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Abstract: The use of non-invasive tools in conjunction with artificial intelligence (AI) to detect diseases
has the potential to revolutionize healthcare. Near-infrared spectroscopy (NIR) is a technology that
can be used to analyze biological samples in a non-invasive manner. This study evaluated the use of
NIR spectroscopy in the fingertip to detect neutropenia in solid-tumor oncologic patients. A total
of 75 patients were enrolled in the study. Fingertip NIR spectra and complete blood counts were
collected from each patient. The NIR spectra were pre-processed using Savitzky–Golay smoothing
and outlier detection. The pre-processed data were split into training/validation and test sets using
the Kennard–Stone method. A toolbox of supervised machine learning classification algorithms
was applied to the training/validation set using a stratified 5-fold cross-validation regimen. The
algorithms included linear discriminant analysis (LDA), logistic regression (LR), random forest (RF),
multilayer perceptron (MLP), and support vector machines (SVMs). The SVM model performed best
in the validation step, with 85% sensitivity, 89% negative predictive value (NPV), and 64% accuracy.
The SVM model showed 67% sensitivity, 82% NPV, and 57% accuracy on the test set. These results
suggest that NIR spectroscopy in the fingertip, combined with machine learning methods, can be
used to detect neutropenia in solid-tumor oncology patients in a non-invasive and timely manner.
This approach could help reduce exposure to invasive tests and prevent neutropenic patients from
inadvertently undergoing chemotherapy.

Keywords: neutropenia; neutrophils; NIR spectroscopy; machine learning; fingertip

1. Introduction

Neutropenic patients are not recommended for chemotherapy since it induces further
neutrophil count decreases [1]. Chemotherapy treatments for cancer are well-known to be
associated with a depletion of white blood cells, particularly neutrophils, causing a condi-
tion known as chemotherapy-induced neutropenia. Lower neutrophil count levels have
been linked to lower survival rates, lower quality of life, and a higher risk of opportunistic
infections [2].
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In clinical practice, the cut-off value of a neutrophil count (1500 cells/mm3) is typically
used to exclude, delay, or lower the dosages of a chemotherapy session [3]. In this scenario,
neutropenic patients are further classified as having lower counts (higher overall risk) or
higher neutrophil counts (lower overall risk). In oncologic patients, a neutrophil count of
fewer than 500 cells/mm3 can indicate a poor prognosis, a shorter life expectancy, and a
high risk of death [4].

Despite being a cornerstone in clinical practice, a complete blood count (CBC) assess-
ment might impose some costs and challenges [5]. For example, an Italian study conducted
in Bari, with approximately one million inhabitants and an estimated price for a blood
count test of USD 3.14, resulted in a total cost for undertaking this test of USD 560,000. Con-
sidering the entire national territory of Italy, the estimated cost surpasses USD 20 million
per year for outpatients at public hospitals. However, the laboratory costs for other cases,
such as patients in hospitals and private clinics, are substantially greater than this esti-
mate [6]. Beyond the costs, a peripheral venous puncture can significantly increase the risk
of hemorrhage in patients with low platelet levels or coagulopathies [7]. Furthermore, a
peripheral blood count cannot be collected quickly due to patient dehydration, anatomic
abnormalities of peripheral veins, or the inability to maintain intravascular patency after a
puncture [8].

To overcome these challenges and provide a safe chemotherapy procedure, a quick,
non-invasive, and on-site point-of-care approach to detect low neutrophil counts in solid-
tumor oncologic patients could aid in patient selection for chemotherapy. The critical
element in reducing neutropenia-related mortality is early diagnosis before the onset of
infection and fever, resulting in a reduced need for hospitalization and a faster neutrophil
recovery. One major obstacle faced in managing chemotherapy-induced neutropenia (CIN)
is the timely diagnosis of neutropenia before the onset of infection. Timely diagnosis would
provide a critical window of opportunity for appropriate clinical intervention (with G-CSF
and antibiotics). The number one challenge in diagnosing CIN is the patient’s ability to
identify the signs and symptoms of CIN and realize that they are seriously ill and need
to report immediately to the appropriate cancer care or hospital ward [9]. It is essential
to educate all cancer patients and chemotherapy patients about the risks of CIN before
beginning treatment. Thus, a method to detect low neutrophil counts in oncologic patients
might help better select patients for chemotherapy.

