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Abstract: Background: Traumatic brain injury (TBI) represents a significant global health issue; the
traditional tools such as the Glasgow Coma Scale (GCS) and Abbreviated Injury Scale (AIS) which
have been used for injury severity grading, struggle to capture outcomes after TBI. Aim and methods:
This paper aims to implement extreme gradient boosting (XGBoost), a powerful machine learning
algorithm that combines the predictions of multiple weak models to create a strong predictive model
with high accuracy and efficiency, in order to develop and validate a predictive model for in-hospital
mortality in patients with isolated severe traumatic brain injury and to identify the most influential
predictors. In total, 545,388 patients from the 2013–2021 American College of Surgeons Trauma
Quality Improvement Program (TQIP) database were included in the current study, with 80% of
the patients used for model training and 20% of the patients for the final model test. The primary
outcome of the study was in-hospital mortality. Predictors were patients’ demographics, admission
status, as well as comorbidities, and clinical characteristics. Penalized Cox regression models were
used to investigate the associations between the survival outcomes and the predictors and select
the best predictors. An extreme gradient boosting (XGBoost)-powered Cox regression model was
then used to predict the survival outcome. The performance of the models was evaluated using
the Harrell’s concordance index (C-index). The time-dependent area under the receiver operating
characteristic curve (AUC) was used to evaluate the dynamic cumulative performance of the models.
The importance of the predictors in the final prediction model was evaluated using the Shapley
additive explanations (SHAP) value. Results: On average, the final XGBoost-powered Cox regression
model performed at an acceptable level for patients with a length of stay up to 250 days (mean
time-dependent AUC = 0.713) in the test dataset. However, for patients with a length of stay between
20 and 213 days, the performance of the model was relatively poor (time-dependent AUC < 0.7).
When limited to patients with a length of stay ≤20 days, which accounts for 95.4% of all the patients,
the model achieved an excellent performance (mean time-dependent AUC = 0.813). When further
limited to patients with a length of stay ≤5 days, which accounts for two-thirds of all the patients,
the model achieved an outstanding performance (mean time-dependent AUC = 0.917). Conclusion:
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The XGBoost-powered Cox regression model can achieve an outstanding predictive ability for in-
hospital mortality during the first 5 days, primarily based on the severity of the injury, the GCS on
admission, and the patient’s age. These variables continue to demonstrate an excellent predictive
ability up to 20 days after admission, a period of care that accounts for over 95% of severe TBI patients.
Past 20 days of care, other factors appear to be the primary drivers of in-hospital mortality, indicating
a potential window of opportunity for improving outcomes.

Keywords: traumatic brain injury; Trauma Quality Improvement Program (TQIP); machine learning;
prediction model; survival analysis; extreme gradient boosting (XGBoost)

1. Introduction

Traumatic brain injury (TBI) represents a significant global health challenge, resulting
in substantial mortality, morbidity, and long-term disability [1–6]. It is estimated that
around 69 million individuals experience a TBI each year, worldwide. Among these cases,
approximately 60,000 individuals in the United States and 82,000 individuals in Europe suc-
cumb to TBI-related fatalities annually [4–6]. The impact of TBI extends beyond individual
patients, affecting families, communities, and healthcare systems [7–10]. Therefore, accurate
prediction of adverse outcomes in TBI, particularly mortality, is of paramount importance
to optimally guide patient care and rehabilitation [11,12]. Conventionally, prognostication
in TBI has relied on established clinical scoring systems such as the Glasgow Coma Scale
(GCS) and the Abbreviated Injury Scale (AIS) [13–16]. While these tools provide valuable
information, on their own they struggle to capture the complexity of the multifaceted
nature of TBI, which limits their prognostic ability in terms of accuracy and individualized
risk assessment [15]. This has prompted researchers and clinicians to explore alternative
approaches that leverage the power of machine learning algorithms to improve predictive
models in the field of TBI [17–22].

