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Abstract: Congenital heart diseases (CHDs) are structural or functional defects present at birth due to
improper heart development. Current therapeutic approaches to treating severe CHDs are primarily
palliative surgical interventions during the peri- or prenatal stages, when the heart has fully developed
from faulty embryogenesis. However, earlier interventions during embryonic development have
the potential for better outcomes, as demonstrated by fetal cardiac interventions performed in
utero, which have shown improved neonatal and prenatal survival rates, as well as reduced lifelong
morbidity. Extensive research on heart development has identified key steps, cellular players,
and the intricate network of signaling pathways and transcription factors governing cardiogenesis.
Additionally, some reports have indicated that certain adverse genetic and environmental conditions
leading to heart malformations and embryonic death may be amendable through the activation of
alternative mechanisms. This review first highlights key molecular and cellular processes involved in
heart development. Subsequently, it explores the potential for future therapeutic strategies, targeting
early embryonic stages, to prevent CHDs, through the delivery of biomolecules or exosomes to
compensate for faulty cardiogenic mechanisms. Implementing such non-surgical interventions
during early gestation may offer a prophylactic approach toward reducing the occurrence and
severity of CHDs.

Keywords: stem cells; placenta and heart development; congenital heart diseases; secretomes;
exosome; blastocyst; cardiogenic signaling pathways

1. Introduction

The development of the human heart is a complex process that is initiated early during
embryogenesis, orchestrated by intricate molecular and cellular events. Congenital heart
diseases (CHDs), which result from improper embryonic development, are a group of
structural and functional cardiac defects that affect approximately 1% of live births [1].
CHDs may present variable degrees of severity, ranging from minor defects with minimal
or no clinical impact to severe malformations requiring immediate medical intervention
at birth. Some cardiac conditions may necessitate lifelong treatment and care, frequently
resulting in long-term morbidity and increased mortality rates [2]. At present, therapeutic
approaches to the treatment of CHDs primarily focus on palliative interventions that
improve cardiac structure and function, alleviate symptoms, and reduce the risk of long-
term complications. Even surgical interventions, such as cardiac repair or transplantation,
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which significantly improve survival rates for patients, do not address the underlying
genetic abnormalities associated with CHDs. As a result, the risk of CHDs in the children
of patients who survived critical CHDs increases to 2–5% [1]. Consequently, there has
been a shift from high infant mortality rates to increased survival of adults with complex
CHDs, who are at risk for subsequent cardiovascular complications potentially leading
to heart failure and the need for lifelong medical care [3]. In the United States, although
pediatric admissions for patients with CHDs only account for 3.7% of total admissions,
their annual cost is approximately $5.6 billion, which is about 15% of overall costs for
pediatric patients [4]. Thus, CHDs are major and increasing health and economic burdens
worldwide, and novel strategies to reliably diagnose, refine treatments for, and, if possible,
prevent CHDs are urgently needed.

Current prenatal screening programs, genetic counselling, and optimization of mater-
nal health and care, both before and during pregnancy, play a pivotal role in preventing
CHDs [5]. The accuracy of prenatal tests to identify cardiac fetal anomalies and the de-
velopment of innovative medical procedures have opened possibilities for fetal cardiac
interventions (FCIs) in utero, at a critical developmental stage when the heart is still grow-
ing and developing. FCIs aim to correct fetal cardiac malformations that are either prone to
progress with severe complications during mid- or late gestation, or to carry a high risk of
fetal demise or life-threatening conditions at birth. FCIs also intend to improve neonatal
and prenatal survival of the offspring, and limit lifelong morbidity and mortality [6–9].
Of interest, low maternal risks were reported with FCIs [10], but these interventions are
currently limited to a small subset of CHDs (Table 1).

Thus, the limitations of surgical and medicinal treatments of cardiovascular diseases
have stimulated the scientific and medical field to search for novel strategies. Consequently,
human stem cells have emerged as a promising source of cells for cardiac regeneration in
patients to complement current medical and surgical interventions, in addition to serving as
cellular models to uncover the underlying mechanisms of CHDs [11,12]. To date, numerous
preclinical and clinical studies have been performed to treat CHDs using embryonic stem
cells (ESCs), induced pluripotent stem cells (iPSCs), and adult stem cells, such as cardiac
progenitor cells and mesenchymal stem cells [13–17]. Although the outcomes of these
trials remain largely unsatisfactory, the usage of autologous and allogenic stem cells to
complement surgical interventions in infants with CHDs have recently shown positive
results, particularly in patients with hypoplastic left heart syndrome (HLHS) [3,13,18–20].
To further reduce surgical interventions in patients, the tissue engineering research field is
actively developing cell-seeded clinical patches that are able to either grow in synchroniza-
tion with the cardiovascular structures or to be gradually replaced by the newly formed
tissues of treated infants [3]. In addition to their differentiation abilities, stem cells secrete
a wide range of bioactive molecules (secretomes) and release extracellular vesicles, includ-
ing exosomes, which have promising potential in facilitating the repair and regeneration
of damaged adult cardiac tissues and improving heart function [21–36]. The secretomes
and exosomes released by various cells have significant roles in (cardiac) development and
tissue repair, and hold promising potential toward reversing CHDs, or at least mitigating
their severity [19,37–41].

The causes of CHDs are often multifactorial and may involve inherited genetic mu-
tations, sporadic developmental errors, and/or environmental factors [42–46]. Mutations
or other genomic abnormalities have been shown to occur in genes that play crucial roles
in cardiac development (Table 2), including genes encoding for transcriptional and epi-
genetic/chromatin remodeling factors (such as NKX2.5, TBX5, GATA4, CITED2, TBX20,
p300, and CBP), cell signaling and adhesion proteins (such as ACVR1, NOTCH1, and
PDGFRA), and structural sarcomere proteins (such as MYH6, MYH7, and ACTC1) [47,48].
Chromosomal anomalies resulting in syndromic complications, such as Down syndrome
(trisomy 21), Turner syndrome (monosomy X), and DiGeorge syndrome (22q11.2 deletion),
are often associated with increased risk of CHDs [47,48].
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Table 1. Clinical trials related to congenital heart diseases and in utero applications.

Clinical Trial
Number

Type and
Status Condition Intervention

or Treatment Population Evaluation Results

NCT03944837

Interventional
Single-group
assignment;

Status:
recruiting.

Severe
Fetal
CHD

Transient
maternal

oxygen gas
administration

during
echocardio-
graphic and

MRI imaging.

Pregnant
woman

≥18 years old,
with fetal

diagnosis of
specific

CHDs and
intention of

prenatal
treatment.

Brain growth and
maturation to birth,

improvement of
postnatal neurode-
velopmental issues,

identification of
CHD types likely to
benefit from chronic

maternal
hyperoxygenation.

Not
available

NCT01736956

Interventional,
prospective,

non-randomi-
zed clinical trial;

Status:
complete.

