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Abstract: This study investigates the feasibility of accurately predicting adverse health events without
relying on costly data acquisition methods, such as laboratory tests, in the era of shifting healthcare
paradigms towards community-based health promotion and personalized preventive healthcare
through individual health risk assessments (HRAs). We assessed the incremental predictive value of
four categories of predictor variables—demographic, lifestyle and family history, personal health
device, and laboratory data—organized by data acquisition costs in the prediction of the risks of
mortality and five chronic diseases. Machine learning methodologies were employed to develop risk
prediction models, assess their predictive performance, and determine feature importance. Using
data from the National Sample Cohort of the Korean National Health Insurance Service (NHIS),
which includes eligibility, medical check-up, healthcare utilization, and mortality data from 2002
to 2019, our study involved 425,148 NHIS members who underwent medical check-ups between
2009 and 2012. Models using demographic, lifestyle, family history, and personal health device data,
with or without laboratory data, showed comparable performance. A feature importance analysis in
models excluding laboratory data highlighted modifiable lifestyle factors, which are a superior set of
variables for developing health guidelines. Our findings support the practicality of precise HRAs
using demographic, lifestyle, family history, and personal health device data. This approach addresses
HRA barriers, particularly for healthy individuals, by eliminating the need for costly and inconvenient
laboratory data collection, advancing accessible preventive health management strategies.

Keywords: health risk assessment; health risk prediction; personalized health management; health
promotion; machine learning

1. Introduction

Recent advancements in biomedicine and information technology have catalyzed a
paradigm shift in healthcare, moving from treating the sick in healthcare facilities to prevent-
ing illness in healthy individuals through personalized health management in communities,
a concept central to P4 (predictive, preventive, personalized, and participatory) medicine [1].
This approach, emphasizing prediction, prevention, personalization, and participation,
aims to preemptively identify disease susceptibility and prevent progression through tai-
lored healthcare interventions [2]. The success of P4 medicine increasingly relies on precise
health risk assessments (HRAs), leveraging data science, wearable technology, and the
Internet of Things (IoT) to predict individual health risks and potential mortality [2,3].

Originally developed in the late 1940s and evolving significantly since the mid-2000s,
the applications of HRAs have transitioned from clinical settings to community health
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promotion programs [4–9], involving questionnaires on demographic details, lifestyle
factors, medical history, and physiological data to gauge individual health risks [10,11].
Nonetheless, evidence substantiating the predictive accuracy of HRA instruments has
remained limited, a situation largely attributable to the scarcity of data linking assessment
inputs to health outcomes over extended time frames with regard to issues of data linkage,
not to mention the imperative need for cost-effectiveness to rationalize data collection
efforts vis-à-vis prediction precision, thereby expanding the instruments’ utility [12].

HRA constitutes a systematic process involving the evaluation of an individual’s health
risks based on factors including lifestyle, medical history, and biomarkers [13]. However,
the challenge of obtaining these data, especially from healthy individuals, is significant, as
evidenced by low participation rates in wellness programs, like the 24% participation in
the Annual Wellness Visit by Medicare fee-for-service beneficiaries in 2017 [14].

The objective of this study was to investigate the feasibility of conducting HRAs
without relying on high-cost data such as laboratory tests, which often necessitate visits to
healthcare facilities. By leveraging machine learning methods, the predictive performance
of HRA models with and without laboratory data was compared and the feature impor-
tance of the models was analyzed to gain insights useful for developing personalized health
management guidelines. The study results indicated that the predictive performances of
the models utilizing demographic, lifestyle, family history, and personal health device
data, with or without laboratory data, were comparable. Moreover, the models without
laboratory data identified important features that were more valuable in developing health
guidelines, thus emphasizing modifiable lifestyle factors. These findings could facilitate eas-
ier access to personalized health management for healthy individuals, thereby supporting
the broader implementation of P4 medicine.

2. Materials and Methods
2.1. Data

Our study utilized the National Health Insurance Service (NHIS)-National Sample Co-
hort (NSC) provided by the NHIS of Korea, covering nearly all residents except those under
a medical aid program funded by general taxation [15]. The NHIS-NSC, a population-based
cohort, integrates four key datasets: insurance eligibility, medical check-ups, insurance
claims, and death registry data. This cohort represents a 2.2% sample (1 million individuals)
of NHIS members from 2002 to 2003, carefully stratified to mirror age, sex, and income
distributions in Korea, with data updated through 2019. Our research primarily utilized
medical check-up data (2009–2015), insurance claims data (2002–2019), and death registry
data (2009–2019) from this cohort.

The NHIS administers biennial medical check-ups for beneficiaries aged 40 and above
through the National Health Screening Program (NHSP). This program also includes
younger blue-collar workers and household heads. Those in high-risk work environments
are eligible for annual check-ups. The NHSP involves laboratory tests and self-reported
health behavior and medical history questionnaires.

The insurance claims dataset, processed by the Health Insurance Review and As-
sessment Service (HIRA), includes details on patient identification, provider information,
service descriptions, diagnoses (ICD-10 codes), and total charges. The death registry dataset,
sourced from Statistics Korea [16], records the date and cause of death. We excluded deaths
due to external causes such as accidents or suicides from our study, in line with Kwon
et al.’s criteria [17].

Our initial dataset comprised 489,461 records from the cohort that had medical check-
ups conducted between 2009 and 2012. After applying various exclusion criteria, the final
dataset included 425,148 records. Exclusions were made for individuals under 30 years old
(as the NHSP primarily targets adults over 40), records with character values in birth year
fields, missing data, and records with extreme values indicating probable typographical
errors. Figure 1 illustrates the schematic diagram of the study dataset.
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Figure 1. The schematic diagram of the study dataset and analytical models.

2.2. Variables

In this study, we evaluated the health risk of individuals by quantifying the likelihood
of future adverse health events, such as mortality and chronic diseases, within a predefined
time frame. We accomplished this by utilizing machine learning models to predict the
incidence of these events.

We categorized predictor variables into five distinct groups: demographic variables
(DEMO), lifestyle variables encompassing health behaviors and body measurements (LS),
family history variables (FH), personal health device variables (PHD), and laboratory
variables (LAB). In Table 1, we present the predictor variables’ definitions, notations and
descriptions, as well as the descriptive statistics and frequency distributions for both male
and female datasets.