In recent years, machine learning techniques have emerged as powerful tools for
predictive modeling, including in medical domains [23,24]. Among these techniques, ex-
treme gradient boosting (XGBoost) has gained considerable attention due to its ability to
efficiently manage complex relationships, nonlinear interactions, and high-dimensional
data [25,26]. XGBoost is an ensemble learning algorithm that combines predictions made
by weak learners, such as decision trees, to generate a robust and accurate final prediction.
By effectively integrating multiple models, XGBoost can capture subtle patterns and interac-
tions in the dataset, leading to improved performance and generalizability [25,26]. Against
this backdrop, this paper aims to implement the XGBoost technique in regression models
for survival outcomes to develop and validate a predictive model for in-hospital mortality
in patients with isolated severe traumatic brain injury. By leveraging the capabilities of
XGBoost and incorporating a comprehensive set of demographic, admission, and clinical
characteristics, the goal is also to identify the most influential predictors contributing to
mortality due to traumatic brain injury.

2. Materials and Methods
2.1. Source of the Data

In total, 545,388 patients between 2013 and 2021 were included in the current study from
the American College of Surgeons Trauma Quality Improvement Program (TQIP) database.
The dataset was split into a training dataset, which included 80% of the patients who were
used for model development and training, and an external test dataset, which included 20%
of the patients to test the final model. There were no significant differences observed in the
features when comparing the training and test datasets (see Supplemental Table S1).

The requirement for ethical approval was waived for the current study as it was
only performed using an anonymized, retrospective dataset. The Transparent Reporting
of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD)
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guidelines and the Declaration of Helsinki were adhered to throughout the execution of
this investigation [27,28].

2.2. Participants

Using the TQIP database, all adult patients (18 years or older) with isolated severe
TBI due to blunt trauma who were registered between 2013 and 2021 were considered for
inclusion. An isolated severe TBI was defined as a head AIS ≥ 3, with an AIS ≤ 1 in all
other regions. Patients with a head AIS of 6 were excluded, as these injuries are generally
not considered survivable.

2.3. Outcome

The primary outcome of the study was in-hospital mortality. Patients who were still
alive at the time of discharge from the hospital were considered censored. Because the out-
come was assessed by external and independent clinicians, blinding was not implemented
in the current study. The researchers and statistician in the current study were not involved
in the outcome assessment, which helped to minimize the potential bias resulting from
non-blinding.

2.4. Predictors

Predictors in the current study were patients’ demographics, admission status, as well
as comorbidities, and clinical characteristics.

Demographic features consisted of age, sex, race/ethnic origin (White, Black, Asian,
American Indian, Pacific Islander, or other), smoking status, payment method (private in-
surance, government insurance, uninsured), and type of hospital (University, non-teaching,
community). Variables pertaining to admission status included oxygen saturation, respira-
tory rate, body temperature, hypotension (defined as a systolic blood pressure <90 mmHg),
tachycardia (defined as a pulse rate >100), and shock index (calculated as the pulse rate
divided by the systolic blood pressure) [29], severity of head injury (AIS, 3, 4, or 5), pres-
ence of injury in other regions (face, neck, spine, thorax, abdomen, upper extremity, lower
extremity, external), level of consciousness (GCS 3–15), presence of intracranial injury
(epidural hematoma, traumatic subdural hematoma, traumatic subarachnoid hemorrhage,
cerebral contusion, diffuse axonal, or other), neurosurgical intervention (none, within
24 h from admission, or after 24 h from admission), and number of units of packed red
blood cells (PRBC) transfused within 4 h from admission (250 mL per unit). Comorbidi-
ties and clinical characteristics consisted of previous myocardial infarction, congestive
heart failure, coagulopathy, dementia, cerebrovascular disease, diabetes mellitus, chronic
renal failure, disseminated cancer, currently receiving chemotherapy for cancer, periph-
eral vascular disease, chronic obstructive pulmonary disease, alcohol use disorder, drug
use disorder, cirrhosis, major psychiatric illness, advanced directives limiting care, and
anticoagulant therapy.

2.5. Sample Size

The study is a patient-population-register-based study with a total of 545,388 patients.
A post hoc power calculation indicated that this sample size has a power of >0.99 to identify
a statistically significant area under the receiver operating characteristic curve (AUC) >0.8,
at a two-sided α level of 0.05.