Aortic stenosis
and evolving

HLHS

Fetal aortic
transuterine

valvuloplasty,
periventricular

approach.
Control group
with standard
prenatal and

postnatal care.

Pregnant
woman ≥ 16

years old,
with a fetus
with normal

heart anatomy
and severe

aortic stenosis.

Safety and efficacy
of in utero

percutaneous
balloon dilation of
fetal aortic valve

with severe stenosis
determined by fetal
mitral valve and left

ventricle growth,
survival, and neu-
rodevelopmental

status.

No results
posted

NCT03147014
Interventional;

Status:
complete.

Fetal
HLHS, atrial

septal
aneurysm,

aortic
coarctation.

Cardiovascular
response to

maternal hyper-
oxygenation in

fetal CHDs.
All singleton
fetuses with
CHDs at all

gestational ages
are eligible.

Pregnant
women with

a fetus
harboring

CHDs
diagnosed at

various
gestational

weeks.

Participants
received 10–15 min
hyperoxygenation,

assessed for middle
cerebral artery

pulsation;
myocardial diastolic

function; flow
patterns across

tricuspid, mitral
valves, and ductus

venosus; changes in
heart output and
ratio of right–left

ventricle flow; flow
at the aortic isthmus
if aortic coarctation.

No results
posted

EudraCT
2016-003181-12

*

Prospective
cohort study;

Status:
complete.

Pregnant
women with

fetus at risk of
pulmonary

hypoplasia due
to VSD/AVSD.

Sonographic
assessment of

pulmonary
vascular
reactivity
following

maternal hyper-
oxygenation.

Pregnant
woman

≥18 years old,
with a fetus at

risk for
neonatal

persistent
pulmonary

hypertension;
non-pregnant

control.

Fetal
echocardiographic
doppler within the
first 48 h of life to
assess pulmonary

vasculature prior to
and after maternal

hyperoxygenation to
predict development

of neonatal
pulmonary

hypertension.

[49]

CHD—congenital heart disease; HLHS—hypoplastic left heart syndrome; VSD—ventricular septal defect;
AVSD—atrioventricular septal defect. All data collected from clinicaltrials.gov, except (*) from clinicaltrialsregister.
eu/, accessed on 13 August 2023.

clinicaltrials.gov
clinicaltrialsregister.eu/
clinicaltrialsregister.eu/
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Table 2. Genes frequently mutated and associated with congenital heart diseases.

Gene Main Function in Cardiac Development Cardiac Phenotype

Genes Encoding for Transcriptional and Epigenetic/Chromatin Remodeling Factors

ANKRD1 Regulation of cardiac gene expression, muscle growth, and heart tissue
maturation. TAPVR

CBP *
Transcriptional co-activator regulating the expression of genes critical for
heart development, histone acetyltransferase and chromatin remodeling

factor, essential for cardiac differentiation processes.

ASD, CoA, HSLS, MVD, PFO, PLSVC,
vascular ring, VSD

CITED2 Regulation of cardiac gene expression, cardiac chamber formation,
establishment of left–right asymmetry, heart and outflow tract septation.

AS, ASD, AVSD, PDA, PS, RAA, TGA,
TOF, VSD

FOG2/ZFPM2 Stimulation of cardiac chamber formation and proper cardiomyocyte
differentiation. DORV, TOF

FOXH1
Forkhead activin signal transducer regulating NODAL signaling to

specify the left–right axis and promote proper cardiac morphogenesis
and septation.

TGA, TOF

GATA4 Regulation of cardiac gene expression, cardiac cell differentiation, and
chamber formation. ASD, AVSD, PAPVR, PS, TOF, VSD

GATA5 Cardiac cell fate determination and differentiation, and regulation of
chamber-specific gene expression. Bicuspid aortic valve, VSD

GATA6 Regulation of cardiac cell differentiation, heart morphogenesis, and
septation.

ASD, AVSD, OFT defects, PDA, PS,
TOF, VSD

NKX2.5 Regulation of cardiomyocyte differentiation, cardiac chamber formation,
and establishment of the electrical conduction system.

ASD, CoA, DORV, HSLH, IAA, OFT
defects, TGA, TOF, VSD

P300 *
Transcriptional co-activator regulating the expression of genes critical for
heart development, histone acetyltransferase and chromatin remodeling

factor, essential for cardiac differentiation processes.

AVD, congenital aortic aneurysm,
MVD, PDA, PS, TOF, VDS

TBX1 Regulation of cardiac progenitor cells, conduction system formation, and
outflow tract morphogenesis. TOF, 22q11 deletion syndrome

TBX5 Control of cardiac cell fate, chamber formation. ASD, AVSD, VSD, Holt–Oram
syndrome

TBX20 Control of cardiac cell differentiation, chamber formation, and cardiac
gene expression patterns. ASD, MVD, VSD

TFAP2B Cardiac neural crest migration, outflow tract septation, and aortic arch
patterning. PDA, Char syndrome

Cell signaling and adhesion proteins

ACVR1/ALK2
Receptor for BMPs (TGF-β signaling pathway family) controlling

cardiomyocyte differentiation, valve formation, and heart
morphogenesis.

AVSD

ACVR2B

Receptor for various ligands of the TGF-beta family, such as activins,
myostatin, and growth and differentiation factors (GDFs), modulating
signaling pathways involved in cardiomyocyte differentiation, cardiac

morphogenesis, and chamber formation.

Dextrocardia, DORV, PS, TGA, TOF

CFC1 Co-receptor for NODAL contributing to left–right patterning
and cardiomyocyte differentiation.

ASD, AVSD, DORV, IAA, TGA, TOF,
VSD

GJA1
Promotion of the electrical coupling between cardiomyocytes,

and contribution to proper cardiac conduction and rhythm
establishment.

ASD, HLHS, TAPVR

JAG1 NOTCH ligand important to regulate cardiomyocyte differentiation,
cardiac chamber formation, and valve morphogenesis. PAS, TOF, Alagille syndrome

LEFTY2 NODAL inhibitor playing a role in left–right patterning, cardiac
morphogenesis, septation, and chamber formation.

AVSD, CoA, IAA, IVC defects,
Left–Right axis defects, TGA
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Table 2. Cont.

Gene Main Function in Cardiac Development Cardiac Phenotype

NODAL Control of left–right axis determination and promotion of cardiac
looping, chamber formation, and valvulogenesis.