In recent studies, lifestyle variables, which hold the potential guiding personal lifestyle
interventions to prevent or treat adverse health events, encompass multiple interconnected
aspects such as body weight, body mass index (BMI), and waist circumference [18,19].
Previous studies addressing the global burden of disease have considered smoking, alcohol
intake, and substance use as behavioral risk factors in efforts to mitigate health-related
losses [20]. Our study incorporates lifestyle variables, including body measurements and
health behavior variables; the former are measured during medical check-ups and the latter
are derived from self-reported survey responses to NHIS-NSC questionnaires administered
during medical check-ups.
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Table 1. Definition of predictor variables with descriptive statistics/frequency distribution for male
and female datasets (N = 425,148).

Category Variable Definition

Mean ± STD/Freq %
p-ValueMale

(n = 214,613)
Female

(n = 210,535)

Demographic
(DEMO) AGE Age (years) 48.8 ± 12.9 51.7 ± 12.6 <0.001

Health behavior (LS)
SMK Smoking amount (pack-year) 11.9 ± 14.0 0.4 ± 2.6 <0.001
DRK Alcohol intake (bottle/week) 1.6 ± 2.2 0.2 ± 0.7 <0.001

PA Physical activity (MET-minute scores,
IPAQ analysis) 540.3 ± 528.7 457.1 ± 498.0 <0.001

Body measurement
(LS)

HT Height (cm) 169.6 ± 6.4 156.1 ± 6.1 <0.001
WT Weight (kg) 69.9 ± 10.5 57.2 ± 8.5 <0.001
WC Waist circumference (cm) 83.9 ± 7.5 77.2 ± 8.7 <0.001
BMI Body mass index (kg/m2) 24.3 ± 3.0 23.5 ± 3.3 <0.001

Family history (FH)

FH_HT Family history of heart diseases 3.4% 3.7% <0.001
FH_STR Family history of stroke 6.3% 6.6% 0.004
FH_HTN Family history of hypertension 10.6% 13.7% <0.001
FH_DM Family history of diabetes 8.8% 10.0% <0.001

Personal health
device (PHD)

SBP Systolic blood pressure (mmHg) 125.0 ± 14.3 120.8 ± 16.0 <0.001
DBP Diastolic blood pressure (mmHg) 78.2 ± 9.9 74.7 ± 10.2 <0.001
FBS Fasting blood sugar (mg/dL) 100.4 ± 25.3 96.3 ± 21.3 <0.001

Laboratory (LAB)

TCHOL Total cholesterol (mg/dL) 194.9 ± 35.6 197.9 ± 37.0 <0.001
HDL High density lipoprotein (mg/dL) 51.9 ± 12.9 57.8 ± 13.9 <0.001
LDL Low density lipoprotein (mg/dL) 113.6 ± 32.6 117.2 ± 33.7 <0.001
TG Triglycerides (mg/dL) 147.3 ± 82.4 113.6 ± 64.8 <0.001

HGB Hemoglobin (g/dL) 14.9 ± 1.2 12.8 ± 1.2 <0.001
SCR Creatinine (mg/dL) 1.0 ± 0.2 0.8 ± 0.2 <0.001

EGFR 1 Glomerular filtration rate (GFR) ≥ 90 45.7% 48.2% <0.001
EGFR 2 60 ≤ GFR < 90 50.3% 46.0%
EGFR 3 30 ≤ GFR < 60 3.9% 5.7%
EGFR 4 15 ≤ GFR < 30 0.0% 0.1%

AST Aspartate aminotransferase (U/L) 26.7 ± 11.7 23.1 ± 9.8 <0.001
ALT Alanine aminotransferase (U/L) 28.8 ± 18.5 20.2 ± 13.1 <0.001
GGT Gamma glutamyl transferase (U/L) 45.4 ± 37.5 22.3 ± 18.9 <0.001

UPROT 0 Urine protein 0 g/day 94.9% 95.3% <0.001
UPROT 1 <0.5 2.4% 2.3%
UPROT 2 0.5 ≤ UPROT < 1 1.8% 1.6%
UPROT 3 1 ≤ UPROT < 2 0.7% 0.6%
UPROT 4 2 ≤ UPROT 0.2% 0.1%

We defined health behavior variables across three domains: smoking, alcohol intake,
and physical activity; all of these directly influence an individual’s health status [21].
Smoking amount (SMK) is quantified as the cumulative amount of smoking undertaken
over an individual’s lifetime in pack-years using Equation (1) [22]. Alcohol intake (DRK) is
calculated as the amount of alcohol consumped weekly in bottles using Equation (2) [23].
Physical activity (PA) is computed based on parameters from NHIS-NSC questionnaires,
considering light activity, moderate activity, and vigorous activity, and converting them
into metabolic equivalents (METs) using Equation (3) [24].

SMK (Pack-year)
= # of cigarettes a day × 0.05 × # of years smoked

(1)
DRK (Bottle/week)
= Mean alcohol intake a day (g) × 0.02 × # of days drank a week

(2)
PA (Metabolic equivalents)
= # of light activity days a week × 2.9 × 30 + # of moderate activity days a week
× 4 × 30 + # of vigorous activity days a week × 7 × 20

(3)
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Family history variables are represented as (0, 1) indicator variables across four areas
of adverse health events: heart disease, stroke, hypertension, and diabetes. These variables
are computed using self-reported survey responses obtained during medical check-ups.

With the proliferation of technology and the increased accessibility of medical wearable
devices, a growing reservoir of clinical data is now available outside traditional clinical
settings. Such data are employed by both patients and healthy individuals to manage their
health from the comfort of their homes. We refer to this subset of variables as personal
health device variables (PHD), and blood pressure (BP) and fasting blood sugar (FBS) were
included in this study. Our study utilizes medical check-up data to compute PHD variables.

On the other hand, we define a category for laboratory variables (LAB), encompass-
ing measurements obtained from blood and urine samples analyzed in clinical laborato-
ries. This includes biomarkers such as cholesterol, aspartate aminotransferase (AST), and
hemoglobin (HGB). Data from medical check-ups were employed to calculate the LAB
variables used in our study.