The technique of near-infrared (NIR) spectroscopy was first described by William
Herschel in 1800. The spectroscopy principles consist of using a specific wavelength light
device emitter to characterize the molecular composition of the sample qualitatively and
quantitatively [10]. As the light photons interact with the target sample, a fraction of the
wave energy is absorbed, dispersed, and reflected [11]. In this context, NIR spectroscopy
consists of a technique that uses a shorter wavelength interval with a higher frequency
light device emitter. The first documented NIR application was to continuously monitor
cerebral tissue oxygen saturation made by Jobsis in 1977 [12]. A recent study by Chaves
et al. applied NIR spectroscopy to the patient’s thenar eminence to investigate the impacts
of continuous venovenous hemodiafiltration on the microcirculation in patients with acute
kidney injury [13].

The achievement of an early diagnosis is essential for success in treating any disease,
including in the oncological field. In the absence of clinically detectable signs and symptoms
or efficient screening programs for several diseases, new parameters need to be evaluated.
New ideas and techniques are evolving to fill this gap, which would be impossible with
traditional methods. In the last two decades, there has been scientific interest in vibrational
spectroscopy (VS), an analytical method potentially applicable to fingertip tissue. While
spectroscopy investigates the interaction between electromagnetic radiation (light) and
matter, VS identifies the molecular structure of the analyzed sample through its vibra-
tional characteristics interacting with a beam source. The revealed spectrum represents
a faithful representation of the unique molecular characteristics investigated. This rapid,
non-destructive, minimally invasive, and relatively inexpensive technique has shown to
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be promising in detecting biomarkers in different samples [14]. Hence, with the emerging
progress in technology and machine learning, the analysis and classification of multiple
parameters derived from spectroscopic analysis have been facilitated, and its potential
exponentially elevated.

Therefore, this study aims to assess whether NIR spectroscopy in the fingertip coupled
with supervised machine learning classification algorithms can detect neutropenic patients
and develop a quick and practical measurement tool contributing to clinical decision
making in the oncology field.

2. Materials and Methods
2.1. Participants and Samples

Blood count samples from 75 patients were obtained by venipuncture using sodium cit-
rate vacuum tubes in hospital Santa Casa de Misericordia de Itabuna, BA, Brazil. The inclu-
sion criteria to participate in the study were >18 years old, diagnosed solid-tumor oncology
patients, and the complete blood count performed on the same day. It is common for cancer
patients to have their blood cells counted periodically to decide whether or not they can un-
dergo the next chemotherapy session. The exclusion criteria were <18 years old and hemato-
logical tumor patients. All patient clinical data were obtained from the medical records. Pa-
tients were assigned to the neutropenic group (NG) if CBC < 1500 neutrophil cells/mm3 or
were assigned to the normal neutrophil group (NNG) if CBC ≥ 1500 neutrophil cells/mm3.
The patient demographic data are reported in Table 1 and the Section 3.

Table 1. Patients’ cohort information per group.

NG NNG

Total (n) 24 51
Sex % (M/F) 25/75 28/72
Age range 24–76 29–80
Average age 53 ± 13 53 ± 12

This study was carried out in agreement with the Helsinki Declaration. The Local
Ethics Committee granted full ethical approval for the investigation at the State University
of Santa Cruz (CAEE: 48245921.0.0000.5526). All the volunteers signed the informed consent
form before being included in the study.

2.2. Differential Stain of Blood Cells

Blood smears from four random neutropenic patients and four normal individuals
were stained with the Instant-Prov kit (Newprov, Pinhais, Brazil) according to the man-
ufacturer’s instructions. The slides were examined under common light microscopy at
100× magnification.

2.3. NIR Spectroscopy

The NIR spectra were taken non-invasively (without blood sample collection). For
spectral acquisition, the patient’s index finger from the right hand was cleaned with a 70%
ethanol v/v solution and positioned over a portable NIR spectroscopy (MicroNir ES 1700,
VIAVI, Chandler, AZ, USA) to obtain the patient’s spectra, as previously published [15].
The spectral range obtained was from 908 to 1676 nm in absorbance mode with a 6.2 nm
resolution and 125 different wavelengths registered. Sample spectra were recorded in
triplicate (n = 225 spectra).