AVSD, Dextrocardia, DORV, IVC
defects, PA, TAPVR, TGA, TOF

NOTCH1 Regulation of cardiomyocyte differentiation, cardiac valve formation,
cardiac cell fate, and cardiac cell maturation. AS, BAV, CoA, HLHS

PDGFRA Participation in cardiac neural crest migration, cardiomyocyte
proliferation, and proper outflow tract formation. TAPVR

VEGF Promoting angiogenesis and vascularization, ensuring proper blood
supply to developing cardiac tissues. CoA, OFT defects

Structural sarcomere proteins

ACTC1 Encoding the major protein component of cardiac muscle, contributing to
the formation and contraction of cardiac tissue. ASD

MYH6 Encoding a major contractile protein in cardiac muscle fibers,
contributing to proper heart contraction and function. AS, ASD, HLHS, PFO, TGA

MYH7 Encoding a major contractile protein in cardiac muscle, playing
a key role in cardiac contraction and function. ASD, Ebstein Anomaly, NVM

AS—aortic stenosis; ASD—atrial septal defect; AVSD—atrioventricular septal defect; BAV—bicuspid aortic
valve; CoA—coarctation of the aorta; DORV—double-outlet right ventricle; HLHS—hypoplastic left heart syn-
drome; IAA—interrupted aortic arch; IVC—inferior vena cava; MVD—mitral valve defect; OFT—outflow tract;
NVM—noncompaction of the ventricular myocardium; PAPVR—partial anomalous pulmonary venous re-
turn; PDA—patent ductus arteriosus; PFO—patent foramen ovale; PLSVC—persistent left superior vena cava;
PS—pulmonary (valve) stenosis; RAA—right aortic arch; TAPVR—total anomalous pulmonary venous return;
TGA—transposition of the great arteries; TOF—tetralogy of Fallot; VSD—ventricular septal defect. (*) In the
context of the Rubinstein–Taybi Syndrome.

Maternal/embryonic–fetal environmental factors, including maternal diabetes, med-
ications taken during pregnancy, infections, alcohol or drug abuse, exposure to tobacco
smoke, chemicals or toxins, may also increase the risk for CHDs [5,48]. Of interest, embry-
onic heart and placental development are interrelated and concomitant, sharing regulatory
molecules and signaling pathways. Placental defects are also more common in pregnancies
with CHDs, and the inadequate placental function can contribute to persistent cardiac
defects postnatally [50–52].

Despite the complexity of embryonic heart formation and the high incidence of CHDs,
cardiogenesis is a remarkably robust developmental process. Indeed, dysfunctions of more
than one gene and/or environmental insults are often necessary to drastically impair heart
development and lead to severe CHDs or death during gestation [53–55]. The resilience of
this process certainly relies on the complex and evolutionary conserved gene regulatory
network, which is orchestrated by key signaling pathways and transcription factors, that be-
long to families of proteins sometimes displaying overlapping or redundant functions [56].
Their robustness also depends on the existence of multiple sources of cardiac progenitors
with functional redundancy, ensuring the production of heart cells even in the event of loss
or defects in formation, expansion, and differentiation of certain progenitors [57–59]. For
instance, despite ablation of over 50% of emerging First Heart Field (FHF) and Secondary
Heart Field (SHF) cardiac progenitors at early stages of cardiogenesis, mouse embryos sur-
vived and developed into adult animals without any apparent cardiac abnormalities [58,60].
Therefore, the dysfunction or loss of cardiac progenitors and cardiomyocytes in mouse
embryonic hearts can truly be compensated by alternative embryonic mechanisms, which
include the expansion and migration of other unaffected cardiac cells [58,60–63].

Recent studies, using animal models and in vitro differentiation of human pluripotent
stem cells, have also suggested that cardiac cell lineages are pre-determined during the
early stages of development. Both positioning and functions of cardiac cells in the heart
may be defined even before gastrulation, and orchestrated by multiple signaling pathways
and environmental cues [57,64–69]. This idea is also supported by the ability of pluripotent
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stem cells to generate self-organizing cardiac organoids when provided with external cues
from the extracellular matrix (ECM) and signaling molecules [70]. Moreover, in the absence
of maternal tissues in vitro, human blastocysts attached to instructive supports and/or,
stimulated by signaling molecules (such as WNT and NODAL/ACTIVIN), autonomously
self-organize and originate structures resembling the proper embryo, with key landmarks
of normal development, including bilaminar disc formation, primitive streak formation,
lineage commitment, and extraembryonic annexes [71–74]. Therefore, future clinical strate-
gies that would consistently provide correct developmental signals at early embryonic
stages have the potential to compensate for defective mechanisms, thereby significantly
reducing the incidence of CHDs.

Here, we review key molecular and cellular processes involved in early heart devel-
opment. We also explore recent findings supporting the idea that the targeted delivery
of biomolecules or exosomes during embryonic development, as early as the blastocyst
stage, may compensate for faulty genes, signaling pathways, and cardiac progenitors, and
potentially reduce the occurrence and/or severity of CHDs.

2. Navigating Early Mammalian Embryonic Heart and Placental Development
2.1. Placental Development

Placental and embryonic heart developments occur simultaneously, forming a placenta–
heart axis, and sharing developmental pathways and common susceptibility to genetic
defects [51]. Thus, the developing heart is highly vulnerable to early placental insuffi-
ciency. During early human embryogenesis, at embryonic days 4 to 5 (E4-5), the blastocyst
attaches to the uterine wall. Trophoblast cells, encasing the inner cell mass that will orig-
inate the embryo proper, differentiate into inner cytotrophoblast cells, which are key for
blastocyst implantation in the uterus, and stem cells that will also originate the outer
syncytiotrophoblast [75,76]. The syncytiotrophoblast is responsible for the exchange of
nutrients, gases, and waste products between the maternal and embryonic circulations,
and also acts as a barrier against pathogens and harmful substances [77]. Interactions
between the cytotrophoblast and syncytiotrophoblast are essential for proper placental
development and function. Aberrant vascular placental development can lead to placental
insufficiency and compromise fetal growth due to inefficient blood supply, and may result
in preeclampsia, gestational diabetes, intrauterine growth restriction (IUGR), and placental
abruption [78–82]. These complications are associated with an increased risk of adverse
fetal outcomes, including CHDs [83–86]. Vascular endothelial growth factor (VEGF) and its
receptors, hypoxia-inducible factors (HIFs), which regulate the cellular response to hypoxia,
play a crucial role in placental and heart development, as well as in vascular remodel-
ing, and their dysfunction increases the risk for CHDs [75,87–89]. Immune modulation is
also essential for placental development and for fetal tolerance by the maternal immune
system [90,91].