Our study focused on predicting mortality and the incidence of five major chronic
diseases: heart disease, stroke, cancer, hypertension, and diabetes. These diseases are
prominent contributors to global morbidity, disability, and mortality, and pose substantial
individual and socioeconomic burdens due to their prolonged management and associated
costs [25,26]. By predicting these adverse health events, our models aim to facilitate early
detection and personalized risk management, thereby improving public health outcomes
and healthcare system cost-effectiveness [27].

The study dataset, compiled from medical check-up data (2009–2012) and claims data
(2002–2019), was analyzed to identify these adverse health events. Our approach involved
assessing three prediction timeframes, namely three, five, and ten years, starting from the
year following the medical check-up. This analysis prioritized data free from recorded
health issues up to the year of the check-up, excluding records of adverse health events in
or before the check-up year and those indicating mortality within the prediction timeframe.

Chronic disease incidences were determined based on the ICD-10 diagnosis codes
present in the claims data and laboratory test outcomes obtained from medical check-ups.
Heart disease was identified when ICD-10 codes I20–I25 were recorded as a principal or
a secondary diagnosis in the claims data, and ICD-10 codes I60–I69 were associated with
stroke, as used in prior studies [28–31]. Similarly, cancer incidences were detected based on
principal or secondary diagnoses in the claims data, focusing on the five most common
cancer types by gender [32]: lung (C33, C34), gastric (C16), colorectal (C18, C19, C20),
prostate (C61), and liver (C22) cancer for male, and breast (C50, D05), colorectal (C18, C19,
C20), gastric (C16), lung (C33, C34), and liver (C22) cancer for female. Thyroid cancer was
excluded from the list of adverse health events in this study because the five-year survival
rate in Korea is over 99% [33]. The incidences of hypertension and diabetes were established
when BP ≥ 140/90 mmHg was recorded in medical check-ups or ICD-10 codes I10–I15
were recorded as a principal or a secondary diagnosis in the claims data during the data
search period, and when diabetes with fasting glucose ≥ 126 mg/dL was recorded in the
medical check-ups or when ICD-10 codes R81, E10–E14 were recorded as a principal or a
secondary diagnosis in the claims data. Details of the number of records and the prevalence
of adverse health events in the male and female datasets are presented in Table 2.
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Table 2. Number of records (n) and prevalence (%) of adverse health events in the prediction models.

Adverse Health
Event

Three Year Five Year Ten Year

Male Female
p-

Value

Male Female
p-

Value

Male Female
p-

Valuen Prev.
(%) n Prev.

(%) n Prev.
(%) n Prev.

(%) n Prev.
(%) n Prev.

(%)

Mortality 209,532 1.37 207,589 0.81 <0.001 212,522 2.48 209,740 1.52 <0.001 96,687 5.32 81,332 3.91 <0.001
Heart diseases 189,688 3.16 185,675 3.06 0.079 187,552 5.08 184,485 4.95 0.088 83,670 9.72 70,097 9.92 0.239

Stroke 197,874 2.73 191,359 3.43 <0.001 195,776 4.42 190,146 5.52 <0.001 87,349 8.86 72,347 12.24 <0.001
Cancer 205,050 1.09 204,543 0.62 <0.001 202,577 1.71 202,988 0.99 <0.001 89,590 3.16 76,757 2.12 <0.001

Hypertension 135,188 12.41 136,351 8.25 <0.001 134,262 15.48 135,939 11.41 <0.001 61,298 28.02 51,226 23.57 <0.001
Diabetes 170,187 6.27 169,365 5.77 <0.001 168,615 9.17 168,442 9.15 0.900 76,231 18.01 64,225 19.37 <0.001

2.3. Analytical Models

We designed this study to evaluate whether including predictor variables with higher
acquisition costs improves the predictive accuracy of HRAs for the personalized prediction
and prevention of adverse health events. We systematically introduced groups of variables
one at a time (Models 1–4 in Figure 1) to assess the incremental predictive accuracy gained
by adding the groups of variables to the models. Conceptually, the data acquisition
costs reflect the financial and logistical burden associated with obtaining the data, as well
as the discomfort and inconvenience experienced by individuals during the acquisition
process. We posited that acquiring laboratory data would be the most resource-intensive
and cumbersome process due to the need for individuals to undergo procedures involving
needles and blood extraction [34]. Considering the significantly different characteristics
between male and female datasets (Tables 1 and 2), we conducted separate analyses for
each gender.

A comparative analysis of the models enabled us to examine the incremental predictive
accuracy introduced by each group of variables. The models were trained on 70% of the
dataset and tested on the remaining 30%. The evaluation metrics included the area under
the curve (AUC), accuracy, and F1-score [35]. We utilized Youden’s J statistic to determine
the optimal threshold for maximizing the accuracy and F1-score. The significance levels of
the AUC differences for each model were assessed using DeLong’s method [36,37].

Our primary analytical tool was the XGBoost model, known for its exceptional predic-
tive capabilities [38–42]. To validate the XGBoost results, we also applied logistic regression
with stepwise variable selection. Hyperparameter optimization was performed using the
grid search method [43–45], and multiple hyperparameter combinations were evaluated
to compare their predictive performance [46]. We enhanced this process through 10-fold
cross-validation. To evaluate the importance of each predictor variable, we conducted
a gain analysis using XGBoost’s feature importance algorithm. All computations were
performed in R version 4.3.0.

