracted from bi-parametric
(bp) MRI—T2w and ADC (derived from DWI) for predictive modeling. Notably, DCE is
acquired as part of routine AS protocol following PIRADS specification. Excluding DCE
sequences results in losing readily available diagnostic information [20].

Generally, these image-based signatures must be highly robust to develop reliable
models for routine clinical practice. Developing a robust model means setting radiomics in
the “big data” analysis framework. Such a model requires extensive training and validation
sets from multicentric studies with image data derived from a large patient population
for a specific pathology. This introduces the complication of radiomic feature variability
due to differences in scanners [21,22], imaging acquisition parameters/protocols [23],
reconstruction algorithms [24,25], processing pipelines [26,27], and the annotation of the
region of interest (ROI) [28,29]. The variability due to these sources may hide any potential
signal from tumor biology, making at least some of the radiomic signatures unreliable and
thus hindering the generalization of results.

Delineating the ROI is an essential step before all image-based medical interventions.
This is a tedious task, and even in the best scenario (segmentation carried out following
standardized and quantitative guidelines), inter- and/or intra-observer variability among
trained radiologists is observed. We may attribute these differences to the behavior of
radiologists in a clinical setting, where some are more conservative or liberal regarding
segmentation. Often, a slight difference in ROIs results in different radiomics feature
values [30–32], commonly referred to as feature instability. Developing signatures using
such unstable features ultimately leads to lower robustness of signatures. Although many
studies have already been carried out to tackle this issue, there are only a few studies in
the context of AS. For example, Xu, Lili, et al. [33] and Zhang, Gu-mu-yang, et al. [34]
included feature stability assessment to variations in lesion segmentation as a feature
filtering strategy earlier in their predictive pipeline. Two radiologists were involved in
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these studies, and ICC [35] was used as the statistical metric to measure stability. Conversely,
Chen, Tong, et al. [36] merged manual lesion segmentations by two radiologists before
feature extraction to reduce the impact of inter-observer variations. Fehr, Duc, et al. [37]
employed a segmentation approach where three readers were involved in a consensual
delineation of tumor and non-cancerous prostate regions as part of their study.

Generally, it is recommended to include at least three raters in stability assessments [35].
In studies measuring feature stability to segmentation variation, this number usually falls
within the range of 2–5 [38–40]. However, obtaining multiple radiologists for segmentation
is a challenging task and is often infeasible. One solution could be the application of mor-
phological operations on the ROI to generate perturbed segmentations for feature stability
assessment. Sushentsev, Nikita, et al. [10,11] followed this strategy where two versions of
ROI were generated by subjecting the original ROI to morphological operations—opening
and closing using a spherical structuring element of a 1-pixel radius. However, this method
does not approximate clinical inter/intra-observer variations wherein the differences are
non-deterministic. An alternative solution was proposed by Haarburger et al. using a
probabilistic U-Net model, which was used to generate 25 plausible segmentations [41].
Using this approach, they discovered a set of features stable to variations in segmentation.
However, the probabilistic U-Net model suffered from limited segmentation diversity,
which can bias the results. A recent extension to this was proposed by the same authors
who used PHiseg model to address some of the limitations of their previous work [29];
they even included four radiologists for clinical inter/intra-observer variations analysis.
Although using such generative models can scale up such studies, there are a few caveats.
The computation cost and resource requirement for training and tuning a generative deep
learning (DL) model is quite high. Expertise in DL is also essential to customize and
integrate such a model into a radiomics pipeline.

In this work, we try to address these limitations by proposing a simple in silico
contour generation method inspired by the data augmentation paradigm in DL. We have
considered the whole prostate gland as the ROI to endorse the inclusion of AS patients
with no MR-visible lesions for future predictive modeling studies. On this account, we also
considered the acquired DCE sequence as part of our pipeline routine AS protocol. We
intend to simulate various clinical segmentation scenarios using a combination of linear
transformations such as rotation, scaling, and shifting that follows a set of predetermined
constraints to simulate the behavior of manual annotators. The stable features identified in
the internal population will then be compared with an external dataset to report a set of
overlapping stable features (i.e., robust features) that could be utilized in future predictive
modeling studies.

2. Materials and Methods
2.1. Datasets
2.1.1. Internal Dataset

We included one hundred patients diagnosed with very low-risk prostate cancer and
enrolled in active surveillance at the Fondazione IRCCS Istituto Nazionale dei Tumori in
Milan. The local Ethics Committee approved the study protocol (INT 113/16, INT 46/07,
and INT 95/11), and all patients signed a written informed consent for the study.