2.2. Heart Development

During embryogenesis, the heart is progressively built with multiple mature and
functional cells, originating from many molecularly distinct progenitor cells that arise at
different times and structures from the developing embryo [57,65–67,92,93]. The heart
primarily develops from three main pools of embryonic progenitors, which are the FHF,
SHF, and the proepicardium cells (Figure 1). The FHF and SHF derive from the earliest
MESP1-marked cardiac mesodermal progenitors, which emerge shortly after gastrula-
tion [57,64–67]. However, precardiac progenitor cells in the nascent mesoderm are, in fact,
a heterogeneous population, composed of molecularly distinct progenitors that leave the
primitive streak in a sequential manner, with contributions to specific and overlapping
parts of the heart [93–95].
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mesoderm gives rise to progenitors of the FHF and SHF, which form the cardiac crescent. The FHF 
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and parts of the right and left atria. SHF cells migrate through the pharyngeal mesoderm (PM) and 
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contribute to the development of the right ventricle (RV), outflow tract (OFT), atria, and inflow my-

ocardium. Cells originating from the venous poles (red) give rise to the superior and inferior vena 

cava. The PEO cells contribute to the epicardium and coronary vessels. CNCCs migrate from the 

dorsal neural tube into the cardiac OFT, where they contribute to the formation of the septum, sep-

arating the truncus arteriosus into the aorta and pulmonary artery, as well as contributing to heart 
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tors, modulators of the WNT signaling pathway play a critical role in cardiac specification 

Figure 1. Early human cardiac development. (A) Schematic representation of the zygotic and
embryonic stages of human development, highlighting key developmental programs and milestones.
Gestational times are indicated in weeks. The initial steps of heart, central nervous system, limb,
eye, ear, tooth, and genital development are shown. The primary (FHF—blue) and secondary (SHF—
orange) heart field cells, the cardiac neural crest cells (CNCCs—green), and the proepicardial organ
(PEO—purple), and their respective derivatives, are illustrated. During week 2, the cardiac mesoderm
gives rise to progenitors of the FHF and SHF, which form the cardiac crescent. The FHF originates
the primary heart tube (PHT), which subsequently contributes to the left ventricle (LV) and parts of
the right and left atria. SHF cells migrate through the pharyngeal mesoderm (PM) and contribute to
the elongation of the PHT by ingression at both atrial and venous poles. SHF cells contribute to the
development of the right ventricle (RV), outflow tract (OFT), atria, and inflow myocardium. Cells
originating from the venous poles (red) give rise to the superior and inferior vena cava. The PEO
cells contribute to the epicardium and coronary vessels. CNCCs migrate from the dorsal neural tube
into the cardiac OFT, where they contribute to the formation of the septum, separating the truncus
arteriosus into the aorta and pulmonary artery, as well as contributing to heart valve formation
and parasympathetic innervation. (B) Overview of the secretomes, main signaling pathways, and
transcription factors that regulate each listed stage of heart development. The noncanonical WNT
pathway is indicated as ncWNT.

The first cells to leave the primitive streak, emerging at approximately E15-16 in
humans, are FHF cells that give rise to the cardiac crescent structure, which migrates
and fuses at the midline to form the primitive linear heart tube (at around E19 in hu-
mans) [42,57,64–66,93,96,97]. The linear heart tube, destined to generate the bulk of the
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atrial chambers and left ventricle, contains an outer myocardium and an inner endocardium,
separated by a specific ECM known as the cardiac jelly. Rhythmic contractions are initiated
by cardiomyocytes of the heart tube at around E21 in humans. At approximately E19-20,
human SHF cells migrate into the heart tube and differentiate into cardiomyocytes, smooth
muscle, and endothelial cells. The SHF contributes to the outflow tract (OFT), the right
ventricular region, the atrioventricular canal structures, and the atria [42,57,64–66,93,96,97].

Around E28, the human heart tube undergoes a rightward looping to initiate the
formation of the four-chambered heart. At this stage, the conductive system also begins to
develop from cardiac progenitors, which differentiate into specialized myocytes with high
conductance to form the sinoatrial node, atrioventricular node, bundle of His, and Purkinje
fibers, rather than working cardiomyocytes [98,99]. As the heart develops, conduction cells
establish connections to form a functional electrical system that coordinates the contraction
and relaxation of the cardiac muscle. Further maturation and refinements of the conductive
system occur throughout fetal development, with further structural and functional changes
happening after birth and during postnatal growth [98,99]. In humans, ventricular septation
starts around E50 and originates from the myocardium, which generates the ventricular
septum and establishes the right and left atrio-ventricular canals. Atrial septation starts at
E60 and derives from the septum primum and septum secundum, concomitantly with OFT
septation [42,67,100,101].

OFT septation, which results in the formation of the aorta and the pulmonary artery,
and their respective connections to the left and right ventricles, is accomplished by SHF
cells and cardiac neural crest cells (CNCCs), a subpopulation of neural crest cells that
delaminate from the neural tube [101,102]. CNCCs also give rise to the tip of the interven-
tricular septum and OFT cushions, which will differentiate into the aortic and pulmonary
valves and the parasympathetic coronary innervation [102]. The proepicardial organ is an
extracardiac structure, which develops distinctly from the heart tube (at E9.5 in mouse) and
contributes to the epicardial cells located around all heart chambers [95,103,104]. Other
early multipotent progenitor cells, marked by KDR/FLK1/VEGFR2 expression, which are
a source for endocardium, myocardium, and hematopoietic progenitors, were also detected
in the primitive streak [57,105]. The major functional structures of the human heart are
completed by E60. After this stage, the heart undergoes progressive growth, as well as
structural, metabolic, and functional maturation processes, which are vital for its function
during a lifetime [70].

3. Tracing the Roles of Signaling Pathways and Exosomes in Heart Development
3.1. Secretomes and Heart Development

Secretomes refer to a variety of secreted proteins, bioactive molecules, and factors
released by cells that act locally to modulate cellular processes on neighboring cells, includ-
ing processes necessary for development and tissue repair [30,106]. Among those factors,
modulators of the WNT signaling pathway play a critical role in cardiac specification and
differentiation, through stabilization and nuclear translocation of β-catenin, which, in turn,
regulates the expression of cardiogenic genes [107–113]. NOTCH receptors and ligands
are also important cardiogenic mediators through cell–cell communication, controlling
the differentiation of cardiac progenitor cells into various cardiac lineages during heart
development [114–126]. Bone morphogenetic proteins (BMPs), which are key regulators of
embryonic development, promote the differentiation of cardiac mesoderm and regulate the
formation of heart structures, through the expression of cardiac-specific transcription fac-
tors critical for cardiomyocyte differentiation [127–137]. The fibroblast growth factor (FGF)
pathway is important for the formation of the OFT, ventricular maturation, and valve de-
velopment, by modulating cell proliferation, survival, and differentiation [138–140]. Other
secreted factors, such as insulin-like growth factor 1 (IGF-1) [141–145], VEGF [146–150],
and transforming growth factor beta (TGF-β) family members, including ACTIVIN and
NODAL [115,151–154], have been shown to enhance cardiomyocyte differentiation and
maturation. Both ACTIVIN and NODAL crosstalk with other signaling molecules and mod-
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ulate the activity of transcription factors to coordinate the specification, proliferation, and
differentiation of cardiac progenitors during heart development (Figure 1B). Gastrulation
is a critical embryonic step resulting in the formation of the three germ layers (endoderm,
mesoderm, and ectoderm) and the specification of cell fates. During this process, meso-
dermal induction is stimulated by the convergent action of BMPs, NODAL/ACTIVIN,
and canonical WNT signaling [93,155,156]. The emergence of mesodermal cells is marked
by the expression of the transcription factor BRACHYURY and requires the activation
of β-catenin by the canonical WNT pathway. Next, the inhibition of the WNT canonical
pathway, achieved by proteins such as DKK1 and noncanonical WNT-related proteins,
is critical for cardiac mesoderm specification [109,113,156–158]. Angiogenesis and vascu-
logenesis are also critical for cardiovascular development, as they ensure the formation
of functional vascular networks through which to supply oxygen and nutrients to the
developing heart. These processes are modulated by secreted proteins, such as VEGF, basic
FGF, and angiopoietin-1, which are also capable of enhancing neovascularization in adult
ischemic hearts [159–162].