2.3.1. NIR Chemometric Analysis

This study’s entire chemometric analysis pipeline was developed in a Python v3.10.12
environment. The raw spectra were pre-processed with a 7-point Savitzky–Golay smooth-
ing method with a second-order polynomial. The Savitzky–Golay smoothing method is a
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pre-processing method to smooth noisy spectral data while preserving important features.
It is widely used to avoid the common pitfall of moving averages and linear filters to shrink
relevant details from data. It is commonly applied to spectroscopy and other types of
signal processing. Savitzky–Golay operates on small, overlapping windows of the data,
and a polynomial function is fitted to the data within each window size. In each window,
a polynomial of a specified degree is fit to the data points. The degree of the polynomial
can be an optimized parameter based on the characteristics of the data. The coefficients of
the polynomial function are determined by minimizing the sum of the squared differences
between the actual data points and the values predicted by the polynomial. Next, the
coefficients obtained from the polynomial fitting are convolved with the original data.
This convolution is essentially a weighted moving average in which the coefficients of
the fitted polynomial determine the weights. The convolution operation smoothens the
data by averaging noise and preserving important features, such as peaks and valleys.
Other pre-processing sequences were also tried, although the presented one showed the
best classification performance. The Hotelling T2 × Q-residuals were applied for outlier
detection (Supplemental Figure S1), and 1 patient from the NNG was removed from the
dataset due to low-quality collection issues (Supplemental Figure S2). The choice rationale
of machine learning models utilized in this study aimed to include linear and non-linear
models with different complexity profiles.

To correct for the class imbalance between NG and NNG groups, a penalization factor
hyperparameter was included in each of the 5 tested algorithms. The value for the penaliza-
tion factor was defined as 3. The number represents the inverse of the absolute prevalence
of neutropenic patients in the study cohort. A penalization factor of 3 was selected based
on the approximate integers greater than and lower than the inverse proportion of samples
in the minority class (NG) and majority class (NNG). The penalization factor was chosen
based on a grid search hyperparameter optimization method with values of penalization
factors ranging from 1 to 5. The value of 3 gave the lowest bias–variance trade-off and
optimal statistical performance between training and validation metrics in our dataset.

2.3.2. Linear Discriminant Analysis

Linear discriminant analysis (LDA) is a supervised pattern recognition tool that is
a set of data with already known classes used to train the model, and later this model is
used to classify new data based on the selected characteristics [16]. This method uses the
principle of maximizing variation between classes and minimizing variation within the
same class to create a linear decision boundary between classes. It is important to highlight
that LDA assumes that the independent variables have a normal distribution [16]. Through
LDA, new samples can be classified into one of the pre-established categories based on
the observed characteristics. This tool is widely used in areas such as pattern recognition,
biometrics, and data analysis. Linear discriminant analysis (LDA) is a supervised machine
learning algorithm for dimensionality reduction and classification. LDA is designed to
maximize the separation between different data classes. This algorithm assumes that each
class is normally distributed and has the same covariance matrix. When these assumptions
are met, LDA can perform optimally compared to other non-parametric machine learning
algorithms. Because LDA makes assumptions about data distribution, it can be suitable
for scenarios where the number of observations is limited. An important limitation is that
LDA is sensitive to outliers because it relies on means and covariance matrices. Outliers
can significantly affect these statistics and, consequently, the performance of LDA. Another
pitfall of LDA is the linear decision boundary between classes. In cases where the true
boundary is highly non-linear, other methods, like support vector machines (SVM) or non-
linear algorithms, might be more appropriate. Further, while LDA maximizes inter-class
distance, it does not explicitly consider variability within each class. In situations where
intra-class variability is high, other techniques, like quadratic discriminant analysis (QDA),
might perform better.
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2.3.3. Logistic Regression

Due to the interpretability of the logistic regression (LR) algorithm, its low compu-
tational cost, and its weak tendency to over-fit training data, it is a suitable classification
algorithm to deal with data that suffers from high dimensionality matrix space, where
the number of independent variables is higher than the number of samples in the dataset.
LRs consist of a general closed-form parametric equation of a linear regression model
with a sigmoid function transformation applied to the prediction values, transforming
probability values between zero and one. The coefficients for each independent variable
in logistic regression can be determined by the single value decomposition (SVD) matrix
method. Each coefficient represents the impact of the independent variable on the final
model prediction. SVD is a powerful matrix factorization technique widely used in machine
learning. It can offer several advantages: (1) effectively determining coefficients in multi-
collinearity problems; (2) provide a numerically stable approach to solving linear systems;
and (3) enable dimensionality reduction in machine learning algorithms, including LR and
regularization methods. Its versatility and low computational cost make it a valuable tool
for understanding and analyzing complex relationships within data.