MRI acquisitions were performed using an “Ingenia” 1.5 T (Philips Medical System,
Best, The Netherlands) equipped with 32-channel phased-array and spine coils in com-
bination with an endorectal receiver coil. Images were acquired using Turbo Spin Echo
and Gradient Echo sequences, always including a sequence with axial slicing, according to
the PI-RADS v2.1 [7] recommendations. The acquisition protocol was standardized: every
set of images included T2w images (TR/TE = 4910/110 ms, slice thickness = 3 mm, pixel
spacing = 0.297 mm) and two functional MRI sequences: DWI (b-values of 0, 1500, and
2000 s/mm2, TR/TE = 3320/106 ms, slice thickness = 3 mm, pixel spacing = 1.250 mm) and
DCE (TR/TE = 4.03/1.88 ms, slice thickness = 3 mm, pixel spacing = 1.136 mm). DCE was
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acquired with a high temporal resolution (<10 s) during the administration of the contrast
agent in the same position and phase encoding direction as T2w and DWI.

An experienced radiologist (E.G.) segmented the entire prostate gland on the T2w
sequence. Interpolation proved sufficient to align the segmentation on the T2w with
the other sequences, owed to the restricted motion and sequential acquisition of all the
multi-parametric sequences.

We processed DWI and DCE sequences to generate the Apparent Diffusion Coefficient
(ADC) and subtraction (SUB) maps. We derived the ADC map by computing the negative
gradient associated with a least-square fit (straight line) over the DWI acquisitions with
three b-values—0, 1500, and 2000 mm/s2. We processed the DCE acquisitions to generate
two subtraction (SUB) maps describing the wash-in (SUBwin) and wash-out (SUBwout)
phases of the contrast agent. The maps were computed by splitting the DCE acquisitions
at a time point close to 90s in the temporal domain, i.e., SUBwin = DCE90+ε-DCE0 and
SUBwout = DCEt_n-DCE90+ε. This was performed to capture the contrast agent inflow
(wash-in) and outflow (wash-out) phases which are known to guide radiologists in assess-
ing the malignancy in PCa management [42]. Here, t_n indicates the last DCE acquisition
in the temporal domain. ε represents the deviation from the referenced time point. Table 1a
presents a simplified summary of the internal dataset properties, and Figure 1, panel (a)
highlights mid-gland level axial mpMRI slices of a sample patient from the population.

Table 1. A simplified summary of the specifications for both the internal and external datasets used
in this study.

Specifications (a) Internal Dataset (b) External Dataset

No. of Patients 100 15

Manufacturer Ingenia (Philips Medical System, Best, The
Netherlands)

GE Signa HDxt platform and GE
Discovery MR750w (General Electric
Healthcare, Milwaukee, WI) machines.

Magnetic Field Strength 1.5 T 3.0 T

Endorectal Coil Yes Yes

PIRADSv2 Compliant Yes Yes

Acquisition Protocol

T2w (TR/TE = 4910/110 ms, slice
thickness = 3 mm, pixel spacing = 0.297 mm);
DWI (b-values = 0, 1500 and 2000 s/mm2,
TR/TE = 3320/106 ms, slice thickness = 3 mm,
pixel spacing = 1.250 mm);
DCE (TR/TE = 4.03/1.88 ms, slice
thickness = 3 mm, pixel spacing = 1.136 mm,
acquired with high temporal resolution < 10 s).

T2w (TR/TE = 3350–5109/84–107 ms,
slice thickness = 3 mm, pixel
spacing = 0.273–0.312 mm);
DWI (b-values of 0 and 1400 s/mm2,
TR/TE = 2500–8150/76.7–80.6 ms, slice
thickness = 3–4 mm, pixel
spacing = 0.625–0.703 mm);
DCE (TR/TE = 3.68–4.1/1.3–1.42 ms, slice
thickness = 5–6 mm, pixel
spacing = 0.547–1.015 mm).

GT Segmentation Whole prostate gland segmentation on T2w Whole prostate gland segmentation on
T2w, ADC, and SUB

2.1.2. External Dataset

QIN Prostate Repeatability is an open-source [43–45] prostate mpMRI test-retest
dataset of 15 men with confirmed or suspected prostate cancer. mpMRI acquisitions were PI-
RADS v2 compliant and were performed using “GE Signa HDxt platform” and “GE Discov-
ery MR750w” (General Electric Healthcare, Milwaukee, WI) machines. The images were ac-
quired at a magnetic strength of 3.0 T in combination with an endorectal coil. Two scanners
were used because of the hardware upgrade during the study. For each patient, the baseline
and repeated examinations were taken on the same scanner at a two-week interval. Multi-
parametric acquisitions included axial T2w images (TR/TE = 3350–5109/84–107 ms, slice
thickness = 3 mm), DWI (b-values of 0 and 1400 s/mm2, TR/TE = 2500–8150/76.7–80.6 ms,
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slice thickness = 3–4 mm) and DCE (TR/TE = 3.68–4.1/1.3–1.42 ms, slice thickness = 5–6 mm)
sequences.
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Figure 1. Mid-level axial slice of the prostate gland with ROI annotation. (a) T2w, ADC, SUBwin, and
SUBwout images associated with a random patient sampled from the internal population; (b) T2w,
ADC, and SUB images associated with a random patient sampled from the external population.