3.2. Exosomes and Heart Development

Exosomes are formed through the inward budding of endosomal membranes and
are subsequently released into the extracellular space to be captured by target cells [163].
The proteomic analysis of exosomes has revealed the presence of proteins involved in
cell signaling, membrane transport, and ECM remodeling [164]. Additionally, exosomes
may contain various types of messenger RNA (mRNA), microRNA (miRNA), long non-
coding RNA (lncRNA), and mitochondrial miRNA [165–167], which can be transferred to
recipient target cells and alter their gene expressions and cellular functions. During heart
development, exosomes from multiple cell sources, including stem cells, have emerged
as key mediators of intercellular communication in various biological contexts, including
cardiac regeneration or repair (Table 3) [37,168–170]. For example, cardiac exosomes and
secreted factors derived from cardiomyocytes, endothelial cells, or cardiac progenitor cells
are important to the regulation of cardiac cell fate determination, proliferation, migration
and differentiation, and heart morphogenesis [24,30,166,171–173]. Moreover, exosomes
derived from cardiac and endothelial cells modulate epithelial-to-mesenchymal transition,
favoring angiogenesis and the formation of coronary vessels, which are essential for heart
development [174–177]. In addition, exosomes released through circulation during preg-
nancy via the umbilical cord, placenta, amniotic fluid, and amniotic membranes contribute
to essential physiological functions in fetal–maternal communications, and to physiological
processes such as angiogenesis, endothelial cell migration, and embryo implantation and
placentation [178–180].

Some exosomes, such as those derived either from diabetic or obese pregnant mice,
cross the maternal–fetal barrier when injected through circulation and contribute to anoma-
lies in cardiac development, such as ventricular septal defects, cardiac hypertrophy, pericar-
dial effusions, and compromised systolic and diastolic functions [178,181–183]. Exosomes
from the visceral adipose tissue of obese pregnant mice displayed an altered composition
in miRNA, such as a decrease in miR-19b, which is involved in regulating inflammation
and cardiac development, resulting in altered placental and cardiac functions [183]. Cir-
culating exosomes, which are characteristic of maternal metabolic adaptations, have also
been proposed to serve as pregnancy complication markers for gestational diabetes, hy-
pertension, and pre-eclampsia, and to facilitate the determination of embryos with neural
tube defects, CHDs, and other conditions, such as Down syndrome [178,184–186]. Overall,
paracrine signaling mechanisms, mediated by exosomes and secreted factors, ensure the
global regulation of cardiac morphogenesis [187], and their dysregulation is likely to result
in CHDs [157,188–191].
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Table 3. Examples of miRNA enriched in exosomes from various human cell sources, and their effect
on the cardiovascular system.

Cell Source Active
miRNA Effect on Cardiovascular System Disease/Experimental

Model

Human bone marrow MSC
miR-22 Cardioprotective during ischemia. LAD ligation, in vitro

miR-19a Cardiomyocyte survival and preservation of
mitochondrial membrane potential. LAD ligation, in vitro

miR-144 Reduced apoptosis in embryonic rat cardiomyocytes. Cell line, in vitro

Human ESC-derived MSC miR-21 Reduced infarct size in mouse model.
Myocardial

ischemia-reperfusion
injury

Human heart stromal cells
derived from healthy

individuals
miR-21 Prevention of the left ventricular ejection fraction

decreased over time.
Mouse model of acute
myocardial infarction

Human CDC
miR-210 Mitigation of adverse remodeling and improvement of

angiogenesis in pig models with myocardium infarct. In vivo

miR-146a

Inhibition of apoptosis and stimulation of the
proliferation of cardiomyocytes and angiogenesis
in vitro. Improvement of heart function in mouse

myocardial infarction model.

In vitro, using human
umbilical-derived cells,

and in vivo mouse
model

Human CPC miR-132 Inhibition of cardiomyocyte apoptosis and improvement
of cardiac function after myocardial infarction.

In vitro and in vivo,
using rat models

Human ADSC
miR-126

Increased angiogenesis of endothelial cells. Exosomes
from ADSC of obese subjects present a reduced load of

miR-126 and a low pro-angiogenic capacity.
In vitro, using human

umbilical-derived
endothelial cells

miR-31 Increase the migration and tube formation of human
umbilical vein endothelial cells.

MSC—mesenchymal stem cells; ESC—embryonic stem cells; CPC—cardiac progenitor cells; CDC—cardiosphere-
derived cells; ADSCadipocyte-derived stem cells; LAD—left anterior descending coronary artery.

4. Exploring the Impact of Diet and Medicinal Supplements on Heart Development
4.1. Diet Supplements and Heart Development

Both animal model studies and human trials have shown promising outcomes in
using drugs and dietary supplementation as preventive measures for CHDs, setting the
possibility to interfere with adverse cardiac defects through the intake or administration
of biomolecules. Folic acid supplementation before and during pregnancy is a notable
example, as it reduces the risk of neural tube defects and certain CHDs, particularly septal
defects [192,193]. Supplementation of zinc (Zn) to diabetic mothers has also effectively
reduced glucose-dependent oxidative stress, associated with cardiomyopathy in animals
and humans, by preventing apoptosis in cardiomyocytes, and its supplementation at early
stages of pregnancy was proposed to prevent CHDs induced by gestational diabetes [194].
Retinoic Acid (RA), a vitamin A derivative, is indispensable for many embryonic devel-
opmental processes, including heart formation (Figure 1), but the rigorous control of its
production by cardiac embryonic tissues is necessary to prevent disastrous congenital mal-
formations, such as anomalies in heart looping, the aortic arch, transposition of the great
arteries, coronary defects, double-outlet right ventricle, myocardial hypoplasia, tetralogy
of Fallot, and OFT and septal defects [195]. The injection of wild-type ESCs into blasto-
cysts deficient in RA signaling successfully rescued various morphogenetic anomalies,
such as left–right heart tube looping defects, through increased production of RA, which
diffused to activate RA signaling in the defective cells [196]. This study demonstrated
that endogenous embryonic production of RA can compensate for developmental heart
defects. However, maternal supplementation was unable to provide the necessary levels
of RA needed to rescue the mutants [196]. These examples indicate the possibility to limit
CHDs by supplying biomolecules to mothers or embryos in pre- or early pregnancies.
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However, excessive fetal exposure to 13-cis-RA supplements (isotretinoin, Accutane) can
induce CHDs. Alterations in fetal retinoid metabolism due to cross reactions with drugs
(valproate), toxins (nitrofen, tobacco, alcohol), infections (rubella), or coexisting medical
conditions (gestational diabetes) also favored CHDs [195]. Therefore, to prevent CHDs, it
is crucial to have a thorough understanding of the roles and optimal levels of vitamin A, as
well as of the factors that influence retinoid metabolism [197]. In general, a careful determi-
nation of the intake quantity of dietary supplements or drugs will be crucial to developing
safe strategies for promoting normal heart development, achieving cardio-protection, and
avoiding adverse effects, including CHDs themselves.