2.6. Missing Data

The multivariate imputation by chained equations algorithm was applied to impute
the missing values. Because of the large sample size, only one imputed complete dataset
was used for model training and testing.
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2.7. Statistical Analysis

Patients were grouped based on if they were discharged alive or dead. Continuous
variables were presented as means and standard deviations or medians and interquartile
ranges, depending on if they were or were not normally distributed. The statistical sig-
nificance of differences was evaluated using the Student’s t-test for the former group and
the Mann–Whitney U-test for the latter group. Categorical variables were summarized as
counts and percentages, with the Chi-squared test being used to determine the significance
of differences. A two-sided p-value less than 0.05 was considered statistically significant.

Continuous variables were standardized with a mean of zero and a standard deviation
of 1, and multi-nominal variables were converted into multiple dummy variables using the
one-hot encoding method before they entered the models.

Penalized Cox regression models with L2 penalty (ridge regression), L1 penalty
(LASSO regression), and both penalties (elastic net regression) were used to investigate the
associations between the survival outcomes and the predictors in the prediction model. An
XGBoost algorithm-powered Cox regression model was trained using the dataset to predict
the survival outcome, with a relatively small learning rate (<0.1) to make the boosting
process more conservative. The K-fold cross-validation method, with the training dataset
split into 5 equal parts, was used throughout the predictor selection and XGBoost-powered
model training. The grid search method was used for tuning models’ hyperparameters,
including penalty coefficient λ, L1 ratio, and learning rate η, to update the models. The test
dataset was used to validate the final model.

Given the imbalance of the survival outcomes (in-hospital mortality only occurred in
<10% of patients), a random under-sampling method was used for patients discharged alive
to achieve a 1:1 ratio between the patients who died and survived. The above procedure was
repeated for 10 under-sampling samples as a sensitivity analysis to validate the robustness
of this modelling strategy.

The overall performance of the models was evaluated using the Harrell’s concordance
index (C-index), with a value between 0.7 and 0.8 indicating an acceptable model, between
0.8 and 0.9 excellent, and >0.9 outstanding [30]. The time-dependent AUC was used to
evaluate the dynamically cumulative performance of the final model [31]. The importance
of the predictors in the final model was evaluated using the Shapley additive explanations
(SHAP) value [32].

The missing value imputation was conducted in the R statistical programming lan-
guage, version 4.2.3 (R Foundation for Statistical Computing, Vienna, Austria) using the
package mice [33]. The penalized Cox regression, XGBoost-powered Cox regression, and
model training, test, and evaluation were performed in Python, version 3.9 using the
packages sklearn, sksurv, lifelines, xgboost, shap, and imblearn [34].

3. Results
3.1. Participants

545,388 adult patients were registered in TQIP between 2013 and 2021, after having
suffered an isolated severe traumatic brain injury. Patients who died were generally older
(74 vs. 67 years old, p < 0.001), more often male (64.2% vs. 61.6%, p < 0.001), and more
likely to be White (78.6% vs. 77.0%, p < 0.001) or Asian (3.7 vs. 2.9%, p < 0.001). All
comorbidities were more common among patients who died in the hospital except for
dementia, substance use disorders, and major psychiatric illnesses.

Patients who died were more severely injured (Head AIS 5: 64.4% vs. 15.7%, p < 0.001)
and consequently tended to have a lower GCS on admission (GCS ≤ 8: 58.9% vs. 7.3%,
p < 0.001). These patients were also more likely to be hypotensive (6.8% vs. 0.7%, p < 0.001)
and tachycardic (24.0% vs. 16.2%, p < 0.001) on admission. All intracranial injuries were
more common among patients who died in the hospital except for epidural hematomas. As
a result, patients who died were more likely to have required neurosurgical intervention
(19.9% vs. 8.8%, p < 0.001) (Table 1).
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Table 1. Characteristics of patients with an isolated severe TBI.