The in-built scanner software generated ADC and DCE SUB maps. The SUB map was
computed as the difference between the phases involved in contrast bolus arrival to the
baseline. Ultimately manual segmentation of the whole prostate gland (amongst other
ROIs) was performed by an experienced radiologist for each sequence and was included in
the dataset. Table 1b presents a simplified summary of the external dataset properties, and
Figure 1, panel (b), highlights mid-gland level axial mpMRI slices of a sample patient from
the population.

2.2. In Silico Contour Generation

To evaluate the impact of segmentation variations on radiomic feature stability, we
synthetically generated 15 new prostate ROIs for each patient. We synthesized these
contours by subjecting the manual ROI segmentation to bounded perturbations using
affine transformations. The transformations include shifting, scaling, and rotation to
simulate under-/over-segmentation variations. This approach was inspired by the data
augmentation technique commonly used in deep learning [46,47]. TorchIO (v0.18.21) [48],
a Python-based library for processing or augmenting 3D medical images, was used to
generate synthetic contours dynamically.

By considering bounded (i.e., constrained) combinations of affine transformations, we
systematically analyzed three categories of contour augmentations: in-plane, out-plane,
and in and out-plane on each mpMRI sequence.

As the name suggests, in-plane augmentation essentially simulates the variability in
contouring within the axial plane (i.e., variations within X and Y dimensions associated
with a slice). Here the prostate contours are allowed to have variations in their latero-
lateral or antero-posterior dimensions by a value randomly sampled from a uniform
distribution within the interval [−2.7 mm, +2.7 mm]. In addition to this, the contour is
randomly allowed to rotate around the z-axis at a small angle, α ~ U(−5◦, +5◦) (see Figure 2).
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The choice of intervals for contour variability [−2.7 mm, +2.7 mm] was established by
following the results of studies on the inter-observer variability in prostate contouring using
MRI [49,50]. These studies report an average standard deviation of 1.1 mm, corresponding
to 2.7 mm at a 95% confidence interval.
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Figure 2. Illustration of in-plane augmentation. The width, w, and height, h, associated with the
contour drawn by the radiologist (left in green) in the axial plane are allowed to undergo random
perturbation by a delta value—dw, dh ~ U (−2.7 mm, 2.7 mm). This results in a transformed contour
(right in red) with width, w’ = w + dw, and height, h’ = h + dh. In addition to this, the contour is also
allowed to randomly rotate in the z-axis at an angle, α ~ U(−5◦, +5◦).

Out-plane augmentation essentially represents a scenario where the difference in the
segmented ROIs happens due to the difference in the choices of the first and/or last slice in
the cranio-caudal direction. In this case, we allowed a maximum shift of one slice on either
side related to the choice of the prostate ROI boundary (See Figure 3).

In and out-plane augmentation combines the in- and out-plane augmentations to
generate custom contour variations representing real-world scenarios.

Furthermore, for in-plane augmentation, we considered two possible biases to model
intra- and inter-observer variability in contouring: (a) random bias, where the contour
associated with each slice can undergo random transformations independently across the
axial dimensions, i.e., for each patient, the height and/or width associated with a contour
can independently increase/decrease per slice; (b) systematic bias essentially behaves at
random but restricts the direction of the variability to remain the same for all the slices
associated with a patient. (i.e., the height and width associated with a contour can either
increase or decrease for all the slices). Systematic bias mimics the behavior of radiologists
in a clinical scenario where some are systematically more “abundant” in their segmentation
while others are more “restrictive”.

In summary, we considered five simulated scenarios for each MRI sequence: (1) in-
plane augmentation with random bias; (2) in-plane augmentation with systematic bias;
(3) out-plane augmentation; (4) in and out-plane augmentation with random bias; (5) in
and out-plane augmentation with systematic bias.
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Figure 3. Illustration of various out-plane augmentation scenarios with respect to the true ROI.
This augmentation type simulates the variability in the choice of the ROI boundary slice in the
craniocaudal direction. The yellow box highlights the slices encompassing the ROI; The vertical
dotted green lines indicate the original prostate boundary slices.

2.3. Image Processing Pipeline

In this section, we will summarize some of the preprocessing tasks we have adopted
before feeding the image-segmentation pair to the feature extraction pipeline of Pyra-
diomics [51].

To standardize the voxel size across all the image acquisitions, we resampled the image
dimensions to have a common isotropic voxel size of 2 × 2 × 2 mm3. It is important to em-
phasize that we resampled the in-plane dimensions using third-order B-Spline (cubic) while
we resampled the out-plane dimension using nearest neighbor interpolation. We adopted
such a strategy to avoid noisy artifacts when upsampling low-resolution images. Subse-
quently, we used nearest neighbor interpolation to resample all the binary segmentations.