3. Results

Table 1 presents the categories and definitions of the predictor variables, along with
the descriptive statistics for continuous variables and the frequency distributions for binary
categorical variables, for both males and females. All differences in the statistics between
the male and female data were statistically significant at a significance level of α = 1%.
The average age for male records was 48.8, while for female records, it was 51.7. Table 2
presents the number of records used in the prediction models and the prevalence of adverse
health events for each prediction timeframe, with the significance levels of the differences
in prevalence between the male and female data. The lowest prevalence was observed
for cancer in the three-year prediction period (1.09% for males and 0.62% for females),
while the highest prevalence was noticed for hypertension in the ten-year prediction period
(28.02% for males and 23.57% for females).
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3.1. Incremental Predictive Performance Achieved by the Inclusion of Groups of Predictor Variables

Our study presents an in-depth analysis of the predictive efficacy of four models
(Models 1–4), as detailed in Figure 2 and Table A1 in Appendix A. We evaluated these
models based on their area under the curve (AUC), accuracy, and F1-score in the testing
datasets. To assess the impact of incorporating different groups of predictor variables, we
measured changes in the model performance before and after their addition. DeLong’s
test results for the significance of AUC differences are provided in Table A1, with logistic
regression results for comparison in Table A2 in Appendix A.
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The AUC, a measure of a model’s ability to distinguish between records with and
without adverse health event incidences, showed a range of 0.623 (three-year hypertension
prediction for males, Model 1) to 0.897 (five-year mortality prediction for males, Model 4).
Models 3 and 4 consistently achieved AUCs above 0.7 in all predictions except for female
cancer predictions. Accuracy, representing the percentage of correct predictions, varied
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notably from 0.482 (ten-year cancer prediction for females, Model 4) to 0.830 (ten-year
mortality prediction for males, Model 4). The F1-score, indicating the balance between
precision and recall, ranged from a low of 0.020 (three-year cancer prediction for females,
Model 1) to a high of 0.533 (ten-year hypertension prediction for males, Model 4). An
interesting pattern observed in Figure 2 is the improvement in F1-scores with longer
prediction timeframes, especially evident in the hypertension and diabetes predictions, as
opposed to mortality and cancer.

Upon adding LS and FH variables to Model 2, the AUC values improved for most
adverse health event predictions, especially for hypertension and diabetes, demonstrating
the value of these variables in enhancing the prediction accuracy. Model 3, which incorpo-
rated PHD variables alongside DEMO, LS, and FH variables, showed an increase in AUC
values across most predictions, with marked improvements in hypertension and diabetes
predictions for both genders. However, the transition from Model 3 to Model 4, involving
the addition of LAB variables, resulted in relatively modest improvements in AUC values,
with limited gains in accuracy and F1-scores. These findings suggest that the inclusion
of LAB variables, despite their high acquisition cost, contributed only marginally to the
overall predictive performance for most health risks.

In summary, our analysis demonstrates that while the addition of LS, FH, and PHD
variables significantly enhanced the predictive efficacy of our models, the incremental gain
from incorporating LAB variables was limited, indicating a nuanced balance between data
acquisition costs and the predictive performance in health risk assessments.

3.2. Feature Importance

Table 3 presents the top five significant features in our prediction models, highlighting
the proportion of variance each feature explained. This analysis is crucial for developing
personalized health promotion guidelines based on individual HRA results. Notably, we
focused on the impact of introducing laboratory variables by comparing the key features in
Model 3 (without LAB variables) and Model 4 (with LAB variables).

AGE consistently emerges as a dominant feature in most predictions. However, other
variables such as SBP and FBS were more significant in predicting hypertension and dia-
betes, respectively. Body measurements like WC and BMI were prominent predictors for
heart disease and stroke, while WT was significant for mortality. Health behavior variables
like SMK (for heart disease), PA (for females in Model 2), and DRK (for three-year female
cancer) were notable predictors for certain health risks. LAB variables showed varying lev-
els of significance, with their overall contribution to predictive performance being limited
when combined with other variable groups. Family history variables consistently appeared
among the top five features predicting various health risks, albeit with lower rankings.
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Table 3. The top five important features and the proportion of model variance explained by each feature.

Adverse
Health Event Gender Fea.

Rank.
Three Year Five Year Ten Year

Model 2 Model 3 Model 4 Model 2 Model 3 Model 4 Model 2 Model 3 Model 4

Mortality

Male

1 AGE (0.816) AGE (0.780) AGE (0.646) AGE (0.863) AGE (0.832) AGE (0.729) AGE (0.910) AGE (0.850) AGE (0.769)
2 WT (0.056) WT (0.051) HGB (0.050) WT (0.046) WT (0.043) HGB (0.045) SMK (0.022) WT (0.030) HGB (0.027)
3 BMI (0.036) BMI (0.032) AST (0.035) SMK (0.024) FBS (0.028) GGT (0.034) WT (0.022) FBS (0.025) GGT (0.024)
4 PA (0.026) FBS (0.030) GGT (0.032) BMI (0.022) SMK (0.023) WT (0.029) BMI (0.021) SMK (0.022) WT (0.023)
5 SMK (0.024) PA (0.022) WT (0.031) PA (0.019) BMI (0.021) FBS (0.020) PA (0.010) BMI (0.020) AST (0.019)

Female

1 AGE (0.875) AGE (0.840) AGE (0.723) AGE (0.906) AGE (0.873) AGE (0.706) AGE (0.853) AGE (0.858) AGE (0.776)
2 WT (0.036) WT (0.035) HGB (0.051) WT (0.025) WT (0.025) HGB (0.039) BMI (0.039) FBS (0.030) HGB (0.020)
3 BMI (0.030) FBS (0.029) GGT (0.046) BMI (0.021) FBS (0.023) GGT (0.038) WT (0.025) WT (0.024) FBS (0.018)
4 PA (0.027) BMI (0.026) WT (0.030) PA (0.016) HT (0.016) FBS (0.024) WC (0.024) BMI (0.019) GGT (0.018)
5 WC (0.010) PA (0.025) FBS (0.024) WC (0.013) DBP (0.015) WT (0.024) PA (0.021) WC (0.014) WT (0.017)

Heart disease

Male

1 AGE (0.739) AGE (0.683) AGE (0.617) AGE (0.869) AGE (0.835) AGE (0.819) AGE (0.809) AGE (0.767) AGE (0.734)
2 BMI (0.071) BMI (0.045) WC (0.042) WC (0.060) WC (0.047) WC (0.029) WC (0.067) BMI (0.037) WC (0.054)
3 WC (0.061) SBP (0.041) BMI (0.038) BMI (0.045) BMI (0.036) FH_HT (0.029) BMI (0.053) WT (0.033) BMI (0.033)
4 PA (0.027) WC (0.039) SBP (0.030) SMK (0.009) SBP (0.029) BMI (0.027) SMK (0.030) FBS (0.033) SBP (0.029)
5 SMK (0.026) WT (0.034) FBS (0.028) FH_HT (0.008) FBS (0.018) SBP (0.024) HT (0.011) WC (0.033) FBS (0.029)