Survived
(N = 498,599)

Died
(N = 46,789) p-Value

Length of hospital stay, median [IQR] 4.0 [2.0–7.0] 3.0 [2.0–8.0] <0.001
Missing, n (%) 3919 (0.8) 2302 (4.9)

Age, median [IQR] 67 [49–79] 74 [60–82] <0.001

Sex, n (%) <0.001
Female 190,692 (38.2) 16,661 (35.6)
Male 307,239 (61.6) 30,061 (64.2)

Missing 668 (0.1) 67 (0.1)

Race, n (%) <0.001
White 383,863 (77.0) 36,761 (78.6)
Black 47,635 (9.6) 3514 (7.5)
Asian 14,670 (2.9) 1750 (3.7)

American Indian 4693 (0.9) 356 (0.8)
Pacific islander 1403 (0.3) 151 (0.3)

Other 35,796 (7.2) 2941 (6.3)
Missing 6480 (1.3) 644 (1.4)

History of myocardial infarction, n (%) 8110 (1.6) 1122 (2.4) <0.001

Congestive heart failure, n (%) 28,071 (5.6) 4749 (10.1) <0.001

Cerebrovascular disease, n (%) 27,543 (5.5) 3365 (7.2) <0.001

History of peripheral vascular disease, n (%) 5540 (1.1) 833 (1.8) <0.001

Diabetes mellitus, n (%) 100,978 (20.3) 11,426 (24.4) <0.001

Chronic renal failure, n (%) 11,768 (2.4) 2279 (4.9) <0.001

Dementia, n (%) 44,075 (8.8) 4215 (9.0) 0.222

Coagulopathy, n (%) 32,520 (6.5) 5801 (12.4) <0.001

Anticoagulant therapy, n (%) 2870 (0.6) 90 (0.2) <0.001
Missing 100,926 (20.2) 9556 (20.4)

Currently receiving chemotherapy for cancer, n (%) 3924 (0.8) 800 (1.7) <0.001

Disseminated cancer, n (%) 5765 (1.2) 1320 (2.8) <0.001

Current smoker, n (%) 79,330 (15.9) 4177 (8.9) <0.001

COPD, n (%) 37,049 (7.4) 4496 (9.6) <0.001

Cirrhosis, n (%) 7658 (1.5) 1790 (3.8) <0.001

Alcohol use disorder, n (%) 54,543 (10.9) 4868 (10.4) <0.001

Drug use disorder, n (%) 24,727 (5.0) 1471 (3.1) <0.001

Major psychiatric illness, n (%) 55,874 (11.2) 3885 (8.3) <0.001

Advanced directive limiting care, n (%) 22,674 (4.5) 6037 (12.9) <0.001

Head AIS, n (%) <0.001
3 283,581 (56.9) 9253 (19.8)
4 136,610 (27.4) 7405 (15.8)
5 78,408 (15.7) 30,131 (64.4)

Face AIS, n (%)
Injury present 139,844 (28.0) 10,921 (23.3) <0.001

Neck AIS, n (%)
Injury present 3099 (0.6) 351 (0.8) <0.001

Spine AIS, n (%)
Injury present 5953 (1.2) 158 (0.3) <0.001

Thorax AIS, n (%)
Injury present 18,423 (3.7) 2577 (5.5) <0.001

Abdomen AIS, n (%)
Injury present 11,363 (2.3) 1574 (3.4) <0.001

Upper extremity AIS, n (%)
Injury present 65,262 (13.1) 6416 (13.7) <0.001
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Table 1. Cont.

Survived
(N = 498,599)

Died
(N = 46,789) p-Value

Lower extremity AIS, n (%)
Injury present 50,267 (10.1) 5309 (11.3) <0.001

External/Other AIS, n (%)
Injury present 20,205 (4.1) 2387 (5.1) <0.001

GCS at admission, n (%) <0.001
Mild (GCS 14–15) 392,770 (78.8) 11,104 (23.7)

Moderate (GCS 9–13) 43,050 (8.6) 5986 (12.8)
Severe (GCS 3–8) 36,331 (7.3) 27,567 (58.9)

Missing 26,448 (5.3) 2132 (4.6)

Hypotension at admission, n (%) 3498 (0.7) 3169 (6.8) <0.001
Missing 12,064 (2.4) 1438 (3.1)

Tachycardia, n (%) 80,891 (16.2) 11,252 (24.0) <0.001
Missing 11,639 (2.3) 1195 (2.6)

Shock index, median [IQR] 0.57 [0.48–0.69] 0.57 [0.45–0.72] <0.001
Missing, n (%) 13,967 (2.8) 3133 (6.7)