The intensity values in T2w and SUB sequences are relative and are not directly com-
parable across patients. To this account, we normalized the intensity values using the mean
and standard deviation computed on each patient’s three-dimensional ROI (i.e., whole
prostate). We adopted a similar strategy for ADC. However, since ADC intensities have
a global meaning, we computed the mean and standard deviation (σ) across all the pa-
tients in the internal dataset rather than normalizing them individually. We then clipped
the normalized images at 3σ to further reduce the impact of noises. Finally, we shifted
the image mean to a value of 300 with a standard deviation of 100. Assuming a normal
distribution, such scaling and shifting ensure that most values lie within the range of 0 to
600, minimizing the influence of negative values on the calculation of radiomic features,
which is preferred [26,52,53].
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2.4. Radiomics Feature Extraction Pipeline

We used the default settings of Pyradiomics configuration parameters for feature
extraction. A notable difference is in the normalization strategy described in the image
processing pipeline. The bin-width parameter was also set to 5, such that the number of
bins after discretization lies within the range of 30 to 130 (i.e., for the range 0–600, bin-
count = 600/5 = 120), which is shown as having good performance and reproducibility in
the literature [54]. Moreover, we believe that a smaller bin width will capture fine-grained
information within the whole prostate volume, especially since evidence suggests that only
50% of the patients enrolled in active surveillance have MR visible lesions [17–19].

One thousand two hundred twenty-four features were extracted from the 3D prostate
ROI, pertaining to two main feature families and 17 unfiltered/filtered strategies. Table S1
of the Supplementary Materials reports the complete list of all the features considered. For
details on their definition, refer to Pyradiomics documentation [51].

The main feature families constitute:

1. First-order statistics (FO, n = 18) providing information about the histogram of the
grey values inside the prostate ROI; and

2. Texture features, providing information about the spatial distribution of grey val-
ues. We used the following textural matrices to compute the textural features: Gray
Level Co-occurrence Matrix (GLCM, n = 22 features); Gray Level Run Length Matrix
(GLRLM, n = 16 features); Gray Level Size Zone Matrix (GLSZM, n = 16 features).

We utilized all the standard filtering techniques offered by the Pyradiomics package,
including LoG (Laplacian of Gaussian filter with kernel sizes, σ = 2, 3, 4, 5 mm), wavelet
(eight decompositions per level based on either applying high (H) or low (L) pass filter along
each of the three dimensions—HHH, HHL, HLH, HLL, LHH, LHL, LLH, LLL), squared,
square root, logarithm, and exponential filters as part of feature extraction pipeline.

2.5. Stability Analysis

We assessed the stability of radiomic features using the intraclass correlation coeffi-
cient form—ICC(1,1) [35] (i.e., model = one-way random effects, type = single rater, and
definition = absolute agreement). The model was chosen as one-way random effects since
each patient is subjected to random segmentations generated by the augmentation model
representing a randomly chosen sample of possible annotators (or raters). The measure-
ment from each rater (i.e., each simulated segmentation) will be the basis of the actual
measurement (i.e., the extracted feature); hence the ICC type = single rater. The defini-
tion = absolute agreement since we expect the computed feature to remain the same for the
same subject across the different annotators. We calculated the ICC(1,1) using the Python
library Pingouin (v 0.3.12) [55].

ICC estimate ranges between 0 and 1, with values closer to 1 showing the highest
stability. Conventionally to identify stable radiomic features, the ICC estimate is thresh-
olded [35]. In this study, we followed a similar strategy where we categorized a radiomics
feature as stable if the lower bound on the 95% confidence interval of the ICC estimate was
above 0.90.

We used an external dataset to assess the robustness of stable features identified in
the internal population by considering the overlap between stable features across the two
datasets. We labeled an overlapped feature as robust if the threshold criterium is satisfied
in both datasets, i.e., if the minimum of the lower bound of the ICC estimate in the internal
and external datasets is above 0.90. Figure 4 illustrates the overall workflow followed in
this study. The Python-based implementation is provided as open-source and is available
at https://github.com/sithin-int/stability_study.git (accessed on 19 July 2023) to promote
further investigation and reproducibility.

https://github.com/sithin-int/stability_study.git
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omic features extracted from T2w, DWI, and DCE sequences to variations in segmentation. Manual 
Figure 4. Schematic representation of the workflow involved in the stability study on prostate ra-
diomic features extracted from T2w, DWI, and DCE sequences to variations in segmentation. Manual
prostate annotation provided for the T2w sequence was co-registered with the other sequences. The
segmentations were then augmented to generate 15 synthetic contours (in the figure as an example,
3 synthetic contours are generated + the original segmentation). A total of 1224 radiomic features
were extracted from each of the image-mask pairs. The stability of the features was analyzed using
ICC (1,1).

3. Results

In this study, we investigated the impact of variations in segmentation on the stability
of radiomic features using an in silico contour variability simulator covering three aug-
mentations scenarios—in-plane vs. out-plane vs. in and out-plane; and two segmentation
biases—random vs. systematic. Table 2 summarizes the distribution of pairwise dice
scores between the ground truth (manual segmentation by the experienced radiologist)
and generated contour across all the augmentation-bias configurations. Table 3 presents
a simplified summary of the percentage of stable and robust features across all these con-
figurations. Among them, in and out-plane systematic variations significantly impacted
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radiomic features’ stability, while out-plane variations seem to affect the least. We observed
that the variability margin also depends on the sequence and the filtering strategy.