Female

1 AGE (0.890) AGE (0.851) AGE (0.824) AGE (0.890) AGE (0.851) AGE (0.824) AGE (0.857) AGE (0.819) AGE (0.786)
2 SMK (0.184) WC (0.044) WC (0.045) SMK (0.184) WC (0.044) WC (0.045) BMI (0.043) SBP (0.035) SBP (0.029)
3 WC (0.051) SBP (0.039) DBP (0.021) WC (0.051) SBP (0.039) DBP (0.021) WC (0.037) WC (0.033) BMI (0.024)
4 BMI (0.021) BMI (0.020) SBP (0.021) BMI (0.021) BMI (0.020) SBP (0.021) WT (0.021) BMI (0.031) WC (0.023)
5 WT (0.016) FBS (0.014) BMI (0.017) WT (0.016) FBS (0.014) BMI (0.017) SMK (0.015) FBS (0.021) GGT (0.020)

Stroke

Male

1 AGE (0.973) AGE (0.957) AGE (0.948) AGE (0.923) AGE (0.896) AGE (0.866) AGE (0.934) AGE (0.915) AGE (0.892)
2 WC (0.014) SBP (0.011) SBP (0.009) WC (0.023) FBS (0.019) FBS (0.014) WC (0.024) WC (0.014) WC (0.016)
3 SMK (0.004) FBS (0.008) FBS (0.008) SMK (0.011) SBP (0.016) SBP (0.013) SMK (0.010) SBP (0.011) SBP (0.010)
4 BMI (0.004) DBP (0.007) WC (0.006) PA (0.011) WC (0.015) WC (0.012) DRK (0.007) FBS (0.011) FBS (0.009)
5 PA (0.003) PA (0.005) DBP (0.005) BMI (0.011) SMK (0.010) GGT (0.010) FH_STR (0.007) HT (0.011) DBP (0.008)

Female

1 AGE (0.929) AGE (0.901) AGE (0.877) AGE (0.917) AGE (0.889) AGE (0.860) AGE (0.973) AGE (0.960) AGE (0.950)
2 WC (0.022) SBP (0.019) SBP (0.017) WC (0.021) SBP (0.019) SBP (0.014) WC (0.009) SBP (0.009) SBP (0.008)
3 BMI (0.015) WC (0.013) WC (0.011) BMI (0.018) WC (0.017) TG (0.013) BMI (0.008) FBS (0.008) WC (0.007)
4 PA (0.010) FBS (0.012) DBP (0.010) PA (0.011) FBS (0.015) WC (0.010) PA (0.002) WT (0.005) TG (0.006)
5 HT (0.008) DBP (0.012) TG (0.009) HT (0.010) BMI (0.013) FBS (0.010) WT (0.002) DBP (0.005) FBS (0.005)
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Table 3. Cont.

Adverse
Health Event Gender Fea.

Rank.
Three Year Five Year Ten Year

Model 2 Model 3 Model 4 Model 2 Model 3 Model 4 Model 2 Model 3 Model 4

Cancer

Male

1 AGE (0.869) AGE (0.855) AGE (0.782) AGE (0.916) AGE (0.895) AGE (0.821) AGE (0.872) AGE (0.847) AGE (0.776)
2 SMK (0.029) SMK (0.026) AST (0.028) SMK (0.030) SMK (0.029) LDL (0.029) SMK (0.041) SMK (0.038) LDL (0.041)
3 BMI (0.029) DBP (0.019) SMK (0.021) WT (0.011) FBS (0.013) AST (0.026) WC (0.022) FBS (0.021) SMK (0.032)
4 WC (0.021) WC (0.017) HGB (0.020) DRK (0.011) SBP (0.012) SMK (0.025) BMI (0.021) BMI (0.017) FBS (0.019)
5 WT (0.016) BMI (0.016) LDL (0.020) WC (0.011) DRK (0.010) TG (0.014) PA (0.015) WC (0.017) HGB (0.016)

Female

1 AGE (0.908) AGE (0.882) AGE (0.777) AGE (0.962) AGE (0.954) AGE (0.886) AGE (0.772) AGE (0.711) AGE (0.589)
2 DRK (0.025) FBS (0.029) AST (0.050) PA (0.099) SMK (0.112) AST (0.048) WC (0.042) DBP (0.048) LDL (0.046)
3 WC (0.016) DRK (0.021) ALT (0.031) SMK (0.018) FBS (0.011) HGB (0.013) PA (0.041) BMI (0.040) TG (0.045)
4 BMI (0.015) SBP (0.015) TCHOL (0.026) WC (0.007) SBP (0.005) LDL (0.013) BMI (0.040) SBP (0.034) AST (0.044)
5 SMK (0.014) SMK (0.011) HGB (0.023) BMI (0.006) PA (0.004) SMK (0.012) HT (0.039) WC (0.030) DBP (0.030)

Hypertension

Male

1 AGE (0.546) SBP (0.350) AGE (0.286) AGE (0.574) AGE (0.318) AGE (0.277) AGE (0.513) SBP (0.330) AGE (0.304)
2 BMI (0.200) AGE (0.299) FBS (0.270) BMI (0.191) SBP (0.315) SBP (0.215) BMI (0.227) AGE (0.312) DBP (0.222)
3 WC (0.124) DBP (0.165) SBP (0.189) WC (0.124) DBP (0.137) DBP (0.163) WC (0.139) DBP (0.139) SBP (0.170)
4 DRK (0.074) WC (0.047) DBP (0.056) DRK (0.061) BMI (0.053) BMI (0.068) DRK (0.057) WC (0.073) BMI (0.092)
5 HT (0.021) BMI (0.042) WC (0.046) HT (0.018) FBS (0.047) FBS (0.043) FH_HTN(0.019) BMI (0.066) WC (0.053)