Oxygen saturation, median [IQR] 98 [96–99] 98 [96–100] <0.001
Missing, n (%) 25,842 (5.2) 3374 (7.2)

Respiratory rate, mean (SD) 18.0 (±4.1) 17.3 (±6.9) <0.001
Missing, n (%) 16,193 (3.2) 3039 (6.5)

Temperature, mean (SD) 36.6 (±0.9) 36.2 (±1.9) <0.001
Missing, n (%) 46,866 (9.4) 10,022 (21.4)

Intracranial injury, n (%)
Cerebral contusion 125,674 (25.2) 17,584 (37.6) <0.001
Epidural hematoma 22,534 (4.5) 1855 (4.0) <0.001

Traumatic subdural hematoma 353,638 (70.9) 36,099 (77.2) <0.001
Traumatic subarachnoid hemorrhage 155,472 (31.2) 20,948 (44.8) <0.001

Diffuse axonal injury 5044 (1.0) 1545 (3.3) <0.001
Other intracranial injury 14,434 (2.9) 3408 (7.3) <0.001

Neurosurgical intervention, n (%) <0.001
None 454,615 (91.2) 37,421 (80.0)

Within 24 h 32,392 (6.5) 8075 (17.3)
After 24 h 11,324 (2.3) 1218 (2.6)
Missing 268 (0.1) 75 (0.2)

Volume PRBC transfused within 4 h, median [IQR] 0.00 [0.00–0.00] 0.00 [0.00–0.00] <0.001
Missing, n (%) 0 (0.0) 2 (0.0)

Hospital teaching status, n (%) <0.001
Community 196,758 (39.5) 17,856 (38.2)

Non-teaching 87,816 (17.6) 7201 (15.4)
University 212,138 (42.5) 21,533 (46.0)

Missing 1887 (0.4) 199 (0.4)

Payment method, n (%) <0.001
Private/commercial insurance 128,167 (25.7) 8773 (18.8)

Medicaid 53,869 (10.8) 3594 (7.7)
Medicare 237,888 (47.7) 27,564 (58.9)

Other government insurance 11,854 (2.4) 843 (1.8)
Self-pay 39,499 (7.9) 3588 (7.7)

Not billed (for any reason) 1736 (0.3) 125 (0.3)
Other 11,219 (2.3) 873 (1.9)

Missing 14,367 (2.9) 1429 (3.1)

Length of stay is measured in days. Hypotension is defined as a systolic blood pressure < 90 mmHg. Tachycardia
is defined as a pulse rate >100. Temperature is measured in degrees Celsius. PRBC transfusion volume is measured
in units (250 mL). TBI, traumatic brain injury; COPD, chronic obstructive pulmonary disease; AIS, Abbreviated
Injury Scale; GCS, Glasgow Coma Scale.

3.2. Model Development

Among the 545,388 patients, the in-hospital mortality rate was 8.6% with a median
length of stay of 4 days (Table S1). The survival probability over time is shown in Figure 1.
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Figure 1. Survival probability of the 545,388 traumatic brain injury patients.

The Cox regression models with L1 and L2 penalties detected the same top 10 pre-
dictors for in-hospital mortality: head AIS 5, hypotension, no neurosurgical intervention,
cirrhosis, the presence of an advanced directive limiting care, age, disseminated cancer,
epidural hematoma, GCS, and Spine AIS 1 (Supplemental Figures S1–S3).

After grid searching, the best performance was found for the elastic net Cox regression
model with a penalty coefficient of 0.087, an L1 ratio of 0.1, and a C-index of 0.88 (Figure 2).
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L1 ratios.

In the best elastic net Cox regression model, the predictors with non-zero coefficients
were GCS, age, Head AIS 5, oxygen saturation, shock index, volume of PRBC transfused,
and temperature (Figure 3).
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3.3. Predictive Model Specification

Both the top 10 predictors from the L1- or L2-penalized Cox regression models and
predictors from the best elastic net Cox regression model were included to train the XGBoost-
powered Cox regression model. The model performed excellently in both the training
dataset (C-index = 0.8969) and the test dataset (C-index = 0.8963).

