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Abstract: Genomics has been forecasted to revolutionise human health by improving medical
treatment through a better understanding of the molecular mechanisms of human diseases. Despite
great successes of the last decade’s genome-wide association studies (GWAS), the results have been
translated to genomic medicine to a limited extent. One route to get closer to improved medical
treatment could be by understanding the genetics of medication use. Current medication profiles
from 335,744 individuals from the UK Biobank were obtained, and a GWAS was conducted to identify
common genetic variants associated with current medication use. In total, 59 independent loci
were identified for medication use, and approximately 18% of the total variation was attributable to
common genetic variation. The largest fraction of genetic variance for current medication use was
captured by variants with low-to-medium minor allele frequency, with coding, conserved genomic
regions and transcription start sites being enriched for associated variants. The average correlation
(R) between medication use and the polygenic score was 0.14. The results further demonstrated that
individuals with higher polygenic burden for medication use were, on average, sicker and had a
higher risk for adverse drug reactions. These results provide an insight into the genetic contribution
of medication use and pave the way for developments of novel multiple trait polygenic scores, which
include the genetically informed medication use.

Keywords: GWAS; polygenic prediction; genomic medicine; complex traits

1. Introduction

Understanding the relationship between DNA sequence variation and the predis-
position to common diseases has interested researchers for decades. In particular, after
the initial release of the human genome [1], the number of polymorphic genetic variants
associated with disease predisposition has grown exponentially to more than 60,000 associ-
ations [2–4]. Genome-wide association studies (GWAS) have provided new insight into the
biology and genetic epidemiology of many human complex diseases, which is essential for
innovative developments within genomic medicine.

Genomic medicine aims to develop treatment approaches based on the individual’s
genetic makeup, environmental exposures and lifestyle parameters [5,6], and it is foreseen
to change the way we prevent, diagnose and treat medical conditions. Fundamental
to the development of genomic medicine is accurate knowledge regarding the disease
pathogenesis and acknowledging the genetic contributions to variation in how patients
respond to treatment [7]. Genetic variation among patients modulates drug efficiency and
can impose toxic effects (adverse drug reactions) [8]; thus, understanding how genetic
variation affects drug response is essential for the development of genomic medicine.

A major challenge and hindrance in studying the genetic factors influencing drug
response variability is the lack of accessible data. Despite the emergence of large biobanks,
such as the United Kingdom Biobank [9], Japan Biobank [10] and Estonia Biobank [11],
which contain genetic and deep phenotypic information on the participants, information
on response to medical treatment is absent. The accessibility of electronic health records
and self-reported health status may provide means to alternative approaches for studying
the genetic basis of traits of relevance for medication use.
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Previously, Wu et al. [12] performed a genetic analysis of medication use in the United
Kingdom Biobank (UKB). They categorised medications based on the drugs’ active sub-
stances according to the organ or system they act on and their pharmacological properties.
They performed a genetic analysis of 23 isolated groups of medications and identified a very
large number of independent loci associated with the different drug categories. The aim of
the current study was to investigate the genetic basis of self-reported medication use in the
UKB. Current medication use was defined as the total number of different prescription and
over-the-counter medications UKB participants were taking at the time of the first verbal
interview. Medication use—as defined above—has a clear advantage, in that it is easily
quantifiable compared to, for example, drug efficiency. Assuming current medication use
as a quantitative trait phenotype, a genetic analysis of 335,744 unrelated individuals from
the UKB was conducted. The hypothesis was that across medical conditions, medication
use has a detectable genetic component, and medication use was expected to be genetically
correlated with common diseases, as commonly prescribed drugs are likely to serve as
proxy phenotypes for major disease groups. Extensive medication use among individuals
older than 65 years has been shown to be associated with ill health and morbidity [13,14];
hence, it was further hypothesised that medication use was genetically correlated with
health-related outcomes. If medication use has a genetic component, understanding the
genetic basis is important because many medications have side effects, and increased drug
usage might be associated with higher risk of toxic effects. Hence, genetic predisposition to
high medication use could be used as guidance in treatment plans aiming to reduce the
total number of medications.