Female

1 AGE (0.709) SBP (0.378) SBP (0.401) AGE (0.711) SBP (0.378) SBP (0.369) AGE (0.484) SBP (0.349) SBP (0.303)
2 BMI (0.161) AGE (0.352) AGE (0.345) BMI (0.160) AGE (0.366) AGE (0.355) BMI (0.192) AGE (0.263) AGE (0.229)
3 WC (0.060) DBP (0.121) DBP (0.097) WC (0.082) DBP (0.107) DBP (0.103) WC (0.095) BMI (0.086) BMI (0.064)
4 HT (0.019) BMI (0.051) BMI (0.048) FH_HTN (0.016) BMI (0.054) BMI (0.049) PA (0.070) WC (0.059) DBP (0.046)
5 FH_HTN(0.017) WC (0.041) WC (0.028) HT (0.013) WC (0.048) WC (0.043) HT (0.051) DBP (0.059) WC (0.043)

Diabetes

Male

1 AGE (0.657) FBS (0.468) FBS (0.381) AGE (0.668) AGE (0.409) AGE (0.389) AGE (0.536) AGE (0.320) AGE (0.311)
2 WC (0.129) AGE (0.318) AGE (0.307) WC (0.129) FBS (0.363) FBS (0.364) BMI (0.185) FBS (0.314) FBS (0.244)
3 BMI (0.118) WC (0.061) SBP (0.054) BMI (0.124) WC (0.064) WC (0.052) WC (0.142) BMI (0.113) GGT (0.086)
4 FH_DM (0.028) BMI (0.050) WC (0.042) FH_DM (0.022) BMI (0.058) GGT (0.045) SMK (0.036) WC (0.079) WC (0.063)
5 SMK (0.027) SMK (0.025) GGT (0.040) SMK (0.020) SBP (0.056) ALT (0.041) FH_DM (0.029) SMK (0.033) SBP (0.049)

Female

1 AGE (0.731) AGE (0.500) AGE (0.461) AGE (0.739) AGE (0.535) AGE (0.494) AGE (0.650) AGE (0.463) AGE (0.404)
2 BMI (0.113) FBS (0.232) FBS (0.265) BMI (0.117) FBS (0.200) FBS (0.253) BMI (0.157) FBS (0.160) FBS (0.225)
3 WC (0.095) HT (0.102) GGT (0.061) WC (0.099) HT (0.090) WC (0.051) WC (0.115) SBP (0.122) WC (0.074)
4 FH_DM (0.018) WC (0.048) WC (0.051) FH_DM (0.019) BMI (0.045) BMI (0.044) FH_DM (0.022) WC (0.087) BMI (0.064)
5 HT (0.012) BMI (0.033) BMI (0.029) HT (0.009) WC (0.033) GGT (0.042) PA (0.015) BMI (0.058) TG (0.059)

Feature names: AGE: Age; ALT: Alanine aminotransferase; BMI: Body mass index; DBP: Diastolic blood pressure; DRK: Alcohol intake; EGFR: Estimated glomerular filtration rate; FBS:
Fasting blood sugar; FH_DM: Family history of diabetes; FH_HTN: Family history of hypertension; GGT: Gamma glutamyl transferase; HGB: Hemoglobin; HT: Height; PA: Physical
activity; SBP: Systolic blood pressure; SCR: Creatinine; SMK: Smoking amount; TCHOL: Total cholesterol; TG: Triglycerides; WC: Waist circumference; WT: Weight.
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4. Discussion

In our study, we categorized the predictor variables of Health Risk Assessment (HRA)
models into four tiers based on acquisition costs: demographic (DEMO), lifestyle (LS) and
family history (FH), personal health device (PHD), and laboratory (LAB) variables. This
categorization enabled us to evaluate the incremental predictive performance of each tier,
balancing data acquisition costs against the predictive effectiveness of HRA models.

Our results demonstrated that Model 3, incorporating DEMO, LS, FH, and PHD vari-
ables, had a predictive performance comparable to Model 4, which added LAB variables,
across various adverse health events and prediction timeframes. Interestingly, even Model
2, which included only DEMO, LS, and FH variables, performed effectively in most predic-
tions. However, the accuracy measures, especially for stroke predictions in females, tended
to decrease with the addition of PHD and LAB variables. These findings suggest that
excluding costly and inconvenient LAB variables from HRAs does not significantly impair
the predictive efficacy, potentially enhancing the accessibility and widespread adoption of
personalized healthcare.

Feature importance analyses reinforced the well-established connections between
health behavior and outcomes [20,47,48]. Notably, the significant features from Models 2
and 3, encompassing modifiable factors like WC and BMI, provided valuable insights for
health guideline development compared to those from Model 4. The associations between
PHD variables (SBP, DBP, FBS) and LS variables imply that lifestyle changes can influence
PHD variables.

All the models in our study predicted the incidences fairly accurately, with varying
degrees of accuracy depending on the type of incidence and prediction timeframe. These
findings highlight the effectiveness of our assessment models in formulating personalized
health promotion strategies. Notably, the first and third-ranked diseases that incurred
the highest expenditures for the National Health Insurance Service of Korea in 2021 were
hypertension and type 2 diabetes [49]. While the predictive performance of the models for
heart diseases, stroke, and cancer can be deemed decent, further improvements may be
necessary depending on the assessment’s purpose.

Additionally, these study findings bear significant implications in the era of techno-
logical advancements that enable individuals to access their health data through personal
health devices without visiting healthcare facilities [50]. As the availability and reliability
of personal health device data continue to improve, the depth of person-generated health
data will increase, offering detailed and continuous information [51–53]. Our study has
shown that increasing the accessibility of health data from personal health devices can be
a key factor in HRA, potentially replacing data from clinical settings and expanding the
market potential of HRAs.

We conducted an examination of three evaluation measures, namely AUC, accuracy,
and F1-score, in the context of risk predictions for six adverse health events across three
different prediction timeframes. While our overall findings align with the major trends
observed, we did encounter irregular results for a few specific target risks and evalua-
tion measures, particularly the accuracy and F1-scores. These findings underscore the
importance of making judicious selections when choosing an appropriate measure in the
evaluation of HRA models, depending on the specific target event to be predicted and the
intended use of the assessment results. For instance, F1-scores are designed to address
issues related to measuring the predictive performance in imbalanced data scenarios, such
as the incidences of mortality and cancer. Additionally, when the cost associated with a
false negative (missing the incidence of events in the prediction) outweighs the cost of a
false positive (predicting negatives as positives), it becomes evident that sensitivity and
specificity should not be given equal weight in the evaluation.