2.3.4. Support Vector Machines

Support vector machines (SVMs) were initially proposed by Cortes and Vapnik in
1995 [17]. To tackle limited sample sizes and non-linear and high-dimensional pattern
recognition problems, SVMs have numerous advantages. SVM models depict examples as
spatial locations with the greatest possible distinct spacing between instances of different
classes. The same space maps new instances, which are then projected to belong to a class
based on which side of the interval they fall. Input vectors for SVMs are non-linearly
transferred to a very large feature space. SVMs identify the ideal hyperplane that has the
most significant potential distance between the two classes. The data points closest to
the separating hyperplane among the sample points in the training dataset are referred
to as “support vectors” for linear separability. Finding a hyperplane that can completely
segregate both sorts of data for practical activities is challenging. Allowing the SVM to
be incorrect for a few samples by adjusting a penalty parameter factor to the objective
optimization function is one way to solve this issue. This solution can be applied mainly
with class imbalance tasks. In SVMs, the penalty parameter, often denoted as C, is a crucial
hyperparameter that controls the trade-off between achieving a low training error and a
low testing error. The significance of the penalty parameter in SVM can be explained in
the context of the soft-margin SVM and its impact on the decision boundary. The SVM
algorithm aims to find a hyperplane that separates different classes while maximizing
the margin between the hyperplanes. In real-world problems, data may not be perfectly
separable. The soft-margin SVM introduces the penalty parameter C to allow for some
misclassification (points falling on the wrong side of the margin or even within it). When C
is small, the model is more tolerant of misclassifications. It prioritizes achieving a wider
margin, even if it allows some training points to be misclassified. This is useful when
dealing with noisy or overlapping data. Otherwise, when C is a large value, the model
becomes less tolerant of misclassifications. It emphasizes correctly classifying as many
training points as possible, even if it means having a smaller margin. This can lead to a
more complex decision boundary. Thus, the penalty parameter acts as a regularization
term. A smaller C imposes a more robust regularization, resulting in a simpler model with
a larger margin. A larger C reduces the regularization, allowing for a more complex model
that fits the training data closely.

2.3.5. Random Forest

Due to the complexity and non-linearity of biological spectroscopic information, tree-
based models often display robust and stable behavior compared to linear feature selection
models, such as LR. Random forests are a collection of tree predictors where each tree
depends on the values of a random vector sampled independently and with the same
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distribution for all the trees in the forest. As the number of trees in the forest increases,
the generalization error converges to a limit. The strength of the individual trees in the
forest and the correlation between them determine the accuracy of a forest of tree classifiers.
Each node is split using a random selection of features, producing error rates more resilient
to noise. Internal estimates keep track of loss function, strength, and correlation; they
demonstrate how the splitting process responds to an increase in the number of features [18].
In the context of machine learning, especially ensemble methods and random forests, this
concept refers to the robustness of the model in handling noisy or irrelevant features in the
dataset. Random forests naturally can mitigate the impact of noise and outliers, leading
to more accurate and stable predictions. The ensemble nature of random forests allows
them to average out the predictions of individual trees. Noisy predictions from individual
trees are mitigated when aggregated across the ensemble, leading to a more robust and
stable prediction.