2. Materials and Methods
2.1. Genotype and Phenotype Data

Genetic and phenotypic data were obtained from the United Kingdom Biobank
(UKB) [9]. Data were collected for more than 500,000 individuals aged 37–73 years. De-
tails on how chip genotyping was performed were described previously [9]. In order
to obtain a genetically homogeneous study population, the analyses were restricted to
unrelated Caucasians (Data Fields: 22013, 21000, 22006) and excluded individuals with
more than 5000 missing genotypes or individuals with autosomal aneuploidy, result-
ing in a study population size of 335,744 individuals. The chip genotype was imputed
using the Haplotype Reference Consortium (HRC) and UK10K haplotype resource, as
described by Bycroft et al. [9]. The imputed genotype probabilities were converted to
hard-call genotypes using PLINK2 (hard call: 0.1) [15]. Genetic variants with minor allele
frequency (MAF) < 0.01, missing genotype rate > 0.05, Hardy–Weinberg equilibrium test
p-value < 1 × 10−6 or imputation info score < 0.3 were excluded, resulting in a total of
9,804,629 SNPs left for analysis.

Current medication use was defined as the number of different prescription and over-
the-counter medicines (Data Field: 20003) the participants were taking regularly at the
time of the verbal interview. Only phenotypic information from the initial assessment
(conducted between 2006 and 2010) was included in the analysis, as the first instance
contained the lowest number of non-missing samples. Any short-term medications, such
as antibiotics or analgesics, were not registered at the interview. A list of ICD10 codes
commonly used to describe adverse drug reactions was obtained from Hohl et al. [16]
(Supplementary Materials: Table S1).

2.2. Genome-Wide Association Study (GWAS) of Medication Use

The 9,804,629 SNPs remaining after initial quality control were used to conduct a
GWAS on medication use within the entire White British cohort (335,744 individuals) using
PLINK2 software [15]. Sex, age, UKB assessment centre and the first ten genetic principal
components (Data Field: 22009) were included as covariates in the GWAS. To identify
high-confidence independent associated loci, LD-based clumping was performed with a
window size of 1000 kb with r2 < 0.01, and for the major histocompatibility complex region,
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only one significant locus was allowed. In line with previous work [17,18], the lead SNP
within each independent genome-wide significant locus was annotated to the nearest gene
(genome build GRCh37, hg19) within 2000 kb using Variant Effect Predictor [19].

2.3. Estimation of Heritability and Genetic Correlations

The proportion of variation in medication use explained by common SNPs (h2
SNP) was

estimated using SumHer [20]. Genetic variants within the HLA region were excluded prior
to analysis, as suggested by the authors of SumHer [20], and estimation was performed
assuming the LDAK heritability model. In addition, heritability enrichment across 24 func-
tional categories was estimated (obtained from Finucane et al. [21]). Moreover, the h2

SNP
was partitioned to autosomal chromosomes and minor allele frequency bins.

As it has been shown that SumHer and LD Score regression [22] had similar accuracies
in the estimation of genetic correlations [20], LD Hub was used to estimate the genetic
correlations between medication use (excluding the HLA region) and 257 quantitative
and disease traits [23]. To account for multiple testing, all p-values were adjusted with a
Bonferroni correction (Padj < 0.01). Using LD Score regression [22], the genetic correlation
between medication use and the previously published genetic analysis of categories of
medication traits [12] was computed. The univariate LD scores were computed using the
1000 Genomes European data.

2.4. Polygenic Scores for Medication Use

The genetic burden for medication use was computed using polygenic scores (PGS).
First, the White British UKB cohort was divided into five equally sized parts. Then, five
new GWASs (using the same covariates as described above) were conducted, removing
one-fifth of the samples every time (i.e., a five-fold cross-validation scheme). For each of
the five sets of GWAS summary statistics, LD clumping was performed using different LD
cut-offs (r2 < {0.1, 0.3, 0.5, 0.7, 0.9}) for a range of p-value thresholds (p < 0.001, 0.01, 0.05,
0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 0.9, 0.999).

For each of the five GWAS summary statistics, the polygenic score for the one-fifth of
the samples not included in the GWAS was computed as PGS = ∑m

i=1 wi b̂i, where wi is the
i-th genotype (allelic counts); b̂i is the estimated GWAS SNP effect; and m is the number of
SNPs left after LD pruning and p-value thresholding. LD clumping and thresholding and
computation of polygenic scores were performed in the R package qgg [24,25].