This study has limitations. Firstly, the predominance of NHSP participants over 40
years old in our database may limit its generalizability across different age groups and
countries. Secondly, there may be an underestimation of disease prevalence, particularly for
diseases in which individuals had a disease but were insensitive to symptoms and did not
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seek care at healthcare facilities. This is particularly relevant for diseases such as diabetes
and hypertension, which are known to affect a large proportion of individuals who are
unaware of their condition [54–56]. Thirdly, the reliance on self-reported questionnaire
data for lifestyle and family history variables introduces the potential for omission and
recall errors [57–59]. We anticipate that this limitation will be addressed as the accessibility
and accuracy of wearable and IoT data continue to improve [60,61]. Lastly, we employed
body measurements and personal health device data collected in clinical settings for our
analyses and assumed their equivalence when measured in non-clinical settings. We expect
this assumption would not impact the study’s overall implications, as our focus was on
future risk assessment rather than immediate disease diagnosis.

Future research should explore the potential of wearables and IoT data beyond blood
pressure and blood sugar measurements in HRAs. These sources of data offer accuracy,
automatic reporting, non-invasiveness, and continuous monitoring. Leveraging such
high-quality data has the potential to significantly enhance HRAs and contribute to more
effective lifestyle modification and health promotion efforts.

5. Conclusions

This study aimed to assess the incremental predictive performance of four tiers of
predictor variables—demographic, lifestyle and family history, personal health device, and
laboratory—in predicting mortality and five chronic diseases across different timeframes.
Our primary goal was to strike a balance between data acquisition costs and prediction
accuracy to facilitate the widespread implementation of personalized health promotion
strategies through HRAs. Our research yields three significant contributions.

Firstly, our findings indicate that the addition of laboratory variables beyond demo-
graphic, lifestyle, family history, and personal health device variables did not significantly
improve model performance across all examined health events. This insight suggests that
removing the need for costly and inconvenient laboratory data acquisition could lower
barriers to HRAs, especially for healthy individuals, thereby enhancing accessibility to
personalized health promotion.

Secondly, the models incorporating lifestyle and family history variables alongside
demographic variables demonstrated comparable performance to full models when as-
sessing the risk of heart diseases, stroke, and cancer. Notably, for certain assessments like
cancer in females, the inclusion of further variables resulted in decreased accuracy and
F1-scores. This underscores the reliability of Model 2 when aiming to perform accurate risk
assessments for these health events.

Lastly, our analysis of important features from Models 2 and 3, which include mod-
ifiable body measurements and health behavior variables, suggests their suitability for
designing health guidelines compared to models incorporating laboratory data. This
implies that guidance from Models 2 and 3 is more relevant and practical for health practi-
tioners and policymakers in shaping effective personalized health management strategies.

In conclusion, our study’s findings offer valuable insights for healthcare practitioners
and policymakers, aiding in the formulation of personalized health promotion strategies
without significant data acquisition costs. By extending these strategies to a broader
population, including those with limited access to healthcare facilities, we can foster a new
era of more accessible and effective personalized health management. As we continue to
navigate the delicate balance between data acquisition costs and prediction performance,
we anticipate further advancements in personalized healthcare.
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Appendix A

Table A1. Predictive performance of the Models 1–4.

Adverse
Health Event Gender

Pre.
Time

n
AUC Accuracy F1-Score

Model
1

Model
2

Model
3

Model
4

Model
1

Model
2

Model
3

Model
4

Model
1

Model
2

Model
3

Model
4

Mortality

Male
3 62,860 0.867 0.877 *** 0.880 0.894 *** 0.799 0.775 0.763 0.814 0.095 0.090 0.088 0.107
5 62,860 0.872 0.882 *** 0.885 0.897 *** 0.803 0.820 0.824 0.827 0.166 0.179 0.183 0.191

10 29,006 0.871 0.877 0.881 * 0.889 *** 0.762 0.805 0.787 0.830 0.271 0.303 0.290 0.331

Female
3 62,277 0.858 0.865 *** 0.867 0.878 * 0.815 0.813 0.783 0.815 0.062 0.062 0.056 0.064
5 62,277 0.863 0.868 ** 0.869 0.879 *** 0.809 0.815 0.827 0.791 0.111 0.114 0.119 0.108

10 24,400 0.867 0.870 *** 0.872 * 0.875 * 0.813 0.804 0.805 0.805 0.247 0.242 0.242 0.244

Heart disease

Male
3 56,906 0.700 0.707 *** 0.710 0.711 ** 0.554 0.563 0.589 0.606 0.097 0.099 0.102 0.104
5 56,265 0.696 0.708 *** 0.710 0.711 0.618 0.611 0.606 0.604 0.154 0.156 0.157 0.157

10 25,101 0.687 0.698 *** 0.701 ** 0.703 0.590 0.614 0.605 0.634 0.253 0.260 0.261 0.265

Female
3 55,703 0.719 0.728 *** 0.731 0.733 * 0.571 0.558 0.623 0.619 0.099 0.100 0.106 0.106
5 55,345 0.714 0.723 *** 0.726 0.727 * 0.583 0.569 0.605 0.584 0.151 0.152 0.157 0.155

10 21,029 0.696 0.703 * 0.705 *** 0.706 0.544 0.576 0.606 0.586 0.253 0.259 0.264 0.261

Stroke

Male
3 59,362 0.772 0.774 0.775 ** 0.776 0.736 0.685 0.648 0.647 0.122 0.113 0.107 0.107
5 58,733 0.769 0.772 *** 0.773 0.774 * 0.667 0.679 0.689 0.678 0.165 0.169 0.171 0.169

10 26,204 0.749 0.753 *** 0.754 0.755 0.692 0.668 0.679 0.676 0.283 0.278 0.282 0.281

Female
3 57,408 0.752 0.756 *** 0.758 *** 0.759 0.691 0.663 0.649 0.644 0.133 0.128 0.126 0.126
5 58,733 0.752 0.755 *** 0.757 0.757 *** 0.701 0.671 0.675 0.647 0.199 0.192 0.194 0.188

10 21,704 0.727 0.729 * 0.730 ** 0.730 0.646 0.641 0.616 0.612 0.326 0.325 0.321 0.320