Table 2. The mean and standard deviation of the dice distribution for each sequence subjected to five
different augmentation scenarios.

(a) Internal

aug config
T2w ADC SUBwin SUBwout

mean std mean std mean std mean std
InP-R 0.95 0.01 0.95 0.01 0.95 0.01 0.95 0.01
InP-S 0.95 0.02 0.95 0.02 0.95 0.02 0.95 0.02
OutP 0.99 0.01 0.99 0.01 0.99 0.01 0.99 0.01
In&OutP-R 0.95 0.01 0.95 0.01 0.95 0.02 0.95 0.01
In&OutP-S 0.94 0.03 0.95 0.03 0.94 0.02 0.94 0.03
(b) External

aug config
T2w ADC SUB

mean std mean std mean std
InP-R 0.95 0.01 0.96 0.01 0.95 0.02
InP-S 0.95 0.03 0.95 0.02 0.95 0.03
OutP 0.99 0.01 0.99 0.01 0.99 0.01
In&OutP-R 0.94 0.02 0.95 0.01 0.94 0.02
In&OutP-S 0.94 0.03 0.95 0.03 0.94 0.03

aug config—augmentation configuration; InP-R/S—InPlane Random/Systematic; OutP—OutPlane; In&OutP-
R/S—In and Out Plane Random/Systematic.

The sheer amount of output data generated by our analysis makes it challenging to
discuss each configuration in detail. To simplify, the remainder of the paper will focus
exclusively on the most clinically relevant configuration, i.e., in and out plane augmen-
tation with systematic bias. For all the other scenarios, we recommend referring to the
supplementary materials. Another overhead may be attributed to the 16 distinct filtering
strategies investigated in our study. To streamline our analysis, we only considered filter(s)
that showed stability for a feature in the internal population, referred to as best-filter(s), to
be compared with the external population for robustness evaluation. The terms “stability”
and “robustness” used in this section need to be carefully interpreted. Stable features refer
to radiomic features that are stable to variations in segmentation exclusively based on their
behavior on the internal population. Robust features, on the other hand, are the overlapped
stable features in both the internal and external populations.

Among unfiltered/original radiomic features subjected to in and out-plane systematic
variations, T2w (stability = 69%) and SUBwin (65%) sequences showed high stability,
followed by SUBwout (53%) and ADC (47%). On the contrary, during robustness evaluation,
the fraction of stable features dropped by a significant margin for T2w (drop margin~30%)
and SUBwin (~20) while it remained within the range of 10% for SUBwout, and ADC.
Consequently, the robustness of features proceeds in the order of SUBwin (robust = 46%),
SUBwout (43%), ADC (36%), and T2w (36%). Although T2w sequence features exhibited
high stability, they showed the least robustness among all the sequences.

Filtering, on the other hand, improved radiomic features’ stability considerably com-
pared to the unfiltered counterpart. All the filtered sequences had a mean improvement
margin of 38%. ADC and T2w features showed a stability of 97%, followed by SUBwin
(96%) and SUBwout (94%). The robustness assessment also indicated a high overlap among
stable features between the internal and external datasets. The T2w sequence showed the
least robustness yet had almost 81% of robust filtered features. This is an improvement
of nearly 50% compared to its behavior in the unfiltered configuration. ADC (robust-
ness = 94%) exhibited a similar trend with almost 60% of improvement margin. For both
SUBwin and SUBwout sequences, 93% of all the stable features were robust.
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Table 3. A summary of the fraction of stable and robust features associated with the mpMRI sequences considered in the study. A feature is considered as stable
if the lower bound of the 95% CI of the ICC estimate > 0.90. A stable feature will be categorized as robust if the feature remains stable in both the internal and
external dataset.

(a) T2w

aug config

firstorder glcm glrlm glszm Overall
O BF O BF O BF O BF O BF

S R S R S R S R S R S R S R S R S R S R
InP-R 0.72 0.72 1 1 0.95 0.86 1 1 0.94 0.75 1 1 0.81 0.62 1 0.88 0.86 0.75 1 0.97
InP-S 0.44 0.22 1 0.94 0.73 0.41 1 0.86 0.94 0.44 1 0.62 0.75 0.44 1 0.81 0.71 0.38 1 0.82
OutP 0.83 0.83 1 1 1 1 1 1 1 1 1 1 0.94 0.81 1 1 0.94 0.92 1 1
In&OutP-R 0.72 0.61 1 1 0.95 0.82 1 1 0.94 0.56 1 1 0.81 0.56 1 0.88 0.86 0.65 1 0.97
In&OutP-S 0.44 0.22 1 0.94 0.73 0.41 1 0.86 0.94 0.44 1 0.62 0.69 0.38 0.88 0.75 0.69 0.36 0.97 0.81
(b) ADC