The accuracy of polygenic scores was obtained as the average correlation between
the number of medications taken by individuals in the validation set (i.e., the one-fifth of
the samples not included in the GWAS) and the computed polygenic score for the same
individuals. Polygenic scores were divided into percentiles, and regression coefficients (β)
were estimated using linear regression of the number of medications taken in the polygenic
score percentile relative to the 50th polygenic score percentile, adjusted for sex, age, UKB
assessment centre and the first ten genetic principal components.

3. Results

This study presents the results of a genetic analysis of current medication use within
the White British cohort from the UK Biobank (n = 335,744). Current medication use was
defined as the number of different prescription and over-the-counter medicines the partici-
pants were taking regularly at the time of the verbal interview (short-term medications,
such as antibiotics or analgesics, were not included). The average number of medications
taken by males was 2.34 (standard deviation (SD 2.7) and 2.67 (SD 2.7) for females), with a
linear increase in the number of medications taken with increasing age (Supplementary
Materials: Figure S1). Interestingly, the mean number of drugs taken by individuals with
an ICD10 code for adverse drug reaction (Supplementary Materials: Table S1) [16] was
significant larger (mean = 4.09, SD = 3.57) than the mean number of drugs taken by in-
dividuals without such diagnoses (mean = 2.23, SD = 2.43; t-test = −101.77, df = 46,662,
p < 2.2 × 10−16), suggesting that individuals taking a larger number of medications are
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more likely to encounter an adverse drug reaction or that individuals experiencing adverse
drug reactions are more difficult to treat, requiring more medication. Participants reported a
total of 3247 different medications, where the most frequently used drugs were paracetamol
(n = 61,604), aspirin (n = 44,894), ibuprofen (n = 41,756) and simvastatin (n = 38,379).

After SNP quality control (see the Materials and Methods section), there were 9,804,629
autosomal SNPs left for GWAS analysis. In total, 59 independent quantitative trait loci for
current medication use were identified (Figure 1, Supplementary Materials: Table S2). The
strongest associated locus was found within the human leucocyte antigens (HLA) complex
(rs35248896, p = 1.52 × 10−46). Because of the complexity of the HLA region [26,27], only
one significant locus at this genomic region was allowed (additional three loci passed
the significance threshold within the HLA region but were excluded; Supplementary
Materials: Table S2). Among the 59 genome-wide associated loci, 14 of them were located
in intergenic regions.
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Figure 1. Manhattan plot of medication use in the UKB (n = 335,744). The x-axis is the chromosomal
position, and the y-axis shows the negative logarithm base-10 for the p-values from regression
of current medication use from 9,804,629 SNPs. The horizontal red line shows the genome-wide
significance level (5 × 10−8). Independent genome-wide significant loci (within 1000 kb and r2 < 0.01)
are depicted in blue. For each significant locus, the gene within 2000 kb is shown (for intergenic loci,
the lead SNP is shown).

Using the medication use GWAS summary statistics (excluding the HLA region), the
proportion of variation in medication use explained by the SNPs (h2

SNP) was estimated
as 0.18 ± 0.005. Next, the total heritability was partitioned to the heritability captured
by individual autosomal chromosomes, and a linear association was found between the
proportion of heritability captured by each autosomal chromosome and the number of
SNPs per chromosome (R2 = 0.9, Figure 2A), suggesting that medication use is a highly
polygenic trait. The genomic variance explained per variant within minor allele frequency
bins indicated that low-frequency variants captured about three times more genetic vari-
ance than high-frequency variants (Figure 2B). Additionally, an enrichment score across
24 functional categories was computed (obtained from Finucane et al. [21]), which is the
estimated share of h2

SNP divided by its expected share under the assumed heritability
model [20,21] (Figure 2C). In particular, the conserved genomic region and transcription
start sites (TSS) were highly enriched, accounting for 4.5% and 1.3% of h2