4.2. Cardiac Complications Due to Drugs Used to Treat Non-Cardiac Defects

Particular attention needs also to be given to supplements used for the treatment of
non-cardiac problems, such as prenatal corticosteroid therapies used to stimulate fetal lung
maturation in preterm births, which may affect fetal heart development and function in
adulthood. Indeed, some studies in animal models have suggested that fetal exposure to
glucocorticoids may cause changes in cardiomyocyte size and collagen deposition, and
impair cardiac contractility, ultimately leading to an increase in the left ventricular mass
and an alteration in cardiac function [198]. Maternal steroid therapy used to treat or prevent
fetal heart block has also been shown to have undesirable side effects on the fetuses, such
as alterations in brain development, oligohydramnios, growth restrictions, and constriction
of the arterial duct, as well as diabetes mellitus, adrenal insufficiency, and psychosis for
the mother [199,200]. Overall, several supplements administered before and during early
pregnancy have shown potential for preventing CHDs and other congenital conditions.
However, more research is required to determine the appropriate dosage of supplements in
order to maximize the benefits for heart development while minimizing any adverse effect.

5. Unveiling the Potential of Secretomes and Exosomes for CHD Prevention
5.1. Exogenous Instructive Molecules to Mitigate CHDs

Multiple signaling pathways, which may display overlapping or redundant functions,
are involved in generating cardiac progenitors and other cell lineages [57,64–69]. All issues
considered, it is tempting to propose that the supplementation of exogenous cardiogenic
instructive molecules at key moments during early embryonic stages may compensate
for defective pathways and/or lineage decisions of cardiovascular progenitors to mitigate
CHDs. To date, only a few experimental reports on animal models and stem cells support
this idea. For instance, prolonged hypoxia causes DNA damage, premature senescence,
impaired angiogenesis, and fibrosis associated with the upregulation of TGF-β1 expression
in human fetuses with HLHS [201]. In vitro, hypoxia exposure of a human HLHS-derived
iPSC disease cell model promotes the differentiation into cardiac fibroblasts instead of
cardiac progenitors, cardiomyocytes, and endothelial cells [201]. Inhibition of TGF-β1
activity by its antagonist compound SB431542, in HLHS-derived iPSC exposed to hypoxia,
prevented senescence and promoted genomic stability [201], suggesting that early inter-
ventions to inhibit TGF-β1 could improve ventricular growth and overcome pathways
dysregulated in HLHS. IUGR is another gestational defect that hinders fetal growth in
the uterus. IUGR is associated with increased placental vascular resistance, which forces
the workload onto the fetal heart and increases the risk of cardiovascular disease [202].
Maternal administration of IGF-1 and IGF-2, which are known to stimulate placental and
fetal growth in animal models, showed promising potential to treat IUGR in cases where
downregulation of IGF-1 receptors in the placenta is not observed [202,203].

5.2. Exosomes, a Non-Cellular Approach for Correcting Embryonic Cardiac Defects

Emerging evidence suggests that the beneficial effects of stem cells in medical ap-
plications may primarily result from paracrine signaling molecules and the release of
extracellular vesicles, rather than from the direct integration of stem cells or their derived
cells into the target tissue [204]. Exosomes, which can be isolated and characterized by
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well-established approaches [205,206], present advantages such as scalable production,
easy storage, consistent morphology and function, compliance with regulatory standards,
and possible reduction in the variability of outcomes associated with cell therapies [207].
The therapeutic potential of exosomes and secretomes derived from hormonally primed
human endometrial epithelial cells was tested in mouse models, and proven to enhance
embryonic growth, development, and implantation [181]. This study also suggested that
dysfunctions of the endometrial secretomes, which hinder implantation in cases of infertil-
ity, can be amended through the supply of exogenous exosomes. Also, maternal diabetic
pregnancies in mouse models showed a higher occurrence of neural tube defects associated
with exosomes produced from vascular progenitor cells expressing FLK1 derived from
mesoderm cells lacking Survivin [208]. Interestingly, delivery into the amniotic cavity of
Survivin-enriched vascular progenitor exosomes prevented neural tube defects in diabetic
pregnancies [208], demonstrating the capacity of modified exosomes delivered in utero to
limit neuronal pathology. Thus, exosomes are a promising non-cellular alternative to cells
for clinical applications to correct embryonic defects. Exosomes can also be engineered to
carry specific cargo, such as miRNAs or even gene-editing tools more suitable for the correc-
tion of genetic abnormalities associated with CHDs [176,209]. Notably, exosomes derived
from the cardiac progenitors of children undergoing reconstructive heart surgeries showed
promising effects in promoting angiogenesis, reducing fibrosis, resolving hypertrophy,
and improving cardiac function in a rat model of heart arrhythmias caused by ischemia-
reperfusion injury [39], showing the cardioprotective effect of exosomes from infant cardiac
cells. Interestingly, exosomes from neonatal progenitors improved cardiac function regard-
less of oxygen levels, while exosomes from older children were only reparative in hypoxic
conditions. Therefore, further research is needed to determine the most suitable cell sources
and culture conditions for the production and modification of exosomes that would yield
the best personalized clinical outcomes in the treatment of CHDs [40,208].