2.3.6. Multilayer Perceptron

In the 1950s, Rosenblatt generated a framework for an artificial neural network (ANN)
called a “Perceptron” that was modeled after biological brain networks [19]. An output is
generated by an activation function in ANNs by combining the input signal (x), weights
(w), and bias term (b). Training the weight parameters allows the perceptron to optimize
the model. A basic perceptron, however, can only resolve linear issues. Hidden layers
are necessary for a network used to solve non-linear problems. Back-propagation neural
network (BNN) technology was invented by Rumelhart et al. in 1986. The fundamental
tenet of a BNN is that learning includes both forward signal and backward error propa-
gation. A typical ANN structure has a large number of artificial neurons stacked on top
of one another. Multilayer perceptron (MLP) is a specific architecture of neural networks
encompassing input layers, a set of hidden layers, and output layers that optimize based
on backward propagation and gradient descent. Multilayer perceptions (MLPs), a subtype
of artificial neural networks, are widely used in machine learning tasks today due to sev-
eral factors contributing to their effectiveness and versatility. MLPs can model complex,
non-linear relationships between input and output features. The presence of multiple
layers and non-linear activation functions allows them to capture intricate patterns and
representations in the data. Therefore, an MLP algorithm with sufficient neurons in the
hidden layers can effectively approximate continuous function, adding to its versatility.

2.4. Statistical Analysis

Neutrophil count (normal neutrophil count group versus neutropenic group) was
analyzed using a Kolmogorov–Smirnov test to check for normality distribution. Statistical
significance was considered if p < 0.05. In the next step, the Mann–Whitney U test was
applied to check if neutrophil counts between NG and NNG groups were statistically
significantly different. To carry out the statistical data analysis, Python v3.9 was used with
the scipy v1.11.0 library.

3. Results

The 75 solid-tumor oncologic patients were separated into two groups: the normal
neutrophil count (NNG) group (≥1500 cells/mm3; n = 51) and the neutropenic (NG)
group (<1500 cells/mm3; n = 24). The boxplot of neutrophil count per group is dis-
played in Figure 1A, while Figure 1B is a representative image of neutropenia by blood
smear. In our cohort, five patients (20%) were classified as severe neutropenic (neutrophil
count < 500 cells/mm3), four patients (16%) as moderate neutropenic status (neutrophil
count between 500 and 999 cells/mm3), and fifteen patients (62.5%) as mild neutropenic
patients (neutrophil counts between 1000 cells/mm3 and 1499 cells/mm3). There was no
difference in age for the NG (53 ± 13 years) and NNG groups (53 ± 12 years; p > 0.05). The
cohort comprised 55 (73%) female and 20 (27%) male patients. There was no statistically
significant difference in sex distribution between groups (females: NG, 75% vs. NNG, 72%).
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The female preponderance can be explained by the higher prevalence of breast cancer
patients in our sample (54%). The other two most prevalent neoplastic disease types in our
cohort were prostate cancer (8%) and uterine cancer (8%). Table 1 summarizes patients’
descriptions for NG and NNG.
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The averaged raw NIR spectra of each group are depicted in Figure 2A. The red line
represents the NG and the black line represents the NNG. Figure 2B shows the average
spectra per group after pre-processing.

To develop a high-sensitivity classifier, five supervised ML algorithms were trained:
LDA, LR, SVMs, RF, and MLP. The pre-processed spectral data were divided into groups
using the Kennard–Stone uniform sample selection technique, where 70% of the samples
were used for training/validation and 30% for the test set.

To select the best algorithm for the test set, a stratified 5-fold cross-validation regimen
was utilized. The effectiveness of the models’ validation metrics was assessed by measuring
sensitivity, negative predictive value, accuracy, and AUC. Sensitivity is the percentage
of correctly classified positives; negative predictive value is the percentage of correctly
classified negatives between all negative model predictions; accuracy is the total number of
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samples correctly identified while taking true and false negatives into account; and AUC is
the area under the ROC curve. Table 2 shows the highest sensitivity and negative predictive
value metrics in bold that correspond to the SVM algorithm. Thus, the SVM produced the
best validation results. The cross-validation ROC curve for SVM is evidenced in Figure 3.
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Table 2. Five-fold stratified cross-validation metrics for the five algorithms used in this study.
NPV = negative predictive value. ROC AUC = area under the receiver operator characteristics
(ROC) curve.