The effects of the predictors on the model output for the test dataset are shown in
Figure 4. A higher GCS was associated with a lower risk of mortality. A Head AIS of 5,
older age, no neurosurgical intervention, the presence of an advanced directive limiting
care, lower oxygen saturation, hypotension, lower body temperature, higher shock index,
cirrhosis, larger blood transfusion, and disseminated cancer were associated with an
increased risk of mortality. The importance of an AIS 1 spine injury was negligible.
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The rank of the impact of the predictors according to the mean of the absolute SHAP
values is shown in Figure 5. The GCS score is associated with the largest impact on in-
hospital mortality, followed by a Head AIS of 5, and age. However, the impacts associated
with the other predictors are relatively small and ignorable.
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The dynamic cumulative performance of the final XGBoost-powered Cox regression
model for the test data set is shown in Figure 6. On average, the model performed at an
acceptable level for patients with a length of stay of up to 250 days (mean time-dependent
AUC = 0.713). However, for patients with a length of stay between 20 and 213 days, the
performance of the model was relatively poor (time-dependent AUC < 0.7, Figure 6).
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Nevertheless, when limited to patients with a length of stay ≤20 days, which accounts
for 95.4% of all the patients, the model achieved an excellent performance (mean time-
dependent AUC = 0.813, Supplemental Figure S4). When further limited to patients with
a length of stay ≤5 days, which accounts for two-thirds of all the patients, the model
achieved an outstanding performance (mean time-dependent AUC = 0.917). The sensitivity
analysis resulted in similar results, with a mean C-index of 0.884 (SD = 0.023) and a mean
time-dependent AUC of 0.733 (SD = 0.104) for the 10 random under-sampling samples.

4. Discussion

XGBoost is a widely recognized machine learning algorithm employed in various
supervised learning tasks, encompassing both classification and regression. Integrating
XGBoost with the Cox model as decision trees for survival outcomes enables the model to
harness the strengths of the gradient boosting algorithm while retaining the interpretability
of the Cox model. This hybrid approach has the potential to enhance predictive power
compared to traditional Cox regression models.

Time-dependent AUC plays a pivotal role in assessing the predictive performance of a
survival model across different time intervals. Unlike the conventional AUC, which evalu-
ates the model’s predictive ability over the entire study period, the time-dependent AUC
offers insights into how effectively the model distinguishes individuals who experience an
event (e.g., mortality) from those who do not at various time points.

Variable importance measures the relative contribution of each predictor variable
(e.g., covariates or features) to the overall predictive capacity of a survival model. It
quantifies the influence of each variable on the model’s ability to predict survival outcomes,
facilitating the identification of the most influential factors.

In our current study, we employed the XGBoost-powered Cox regression model
for patients with severe traumatic brain injury. This model demonstrated outstanding
predictive ability for in-hospital mortality during the first 5 days, primarily based on the
severity of the injury, the GCS on admission, and the patient’s age. These variables continue
to demonstrate an excellent predictive ability up to 20 days after admission, a period of
care that accounts for over 95% of severe TBI patients. However, past this cutoff, the model
struggles to accurately predict in-hospital mortality using these same variables [30].

Several studies have investigated the top predictors of mortality in patients with
severe traumatic brain injury [18–22]. All of these studies agree that age is among the
most important predictors [18–22], while all but one also included injury severity [18–21],
as well as GCS [18,19,21,22], in this group. We et al, in particular, also used an XGBoost-
powered model and achieved a similar predictive ability with their set of top predictors,
which included age, GCS at admission, and the injury severity score for the brain [18].
However, none of these studies considered how the predictive ability of these variables
varied over time.

This model provides significant insights into the determinants of mortality after
suffering a severe isolated TBI. As is evident from current and previous investigations,
non-modifiable risk factors in the form of injury severity, GCS, and age demonstrate the
highest predictive ability during the initial period of care, with the model demonstrating
an AUC > 0.9 during the first 5 days. This indicates that there appears to be a limit to how
much can be done to improve outcomes during this period, beyond those interventions and
routines that are already in use. Instead, preventive measures that both reduce the severity
and frequency of TBIs are likely of greater importance [35–37]. Given the significance of
age, targeting these measures toward older and more frail populations who are at the
greatest risk of adverse outcomes may be particularly effective [38,39].