aug config

firstorder glcm glrlm glszm Overall
O BF O BF O BF O BF O BF

S R S R S R S R S R S R S R S R S R S R
InP-R 0.94 0.89 1 1 1 0.91 1 1 1 0.94 1 1 0.81 0.69 0.94 0.94 0.94 0.86 0.99 0.99
InP-S 0.5 0.5 1 1 0.55 0.41 1 1 0.69 0.5 1 1 0.44 0.31 0.88 0.88 0.54 0.43 0.97 0.97
OutP 1 0.89 1 1 1 0.95 1 1 0.94 0.94 1 1 0.81 0.81 1 1 0.94 0.9 1 1
In&OutP-R 0.94 0.89 1 0.94 1 0.91 1 1 0.94 0.88 1 1 0.75 0.56 0.94 0.94 0.92 0.82 0.99 0.97
In&OutP-S 0.56 0.56 1 0.94 0.5 0.36 1 1 0.5 0.31 1 1 0.31 0.19 0.88 0.81 0.47 0.36 0.97 0.94
(c) SUBwin

aug config

firstorder glcm glrlm glszm Overall
O BF O BF O BF O BF O BF

S R S R S R S R S R S R S R S R S R S R
InP-R 0.72 0.67 1 1 0.91 0.91 1 1 0.81 0.62 1 1 0.81 0.56 1 0.88 0.82 0.71 1 0.97
InP-S 0.5 0.33 1 1 0.82 0.5 1 1 0.56 0.56 0.94 0.81 0.75 0.56 0.88 0.88 0.67 0.49 0.96 0.93
OutP 0.83 0.78 1 1 1 1 1 1 1 1 1 1 1 0.88 1 1 0.96 0.92 1 1
In&OutP-R 0.72 0.61 1 1 0.91 0.82 1 1 0.81 0.62 1 0.88 0.81 0.5 1 0.88 0.82 0.65 1 0.94
In&OutP-S 0.5 0.33 1 1 0.82 0.5 1 1 0.56 0.56 0.94 0.81 0.69 0.44 0.88 0.88 0.65 0.46 0.96 0.93
(d) SUBwout
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Table 3. Cont.

aug config
firstorder glcm glrlm glszm Overall

O BF O BF O BF O BF O BF

S R S R S R S R S R S R S R S R S R S R

InP-R 0.78 0.67 1 1 0.95 0.91 1 1 0.94 0.62 1 1 0.88 0.62 0.94 0.88 0.89 0.72 0.99 0.97

InP-S 0.33 0.33 1 1 0.68 0.41 1 1 0.56 0.56 1 0.81 0.56 0.5 0.94 0.88 0.54 0.44 0.99 0.93

OutP 0.89 0.78 1 1 1 1 1 1 0.94 0.94 1 1 1 0.88 1 1 0.96 0.9 1 1

In&OutP-R 0.72 0.61 1 1 0.91 0.82 1 1 0.81 0.62 1 0.88 0.81 0.56 0.88 0.88 0.82 0.67 0.97 0.94

In&OutP-S 0.33 0.33 1 1 0.64 0.41 1 1 0.56 0.56 0.88 0.81 0.56 0.44 0.88 0.88 0.53 0.43 0.94 0.93