Model Accuracy Sensitivity NPV ROC AUC

LDA 68% 48% 73% 73%
LR 70% 35% 72% 76%
SVM 62% 85% 89% 74%
RF 66% 46% 72% 77%
MLP 66% 28% 69% 71%
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Subsequent predictions of the SVM model on the test set displayed 67% sensitivity,
82% NPV, and 57% accuracy. The confusion matrix for the SVM test set predictions is
shown in Figure 4.
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4. Discussion

Our results demonstrate that fingertip NIR spectroscopy coupled with machine learn-
ing effectively classifies patients according to the established cut-off point for neutrophil
count levels (Figure 5). Furthermore, this classification model was obtained using a sin-
gle machine learning algorithm (SVM) without further complex and black box workflow
steps. Therefore, NIR spectroscopy is a quick and safe tool for assessing neutropenia in a
solid-tumor oncologic patient setting. This technology displays its potential, especially in
remote and vulnerable areas, where access to healthcare professionals and widely available
laboratory resources are scarce, contributing to the efficiency of the health system and
improving resource allocation [20].
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Neutrophils are an important type of immune cell in several contexts of diseases related
to the activation or orchestration of an effective immune response [21]. Although elevated
neutrophil counts can indicate inflammation or infection burden, they can also point to a
proliferative blood and bone marrow disorder. Otherwise, low absolute neutrophil counts
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can generally indicate viral infection, autoimmune disease, or a neoplastic process [22]. The
neutrophil count gains significant importance in the latter group. One of the most critical
conditions in an oncologic patient is febrile neutropenia, a clinical condition characterized
by the acute onset of fever and a neutrophil count below the lower levels of normality. The
morbi-mortality of febrile neutropenia can range from numbers as high as 20%, and the
total hospital costs with cancer attributed to febrile neutropenia can even reach 40% [2,23].
Therefore, oncological decision making regarding initiating or continuing chemotherapy
must be strictly controlled. Virtually all patients should undergo a complete blood count test
before beginning antineoplastic schemes, as it is well known that most patients experience
a neutrophil count decrease after chemotherapy administration [1]. Therefore, neutropenia
has a negative impact on the delivery of planned chemotherapy regimens, with dose
reductions and treatment delays that compromise long-term clinical outcomes and cancer
treatment [3]. No monitoring system is available to detect neutropenia at the time of onset
in an at-home or near-patient setting [24].

Additionally, the impact of the neutrophil measurement tool presented in this article
goes even further from a cost perspective, including reduing the production of biological
residues, minimizing psychological stress, and relieving the painof the patients. A complete
blood count (CBC) requires admission to the hospital for access to gold standard equipment
and hospital personnel to complete the blood draw and subsequent analysis. If a blood
test reveals low neutrophils, the patient is admitted to the hospital for further treatment
with intravenous antibiotics, growth factors, and blood transfusions [24]. Neutrophil
measurement tools are widely accessible, non-invasive, on-premises, point-of-care, cost-
effective, and sustainable, as NIR spectrometers are not disposable devices, making the
presented results relevant for further evaluation and investigation with a larger sample size.

Due to the high negative predictive value of the solution tool proposed in this paper, a
framework suggested by the authors states that oncology patients are initially screened
with NIR spectroscopy. A negative NIR result displays elevated confidence to assure
outpatient follow-up, as illustrated in Figure 5. Otherwise, if the NIR screening test is
positive, the patient should undergo a complete blood count to determine in-hospital or
out-of-hospital care. In this context, our study presents a potentially effective and robust
methodology for predicting neutropenic patients faster than the gold standard method
(CBC), without being invasive and with lower overall costs than traditional blood count
tests, which can guide healthcare in chemotherapy decision making.

Extrapolating the good statistical metrics obtained in this study, the economic viability
of the proposed neutrophil measurement tool showed that on a larger scale, NIR coupled
with machine learning models could improve the arguments for adopting the technique.
In addition, the classification model provided stable sensitivity and NPV values. It is
also important to note that sensitivity and NPV are the most suited evaluation metrics
in this study scenario, as triage tests require high sensitivity, and the consequences of
administering chemotherapy agents to neutropenic patients could be catastrophic and
irreversible. Another point to consider is that the ML model design can be easily deployed
to a cloud-based infrastructure, serving different geographic regions in real time and on a
large scale. Thus, NIR spectroscopy associated with machine learning in medical practice
can safely improve decision making, reducing the public health system resource burden
and improving patients’ quality of life [25–27].