However, beyond 20 days, the model struggles to accurately predict outcomes in the
~5% of patients that remain. While the exact cause of this cannot be definitively determined
based on the current analysis, this indicates that other factors not captured by the dataset
likely become more important for predicting in-hospital mortality after the 20-day cutoff.
This could be speculated to be variables related to patient care such as infections and
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other complications arising in the hospital ward, treatments and medications administered,
as well as supportive therapies [40–43]. This could also indicate that there is a window
of opportunity after the initial 20-day period of care, wherein management decisions
may significantly influence patient outcomes. There might consequently also be greater
opportunities for improving patient outcomes during this period, given the decreasing
importance of non-modifiable risk factors in predicting mortality.

Nevertheless, after 210 days the XGBoost-powered Cox regression model improves,
with AUCs consistently above 0.7. Given that only a small proportion of the original cohort
remains at this stage, significant care should be taken when drawing any conclusions
regarding this period. As these AUCs are based on the test dataset, this high predictive
ability cannot be attributable to overfitting. Instead, this may suggest an end to the window
of opportunity for patients who still require hospital care. Rather than outcomes being
determined by patient care, the non-modifiable characteristics of the original injury (AIS,
GCS, and age) once again appear to become the primary predictors of mortality. If this is
the case, this may function as a suitable threshold for a renewed discussion with patients
and their next-of-kin regarding goals of care and continued life-supporting measures.

Predictive modeling has emerged as a valuable tool in healthcare, providing clinicians
with a means to predict patient outcomes and allocate resources effectively [11,12]. Neuro-
surgery, being a complex and high-stakes field, may greatly benefit from the integration of
predictive models, particularly those focused on in-hospital mortality [11,12,23,24]. By iden-
tifying patients at a higher risk of adverse events, such as mortality, healthcare providers
can intervene early, allowing for intensified monitoring, tailored interventions, and closer
follow-up, Furthermore, stratifying patients into risk categories enables more efficient
resource allocation and optimizes the utilization of healthcare resources. This ensures
that patients with a higher predicted risk receive timely care, while low-risk patients can
undergo more conservative management approaches, potentially reducing healthcare costs
and unnecessary interventions. By considering a patient’s estimated risk of in-hospital
mortality, clinicians are better able to weigh the potential benefits and risks of different
interventions. At the same time, having this estimate can also enhance shared decision
making and empower both patients and their relatives to make informed choices about
their care.

This investigation made use of a large, multi-institutional, administrative dataset with
over 500,000 patients in order to build a model to predict in-hospital mortality. Furthermore,
the predictive ability of over 50 variables could be compared while developing the model.
As a result, this study benefits from a relatively high external validity owing to the nature
of the sample population. Nevertheless, some limitations need to be addressed. Given the
retrospective nature of the dataset, analyses were limited to the variables that had already
been recorded. As a consequence, variables such as intracranial pressure, brain arterial
pressure, cerebral perfusion pressure, and other vitals measured during the period of care
were not available. A more detailed description of preoperative optimization and patient
management decisions taken during the hospitalization was also not present in the dataset.
It was also not possible to investigate other potential outcomes of interest, such as cause
of death, functional outcomes, quality of life, and survival after discharge. Furthermore,
while the timing of neurosurgical intervention could be divided into none, within 24 h, and
after 24 h, the TQIP dataset lacked the granularity for a more detailed description of the
timing. The criteria for intervention were also not captured by TQIP. Finally, it is important
to note that the relationships identified are associative rather than causal in nature given
the observational study design.

5. Conclusions

The XGBoost-powered Cox regression model can achieve an outstanding predictive
ability for in-hospital mortality during the first 5 days and continues to demonstrate an
excellent predictive ability up to 20 days after admission. During this period of care, which
accounts for over 95% of severe TBI patients, in-hospital mortality is chiefly predicted by
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the severity of the injury, the Glasgow Coma Scale on admission, and the patient’s age.
Past 20 days of care, other factors appear to be the primary drivers of in-hospital mortality,
indicating a potential window of opportunity for reducing adverse outcomes.
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