aug config—augmentation configuration; InP-R/S—InPlane Random/Systematic; OutP—OutPlane; In&OutP-R/S—In and Out Plane Random/Systematic; O—Original/Raw/Unfiltered;
BF—Best Filtered; S—Stable; R—Robust.
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In summary, ADC-filtered features demonstrated the highest degree of robustness,
followed by SUB and T2w. Figures 5–8, in their panels (a), highlight the impact of the
unfiltered v/s filtering strategy on the stability and, consequently, on the robustness of
radiomic features as a heatmap. Figures 5–8, in their panels (b), portray the overlap
among the ICC estimates between the internal and external population for unfiltered and
best-filtered feature configurations.
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Figure 5. Stability and robustness of filtered/unfiltered T2w radiomics features subjected to in and
out-plane-systematic segmentation variations. A feature is considered stable if the lower bound of
the 95% CI of the ICC estimate > 0.90. (a) Stable v/s unstable feature heatmap—grey cells indicate
unstable features, with darker shades of grey indicating lower ICC bounds. All the green cells
represent stable features. (b) ICC plot portrays the overlap computed as the minimum stability
value of a feature in the internal and external dataset grouped by both unfiltered and best-filtered
configurations. For simplicity, we are only displaying the best filter(s) that yielded the highest ICC
lower bound after overlap. The dotted green line indicates the stability threshold.
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Figure 6. Stability and robustness of filtered/unfiltered ADC radiomics features subjected to in and
out-plane-systematic segmentation variations. A feature is considered stable if the lower bound of
the 95% CI of the ICC estimate > 0.90. (a) Stable v/s unstable feature heatmap—grey cells indicate
unstable features, with darker shades of grey indicating lower ICC bounds. All the green cells
represent stable features. (b) ICC plot portrays the overlap computed as the minimum stability
value of a feature in the internal and external dataset grouped by both unfiltered and best-filtered
configurations. For simplicity, we are only displaying the best filter(s) that yielded the highest ICC
lower bound after overlap. The dotted green line indicates the stability threshold.
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Figure 7. Stability and robustness of filtered/unfiltered SUBwin radiomics features subjected to
in and out-plane-systematic segmentation variations. A feature is considered stable if the lower
bound of the 95% CI of the ICC estimate > 0.90. (a) Stable v/s unstable feature heatmap—grey cells
indicate unstable features, with darker shades of grey indicating lower ICC bounds. All the green
cells represent stable features. (b) ICC plot portrays the overlap computed as the minimum stability
value of a feature in the internal and external dataset grouped by both unfiltered and best-filtered
configurations. For simplicity, we are only displaying the best filter(s) that yielded the highest ICC
lower bound after overlap. The dotted green line indicates the stability threshold.
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Figure 8. Stability and robustness of filtered/unfiltered SUBwout radiomics features subjected to
in and out-plane-systematic segmentation variations. A feature is considered stable if the lower
bound of the 95% CI of the ICC estimate > 0.90. (a) Stable v/s unstable feature heatmap—grey cells
indicate unstable features, with darker shades of grey indicating lower ICC bounds. All the green
cells represent stable features. (b) ICC plot portrays the overlap computed as the minimum stability
value of a feature in the internal and external dataset grouped by both unfiltered and best-filtered
configurations. For simplicity, we are only displaying the best filter(s) that yielded the highest ICC
lower bound after overlap. The dotted green line indicates the stability threshold.
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4. Discussion

Reliability (or stability) is essential to use quantitative image-based features as poten-
tial biomarkers for clinical applications. While numerous factors could influence radiomics
feature repeatability, this study focused exclusively on the stability of features to varia-
tions in segmentation. This was accomplished by designing an in silico contour generator
that simulates variations commonly observed among manual annotators. This study in-
vestigated five distinct configurations covering three augmentation scenarios—in-plane,
out-plane, and in and out-plane—and two segmentation biases—random and systematic.
The generator’s design was inspired by the data augmentation paradigm in DL and utilized
bounded affine transformations.

In the premise of prostate mpMRI analysis, only a few studies have investigated the
stability of features to variations in segmentation. For example, Xu, Lili, et al. [33] obtained
lesion annotations from two radiologists to assess the feature stability to develop a robust
radiomics model for predicting extraprostatic extension. Another study undertaken by
Sushentsev, Nikita, et al. [10] used morphological perturbations such as opening and/or
closing on the lesion ROI to simulate contour variations without involving manual anno-
tators. The robust features they identified were then used to predict PCa progression. It
is important to note that, in both studies, the lesions were used as the ROIs. This may
not be ideal in active surveillance, especially since only half the patients will likely show
MR-visible lesions [17–19]. To this account, we recommend using the whole prostate gland
to analyze MRI images from very low-risk PCa patients on active surveillance.

Segmentation of the prostate gland is challenging due to the lack of a clear visual
boundary and significant variations in its size and shape among patients. These differences
lead to intra-/inter-observer segmentation variations among human annotators. Our results
highlight that these variations can notably impact stability, particularly among unfiltered
radiomic features. However, it can be mitigated by incorporating filtering strategies.
While the Image Biomarker Standardisation Initiative (ISBI) does not address pre-filtering
strategies, filters such as Wavelet and LoG have been shown to yield highly predictive
signatures [9,56]. Our results suggest that the use of Wavelet and LoG filters could also
lead to considerable improvements in terms of stability (see Figure 9).

Radiomics mpMRI studies rarely include DCE sequences but rely primarily on bi-
parametric (bp) or uni-parametric MR sequences. This may be attributed to two major
reasons: (i) despite the loss in diagnostic information [20], bpMRI is recommended for
biopsy naïve PCa patients and is more suitable for large studies [57] as it eliminates the risk
of adverse effects due to contrast agent and speeds up image acquisition; (ii) the processing
pipeline associated with DCE is complicated as we need to consider the temporal domain.
Conventionally pharmacokinetic maps are extracted from DCE images and are used for
radiomics analysis [58].

PCa patients on active surveillance do not fall into the category of biopsy naïve
patients; hence, we chose to include DCE sequence in our analysis. Instead of computing
pharmacokinetic maps, we derived subtraction maps to encapsulate the contrast agent’s
wash-in and wash-out phases. Schwier, Michael, et al. [26] conducted a test-retest feature
repeatability study on prostate mpMRI sequences, examining SUB maps. They reported
that none of the radiomic features extracted from the whole-prostate gland was stable.
Our findings suggest the contrary, where SUB sequence features showed high robustness
among unfiltered and filtered configurations. However, it is essential to note that these
results are not directly comparable. Their study focused on the stability of SUB features in
a test-retest configuration, while we investigated feature stability subjected to variations
in segmentation. Nonetheless, we would like to emphasize this point to promote further
investigation of SUB maps.