6. Harnessing Secreted Factors in Embryogenesis for Protection against CHDs

Like in many diseases, the early correction of a CHD is likely to result in a better
clinical outcome, through early normalization of cardiogenesis. Reports on stem cell differ-
entiation and heart development have suggested that cell positioning and functions within
the heart may be determined prior to gastrulation, through precise signaling pathways
and environmental cues [57,64–69]. Therefore, early interventions aiming to target the
blastocyst at the pre-gastrulation/pre-implantation stage, very early embryonic states,
may reduce the occurrence and severity of CHDs. Interestingly, pioneering studies on
Inhibitors of Differentiation (ID) genes have revealed that double knockout of any pair of
these genes in mouse models results in prominent cardiac defects and midgestational lethal-
ity of the embryos [210,211]. However, the injection of wild-type ESCs, either in ID-null
blastocysts to form a chimera, or intraperitoneally in females prior to conception, rescued
cardiac malformations and viability of ID-null embryos through upregulation of IGF-1 and
WNT5A, without incorporation of wild-type ESCs into ID-null embryos [210,211]. Simi-
larly, a chimeric embryo formation, using wild-type ESCs, improved the morphogenetic
defects of RA signaling-deficient embryos by increasing RA expression [196]. Interestingly,
transient exogenous WNT5A and WNT11, supplied at the 1-cell stage, efficiently rescued
the viability and cardiac defects of CITED2-depleted zebrafish embryos and cardiac dif-
ferentiation of mouse ESCs [212]. Dysfunctions of CITED2, a transcriptional modulator,
have been widely associated with zebrafish, mouse, and human CHDs, as well as with
embryonic lethality [55,212–220]. At the cellular level, CITED2 regulates the expressions
of numerous genes involved in early cardiogenesis, such as BRACHYURY, MESP1, ISL1,
GATA4, TBX5, MEF2C, NODAL, LEFTY1/2, PITX2C, VEGFA, WNT5A, and WNT11,
among others [212–214]. Thus, the supplementation of WNT5A and WNT11 at the blasto-
cyst stage in utero holds potential for rescuing CHDs associated with CITED2 dysfunction
in mammals, since the function of CITED2 is conserved across vertebrates [212,214,216,221].
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This strategy may also prevent CHDs triggered by the dysfunction of many genes other
than CITED2, such as CITED2-target cardiogenic genes, including WNT5A and WNT11.

Moreover, WNT5A and WNT11 trigger many congenital cardiac anomalies, and con-
tribute to DiGeorge syndrome, when defective [222–228]. Indeed, the WNT5A and WNT11
proteins are central for proper gestation and successful pregnancy, and their expressions
are naturally highly increased and localized in the uterine luminal epithelium prior to and
during blastocyst attachment to the uterus [229,230]. These proteins also promote embry-
onic uterine implantation and survival [229], as well as placental growth [230]. WNT5A
and WNT11 are also important in late gastrulation, for the regulation of the anterior–
posterior axis elongation, notochord extension, and proper patterning of the neural tube
and somites [231]. In early mouse gastrulation, WNT11 is initially expressed in endoderm
progenitors, and later, during mid-gastrulation, it plays a role in the formation of the
embryonic and extraembryonic endothelia, as well as the formation of the endocardium
in all chambers of the developing heart [232]. During late gastrulation, WNT11 showed
successive waves of expression in different regions of the myocardium, important to origi-
nate left ventricle precursors (FHF progenitors) from E7.0–8.0, right ventricle progenitors
(SHF progenitors) from E8.0–9.0, and the superior wall of the OFT from E8.5–10.5 (also SHF
progenitors) [232]. Other studies have implicated WNT5A and WNT11 in the development
of cardiac progenitors in vitro and in vivo [233–236], proper fetal hematopoiesis [237,238],
kidney development [239], and guidance of sympathetic neurons to their innervation tar-
gets in vivo [240], among other processes. Altogether, the broad range of effects exhibited
by WNT5A and WNT11 during early development emphasizes their high potential in
limiting CHDs and other birth abnormalities when supplied exogenously at early em-
bryonic stages. Another recent study highlighted the role of a subset of human amniotic
epithelial cells (AECs) in mesoderm formation at E8.0–9.0 during early post-implantation
stages [241]. Interestingly, impaired mesoderm formation and lethality due to loss of ISL1
expression in non-human primate embryos, or in human AEC differentiation in vitro due
to the decrease in BMP4 expression, was partially restored through supplementation of
BMP4 [241]. Overall, these findings demonstrate the potential for biomolecules, such as
WNT5A/WNT11, BMP4, and inhibitors of the TGF-β pathway (SB431542, for instance), to
reduce CHDs when administered at very early stages of development.

7. Challenges and Ethical Considerations

The experiments on mouse ID-null and RA-defective embryos rescued by the introduc-
tion of ESCs, either in defective blastocysts or in the mother prior to gestation [196,210,211],
are groundbreaking studies, establishing a proof-of-principle that early interventions have
the potential to restore normal development to genetically defective blastocysts. However,
the translation of such strategies to humans, based on pluripotent stem cell delivery into
blastocysts, remains both ethically and technically undesirable. Indeed, the alteration of
such early human embryos, even for health purposes, is per se questionable. Moreover,
the transplantation of human pluripotent stem cells (ESCs or iPSCs) in a clinical setting
carries high risks of tumor formation and differentiation into unwanted cells/tissues [242].
Nevertheless, pre-implanted blastocysts are promising targets for medical interventions,
since their size and localization, near or in the uterine lumen, may facilitate the delivery
and effective diffusion of corrective biomolecules. Moreover, blastocysts exhibit minimal
tissue commitment bias, making them possibly more responsive to exogenous cues aiming
to correct congenital defects. In both studies presented above, the corrective effects of
wild-type ESCs were contributed by the neomorphic effects of factors secreted by these
cells, such as WNT5A, IGF-1, and RA [196,210,211]. These findings strongly support the
idea that exogenous administration of WNT5A and WNT11, as well as IGF-1 and possibly
other factors to be identified, to early embryos has the capacity to substitute for pluripotent
stem cell transplantation.

The intricate expression patterns and multiple functions of the WNT5A, WNT11, IGF-
1, BMP4, and TGF-β pathways during placental and embryonic development portend that
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any disturbance in their expression and signaling network may have drastic impacts on
normal embryonic development. However, the supplementation of these factors may only
need to be temporary and administered at very specific times, as remarkably suggested by
the transient supply of exogenous WNT5A/WNT11 recombinant proteins at the onset of
mouse ESC differentiation for 2 days, or at the 1-cell stage in zebrafish embryos to rescue the
cardiogenic defects and lethality caused by CITED2 depletion [212]. Moreover, compelling
evidence suggests that the exogenous administration of WNT5A and WNT11 proteins to
early embryos may not only be well-tolerated, but may even provide general beneficial
effects on development, rather than potential adverse effects. Indeed, WNT5A is naturally
and abundantly expressed in the endometrium of mammals during the pre-implantation
period, ensuring proper placental and embryonic development from the morula to the
blastocyst stage, safeguarding the success of pregnancies [229,230,243–247]. Therefore, the
supply of exogenous WNT5A to the uterine lumen before implantation coincides with its
naturally high expression during this period, suggesting that the organism may be prepared
to handle abundant levels of WNT5A and may mitigate any potential adverse effects caused
by its exogenous administration. In addition, WNT5A and WNT11 form protein complexes,
which were proposed to be more effective in activating their cellular functions than the in-
dividual proteins were [248]. Thus, the combined administration of WNT5A/WNT11 may
be more inclined to fulfil the rescuing effects and buffer the adverse effects. Accordingly,
the combined supplementation of WNT5A/WNT11 was tendentially more efficient for
rescuing the viability and cardiac anomalies of CITED2-deficient zebrafish embryos, and for
restoring the expression levels of early cardiogenic factors (such as BRACHYURY, MESP1,
and ISL1) to control levels in CITED2-depleted mouse ESCs [212]. Also of interest, the
combined administration of WNT5A/WNT11 to wild-type zebrafish embryos additionally
reduced natural occurrences of death, cardiac anomalies, and variability in heart rate, rather
than showing adverse effects [212]. Together, these observations suggest that the temporary
supply of WNT5A/WNT11 in the uterine lumen during peri-implantation, to target the
blastocyst, would meet tolerant conditions, bearing increased WNT5A/WNT11 levels
able to prevent CHDs with no or minimal side effects. Further investigation is needed to
determine whether other cardiogenic molecules, such as BMP4 or antagonists of TGF-β,
IGF-1, VEGF, and HGF, for example [106,160,249–251], as well as relevant exosomes, would
also be able to limit CHDs, if delivered at the pre-implantation period.