Integrating NIR spectroscopy with machine learning as a screening tool in medical
diagnostics can have significant implications for healthcare [26,27]. The proposed NIR + ML
screening tool can enable early detection of neutropenia by analyzing subtle changes in
biological fingertip tissue that may precede noticeable symptoms. This can improve
clinical assistance and reduce the delay in therapeutic support implementation. Thus, early
detection often leads to more effective treatment, better prognosis, and the potential for
reduced healthcare costs. Another implication is that NIR is non-invasive, allowing for
data collection without invasive procedures or sample collection. Non-invasive screening
tools are more patient-friendly, potentially increasing patient compliance and participation
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in routine screenings. However, portable NIR devices combined with ML algorithms
could facilitate point-of-care testing, bringing diagnostics closer to the patient. Rapid
and on-site diagnostics can lead to quicker decision making by healthcare professionals,
particularly in resource-limited settings. In the broader healthcare context, ML algorithms
can analyze NIR data to identify individualized biomarkers and patterns, contributing to
the development of personalized treatment plans. This can help tailor medical interventions
based on individual patient characteristics, enhancing treatment efficacy and reducing the
risk of adverse effects. The conclusions of this study could help in future studies about
continuous monitoring using NIR + ML to provide real-time data on disease progression
and treatment response. This could allow timely adjustments to treatment plans, leading to
more effective management of chronic conditions. Furthermore, the results from our study
could enhance research opportunities in machine learning applied to healthcare. NIR + ML
as a screening tool can aid in large-scale data collection, foster research and the discovery
of new biomarkers, and lead to a better understanding of disease mechanisms supporting
the development of novel therapies and interventions.

The main limitation of this study is the small size of the cohort used. Another potential
limitation is that the NIR + ML triage tool was only tested for a solid-tumor patients cohort,
raising concern about the generalizability of the solution from hematological tumor and
non-oncologic populations. NIR spectroscopy typically covers a limited spectral range,
and certain important information may fall outside this range. This can be a possible
source of bias if the most important features for classification are not well represented in
the spectral data range. The model may not perform as optimally as expected. Another
possible limitation is that the effectiveness of the classification model may be impacted by
variations in the samples used for training. Thus, if the training dataset does not adequately
capture the variability present in real-world samples, the model may not generalize well.
Also, NIR may have inherent variability or drift over time. Variability in spectral acquisition
performance can introduce bias, especially if not properly calibrated. Furthermore, pre-
processing NIR spectral data can be challenging, and choosing pre-processing methods can
influence model performance. Bias may arise if pre-processing steps are not standardized
or if they introduce artifacts that affect the model’s ability to generalize. A limitation of
NIR spectra stability is the influence of external factors, such as lighting or temperature
changes, which can affect NIR measurements. Addressing these limitations and potential
bias sources requires careful consideration in designing, implementing, and validating
NIR-based machine learning models. Rigorous validation, diverse and representative
datasets, and transparency in model development are essential steps to mitigate bias
and ensure reliable and unbiased results in real-world applications [28]. Despite the
limitations described, as a proof of concept, we successfully highlighted the potentiality
and advantages of the NIR spectroscopy from the fingertip for neutrophil count evaluation.

5. Conclusions

In the present study, NIR spectroscopy associated with machine learning distinguished
solid-tumor oncology patients’ fingertip samples based on neutrophil values with a sen-
sitivity of 67% and negative predictive value of 82%. Fingertip biochemical complexity
is reflected in the NIR data, and it needs an effective statistical analysis to extract rele-
vant information. Our study makes significant contributions to the existing literature
on non-invasive diagnostics. First, integrating NIR + ML represents an advancement in
non-invasive diagnostic technology. This study uncovered the capabilities of this combined
approach and how it compares to or complements existing non-invasive diagnostic meth-
ods. Also, this study helped by providing evidence of the accuracy and reliability of the
NIR + ML screening tool. This includes showcasing the sensitivity, specificity, and overall
performance metrics compared to traditional diagnostic methods. Furthermore, the litera-
ture on non-invasive diagnostics often focuses on specific medical fields. A study utilizing
NIR + ML can contribute by demonstrating the versatility of this approach across various
medical domains. A significant contribution is that the proposed NIR + ML screening tool
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can be easily integrated into existing diagnostic workflows. This includes considerations
for feasibility, ease of use, and potential enhancements to current diagnostic practices. This
proposed technique can contribute to clinical decision making in the oncology field.
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