A conventional approach to evaluating the stability of radiomic features involves
using a test-retest paradigm [53,59,60]. It is often the case that test-retest acquisitions may
be difficult to obtain or not readily available. Zwanenburg et al. [61] proposed a solution
to this approach by leveraging the data augmentation paradigm in DL. They synthesized
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different image acquisitions by considering linear/non-linear perturbations of the original
image. They used a combination of transformations such as translation, rotation, volume
growth/shrinkage, super-voxel-based contour randomization, and noise addition. The in
silico contour segmentation tool proposed in this study also follows a similar pipeline. Yet,
instead of augmenting the images, we aim to induce variations in the segmentation mask.
Moreover, we restricted augmentations to replicate real-world variations commonly seen
among manual annotators. The potential application of this tool lies in promoting future
stability studies to segmentation as it can be easily integrated into any radiomics pipeline.
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Figure 9. The histogram plot presents a summary of the frequency at which a robust feature is
associated with a particular filter/filter-family subjected to systematic-in and out-plane augmentation
across all image sequences.

The limitations of this study highlight possible future research directions. We assumed
we could simulate the segmentation variations resulting from inter/intra-observer variabil-
ity by subjecting ground truth annotation to bounded affine transformations. Nevertheless,
it is uncertain how much this approximation reflects the variations observed in the real
world. Therefore, further investigation is warranted to validate the proposed method by
comparing it with the conventional clinical inter/intra-observer variations study involving
manual annotators. This increases the overhead of involving multiple radiologists, which
was not feasible in this study. Although we considered the overlap in terms of stability
between the internal and external datasets, it is essential to emphasize that these popu-
lations may not be directly comparable. This is particularly true for SUB maps. For the
external population, SUB maps were scanner derived considering the early post-contrast
and pre-contrast. On the other hand, SUB maps were derived manually for the internal
population by considering the contrast agent’s wash-in and wash-out phases. Yet another
limitation may be attributed to the scope of this study, where the analysis is limited to the
stability of prostate radiomic features subjected to variations in segmentation. In reality,
numerous other sources of variations affect feature stability, such as the heterogeneity
of study protocols, scan acquisition parameters, reconstruction settings, and feature ex-
traction pipeline, which need to be considered to improve the overall generalizability of
radiomic signatures.
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5. Conclusions

This study presents a method to evaluate the stability of radiomic features to variations
in segmentation. The technique was then employed to examine the stability of mpMRI
radiomic features extracted from the whole prostate gland among PCa patients in active
surveillance. Our findings highlight that unfiltered radiomic features are susceptible to
variations in segmentation. However, by incorporating pre-filtering strategies, the feature
stability improved. We also recommend using external datasets to validate the robustness
of stable features identified on the internal dataset.

The contour augmentation method proposed in this study also has the potential
to enhance the robustness of PI-RADS [7] determination, i.e., by evaluating PI-RADS
using multiple augmented contours, a distribution of scores can be obtained mirroring the
uncertainties associated with the single definition of the regions of interest.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/jpm13071172/s1. Table S1: The complete list of radiomics
features and filtering strategies considered in the study. Folder B.1 ICC Plots: The folder named
“plots” contains all the figures associated with each sequence and augmentation scenario for both
internal and external population. Eg. To visualize the ICC plot associated with internal T2w sequence
subjected to in-plane-random augmentation; Open plots->t2w->in_plane_random_internal.png.
Folder B.2 Overlap Plots: The folder named “overlap_plots” contains all the figures associated with
each sequence and augmentation scenario. The overlap here indicates the overlap (or minimum)
of ICC estimates between both the internal and external population. Eg. To visualize the overlap
plot associated with T2w sequence subjected to in-plane-random augmentation; Open overlap_plots-
>t2w->in_plane_random.png Folder B.3 Heatmaps: The folder named “heatmaps” contains all the
heatmaps associated with each sequence and augmentation scenario. This is another representation of
overlapping plots highlighting robust features. Robust features are highlighted green while unstable
features are highlighted gray. Eg. To visualize the heatmap associated with T2w sequence subjected
to in-plane-random augmentation; Open heatmaps->t2w->in_plan_random.png. Folder B.4 Robust
Filter Histograms: The folder named “histplots” contains all the figures associated with each augmen-
tation scenario. This plot counts the number of times a filter/filter family was found among robust
(1) non-robust (0) features. Eg: To visualize the histogram associated with in-plane-random aug-
mentation scenario; Open histplots->in_plane_random.png. Folder Robust Features: All the robust
features associated with each augmentation configuration are contained in folder “robust_features”.
The filtering technique available in MS excel can guide the user to extract information necessary for a
specific sequence.
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