Given the multifaceted nature of CHDs, and the intricate cellular interactions involved
in cardiogenesis, there is potential for synergistic and amplified therapeutic effects by
combining approaches, such as exosomes/secretomes and drug delivery, with gene therapy
and/or tissue engineering. Furthermore, personalized medicinal strategies that consider
individual genetic and molecular profiles would help to tailor treatments and improve
care for patients with specific genetic factors associated with CHDs [28,252,253]. Future
challenges also include standardization and optimization of secreted protein/exosome
production, and full comprehension of their complex interplay with recipient cells to
translate preclinical findings into safe clinical applications [254–256].

Finally, the reconsideration of ethical guidelines by the pillars of ethical governance,
to shape responsibility and trust, is necessary to avoid the offer of defiant, unsafe, and
unproven treatments by unauthorized clinics, similar to the existing issue in the field of
stem cell-based therapies [257–259]. Indeed, the excitement and expectations surrounding
such novel medical approaches may lead individuals at high risk of having children
with CHDs to seek unapproved therapies, invoking the “right to try” concept. Therefore,
balancing individual autonomy with regulatory oversight is essential to protecting patients’
well-being. Additionally, equitable access to these potential treatments should be ensured,
regardless of socio-economic status, geographic location, or other discriminative barriers.
Lastly, a responsible approach to research, including clinical trials, is necessary for the
future use of these approaches when no alternative options are available, aligning with the
ethical principle of proportionality.
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8. Conclusions and Perspectives

Mammalian heart development is a complex process, involving distinct pools of car-
diac progenitor cells located in specific regions of the embryo. The precise orchestration of
the progenitor cells’ emergence in embryonic time and space, as well as their proliferation,
migration, and differentiation process, which is stimulated by environmental signals and
pathways, is crucial for proper embryonic heart assembly. Despite high complexity, the
cardiac developmental process remains robust, probably due to overlap and redundancy
of the main signaling pathways, and of the multiple cardiac progenitors driving cardio-
genesis. However, the dysfunction of cardiac progenitor cells, and/or the disruption of
molecular mechanisms underlying cardiogenesis, results in cardiac malformations in 1
out of 100 human births, and often in embryonic death during gestation. Despite prenatal
screening programs and better genetic counselling, which play a crucial role in preventing
these malformations, CHDs remain the most prevalent congenital anomalies worldwide.

The current therapeutic approaches for severe CHDs, which are primarily surgical,
remain unsatisfying despite tremendous medical and technological progress. Indeed,
interventions are mostly palliative and often result in a lifelong health burden for patients.
Moreover, patients are typically treated for the first time during the peri- or prenatal
period, when the heart has fully developed from deficient early embryonic processes.
Thus, earlier interventions in embryonic development could mitigate the impact of faulty
heart development and reduce the occurrence of congenital abnormalities. Only recently,
FCIs have been implemented for a reduced subset of CHD cases linked to hypoplastic
left heart, to correct cardiac malformations in utero during pregnancy. FCIs have yielded
promising results, and, compared to conventional surgical interventions after birth, FCIs
offer the advantage of intervening at a critical developmental stage, when the heart is
still growing and developing. These early corrections aim to address the underlying
issues and abnormalities in cardiac structure and function before they become more severe,
or irreversible.

Decades of cardiovascular research, encompassing studies on animal and cell models,
as well as human genetic investigations, have uncovered the fundamental mechanisms
that drive heart development and CHDs. Importantly, these findings have revealed the
existence of multiple cardiac progenitors, as well as key transcription factors and signaling
pathways involved in proper heart development. The cardiogenic process is characterized
by overlapping and redundant functions existing among cardiac progenitors, signaling
pathways, and factors. Redundant features in cardiac development enable the heart
to sometimes compensate for defects in progenitors or genetic abnormalities through
alternative mechanisms. Thus, despite the imperfect nature of the cardiogenic system, most
viable individuals have a functional heart with minimal defects that can sustain them from
gestational life through adulthood. Most importantly, these findings highlight the potential
to artificially activate embryonic genetic and environmental cues to overcome defective
cardiogenic events and compensate for adverse heart developmental conditions in utero.

Recent reports have emphasized the potential of specific biomolecules, including
WNT5A, WNT11, IGF-1, BMP4, and exosomes, to interfere with abnormal cardiac de-
velopment and correct cardiogenesis, when administered exogenously at early stages of
development. Among those, WNT5A and WNT11 are particularly interesting, since they
have shown corrective properties in mouse and fish models. WNT5A and WNT11 are
necessary for correct development of the heart and placenta, among other organs and
tissues, and they are abundantly expressed in the uterine epithelium at peri-implantation,
a key period when blastocysts reach the uterine lumen. In addition, the blastocyst may be
the target of choice for WNT5A and WNT11 corrective effects, since these early embryonic
structures may be responsive to the exogenous instructions necessary to originate functional
pre-gastrulation cells/progenitors, defined to derive specific parts of heart structures. Thus,
it is of interest to fully explore the potential of WNT5A and WNT11 for the development
and implementation of future preventive therapies for CHDs.
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Nevertheless, further understanding of developmental mechanisms, as well as dosages,
functions, and cross-reactions of therapeutic molecules, is key to devise the best and safest
approaches to use all biomolecules and proteins (including WNT5A, WNT11, IGF-1, and
BMP4), as well as exosomes, for CHD prevention. Additional research on genetic and
environmental cues, as well as the mechanisms overcoming defective cardiogenic events,
may help to identify other molecules and exosomes and develop safe strategies through
which to compensate for adverse heart developmental conditions. Implementing such
non-surgical interventions during early gestation offers the potential for reducing the oc-
currence and severity of CHDs, as well as an early preventive measure in utero. Although
the underlying genetic mechanism potentially leading to CHDs would not be addressed
with those approaches, it would be of interest to explore such combinatorial strategies,
since they may provide prophylactic options to prevent or limit the severity of CHDs.
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