Cancer

Male
3 61,515 0.753 0.761 *** 0.760 0.766 0.680 0.679 0.669 0.681 0.048 0.048 0.047 0.048
5 60,773 0.748 0.753 0.753 0.766 ** 0.688 0.660 0.658 0.658 0.072 0.070 0.069 0.070

10 26,877 0.729 0.735 ** 0.735 * 0.740 0.661 0.643 0.658 0.625 0.117 0.115 0.117 0.113

Female
3 61,363 0.682 0.680 * 0.681 0.684 0.574 0.614 0.576 0.582 0.020 0.021 0.020 0.020
5 60,897 0.679 0.679 0.679 0.683 ** 0.588 0.589 0.587 0.566 0.032 0.032 0.032 0.032

10 23,027 0.653 0.651 ** 0.651 0.652 ** 0.583 0.534 0.554 0.482 0.063 0.061 0.062 0.059

Hypertension Male
3 40,557 0.623 0.661 *** 0.721 *** 0.723 0.562 0.561 0.650 0.636 0.264 0.281 0.326 0.325
5 40,279 0.635 0.676 *** 0.729 *** 0.732 *** 0.630 0.599 0.648 0.639 0.316 0.340 0.382 0.382

10 22,869 0.624 0.675 *** 0.726 *** 0.729 0.620 0.616 0.650 0.656 0.442 0.489 0.531 0.533
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Table A1. Cont.

Adverse
Health Event Gender

Pre.
Time

n
AUC Accuracy F1-Score

Model
1

Model
2

Model
3

Model
4

Model
1

Model
2

Model
3

Model
4

Model
1

Model
2

Model
3

Model
4

Hypertension Female
3 40,905 0.711 0.739 *** 0.790 *** 0.789 0.630 0.627 0.706 0.678 0.234 0.245 0.294 0.282
5 40,781 0.711 0.741 *** 0.788 *** 0.789 0.640 0.657 0.697 0.707 0.298 0.318 0.361 0.365

10 15,368 0.697 0.728 *** 0.775 *** 0.777 *** 0.640 0.653 0.698 0.688 0.459 0.486 0.530 0.530

Diabetes

Male
3 51,056 0.656 0.686 *** 0.733 *** 0.738 0.602 0.625 0.663 0.651 0.168 0.180 0.203 0.202
5 50,585 0.666 0.698 *** 0.736 *** 0.742 ** 0.586 0.627 0.668 0.653 0.231 0.249 0.275 0.274

10 22,869 0.648 0.689 *** 0.720 *** 0.730 0.597 0.606 0.633 0.679 0.364 0.391 0.411 0.423

Female
3 50,809 0.691 0.710 *** 0.740 *** 0.744 0.618 0.609 0.680 0.678 0.170 0.174 0.197 0.198
5 50,533 0.691 0.713 *** 0.739 *** 0.743 0.629 0.594 0.642 0.640 0.248 0.251 0.271 0.271

10 19,268 0.674 0.700 *** 0.725 *** 0.732 *** 0.578 0.612 0.665 0.673 0.398 0.416 0.436 0.442

* α = 5%, ** α = 1%, *** α < 0.001, significance of additional AUC tested by DeLong’s method.
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Table A2. Predictive performance of Models 1–4 assessed by logistic regressions.

Adverse Health
Event Gender Pre. Time n

AUC

Model 1 Model 2 Model 3 Model 4

Mortality

Male
3 63,084 0.873 0.880 *** 0.882 0.896 ***
5 63,084 0.876 0.880 *** 0.882 ** 0.892 ***
10 29,091 0.875 0.880 *** 0.882 * 0.889 ***

Female
3 62,053 0.867 0.869 0.870 0.881 **
5 62,053 0.867 0.868 0.869 * 0.875 **
10 24,315 0.866 0.867 0.868 * 0.870

Heart disease

Male
3 56,825 0.704 0.714 *** 0.716 0.715
5 56,189 0.702 0.712 *** 0.715 ** 0.714
10 25,099 0.691 0.698 ** 0.701 ** 0.700

Female
3 55,784 0.721 0.726 * 0.728 * 0.728
5 55,423 0.714 0.721 *** 0.725 *** 0.724
10 21,032 0.705 0.709 * 0.711 * 0.709

Stroke

Male
3 59,209 0.772 0.776 *** 0.778 ** 0.776
5 58,727 0.768 0.771 *** 0.773 ** 0.773
10 26,284 0.747 0.752 *** 0.753 ** 0.753

Female
3 57,561 0.752 0.755 ** 0.756 * 0.754 *
5 57,050 0.759 0.760 * 0.761 0.761
10 21,625 0.730 0.732 * 0.733 0.733

Cancer

Male
3 61,500 0.757 0.757 0.757 0.760
5 60,801 0.753 0.758 ** 0.758 0.763 **
10 26,760 0.728 0.730 0.730 0.734 *

Female
3 61,378 0.696 0.695 0.697 0.698
5 60,869 0.678 0.679 0.679 0.683
10 23,145 0.663 0.661 0.661 0.662

Hypertension

Male
3 40,419 0.613 0.651 *** 0.709 *** 0.658 ***
5 40,125 0.626 0.667 *** 0.718 *** 0.672 ***
10 18,404 0.627 0.673 *** 0.719 *** 0.680 ***

Female
3 41,043 0.717 0.743 *** 0.785 *** 0.745 ***
5 40,936 0.714 0.740 *** 0.782 *** 0.743 ***
10 15,353 0.700 0.732 *** 0.776 *** 0.734 ***

Diabetes

Male
3 51,048 0.653 0.682 *** 0.721 *** 0.693 ***
5 50,726 0.668 0.697 *** 0.730 *** 0.707 ***
10 22,795 0.649 0.688 *** 0.716 *** 0.700 ***

Female
3 50,818 0.690 0.707 *** 0.736 *** 0.716 ***
5 50,392 0.693 0.711 *** 0.734 *** 0.722 ***
10 19,342 0.673 0.698 *** 0.718 *** 0.707

* α = 5%, ** α = 1%, *** α < 0.001, significance of additional AUC tested by DeLong’s method.
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