SNP, respectively.
Polygenic scores for medication use were constructed by re-estimating the SNP effects

using a five-fold cross-validation scheme. The scoring was performed on five levels of
LD pruning (r2) and across eleven p-value thresholds. The maximum prediction accuracy
(Pearson’s correlation, R, between the polygenic scores and current medication use ~0.14)
was obtained when markers with r2 > 0.5 (Supplementary Materials: Figure S2) were
removed at a p-value of 0.9 (Figure 3A), which included approximately 1.5 million genetic
markers (Supplementary Materials: Figure S3). By stratifying individuals based on their
polygenic score, the individuals within the top 5% highest polygenic scores had increased
medication use compared with individuals with the 5% lowest polygenic scores (Figure 3B,
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Supplementary Materials: Figure S4). Moreover, individuals with the 5% highest polygenic
scores had significantly more ICD10 diagnoses than those individuals with 5% lowest
polygenic scores (10.8 diagnoses and 6.4 diagnoses, respectively; Supplementary Materials:
Figure S5). There was, however, no visual difference with regard to the diseases they
were diagnosed with (Supplementary Materials: Figure S6); individuals with the highest
polygenic scores for medication use simply had more diagnoses than those with low
polygenic scores (Supplementary Materials: Figures S5B and S6). Using the classification
of adverse drug reactions from Hohl et al. [16] (Supplementary Materials: Table S1), it
could be seen that those individuals with high polygenic scores who experienced adverse
drug reactions had, on average, a 1.6-fold higher medication use compared with low-risk
individuals (Supplementary Materials: Figure S7 and Table S4).
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ance captured per autosomal chromosome as function of the proportion of SNPs per chromosome.
(B) Proportion of genomic variance, scaled by the number of SNPs, captured by minor allele fre-
quency. (C) Estimated enrichment score for functional categories. Vertical line segments mark the
standard deviation of the enrichment score. Horizontal dashed line marks an enrichment score
of no enrichment. CTCF: a highly conserved multifunctional DNA-binding protein, DGF: digital
genomic footprint, DHS: DNase I hypersensitivity sites, TFBS: transcription factor binding site, TSS:
transcription start site.

Finally, the genetic correlations between medication use and 257 quantitative traits
and complex diseases were computed using LD Hub [23]. Significant genetic correlations
with 115 traits (Bonferroni-adjusted p-value < 0.01) across 26 categories were identified,
except bone traits, where no genetic correlation with medication use was found (Figure 4,
Supplementary Materials: Table S3). As expected, medication use was positively genetically
correlated with major common complex diseases, in particular coronary artery disease,
type 2 diabetes, asthma, lung cancer and major depressive disorder (Figure 5). Parents’ age
at death was the trait, which was most negatively genetically correlated with medication
use, indicating that higher medication use correlated with lower age at death (higher
mortality) of the parents (Figure 5). The number of years in school and completion of
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college education were negatively correlated with medication use. The number of cigarettes
smoked per day and medication use were positively genetically correlated, and medication
use was also genetically correlated with sleep traits, such as insomnia and sleep duration
(Figure 5). Finally, the genetic correlations between medication use and the medication
categories previously published by Wu et al. [12] were estimated (Supplementary Materials:
Figure S8). The average genetic correlation between our definition of medication use and
the 23 medication categories was 0.52 (SD 0.22; Supplementary Materials: Table S5), and
the category ‘drugs affecting bone structure and mineralization’ was the only insignificant
result, which agreed with the observation that medication use was not genetically correlated
with any bone traits (Figure 4).
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4. Discussion

In this study, data from UKB were used to perform a genome-wide genetic analy-
sis of current medication use, defined as the total number of different prescription and
over-the-counter drugs the participants from UKB were taking at the time of the initial
assessment. The aim was to investigate the genetic basis of self-reported medication
use. A total of 59 linkage disequilibrium independent SNPs (p < 5 × 10−8) associated
with current medication use were identified. The strongest statistical signal was located
within the major histocompatibility complex (MHC); HLA-DQA1 (lead SNP rs35248896,
p-value = 1.52 × 10−46), which belongs to the MHC class II gene. The MHC region is a large
genomic region on chromosome 6, which is associated with more diseases than any other
region of the genome [27,28]. Additional three loci within MCH reached LD-independent
genome-wide significance (Supplementary Materials: Table S2); however, the complexity
and extreme variant polymorphism, combined with strong LD within MHC, complicate
the interpretation and disentanglement of individual MHC loci [29]. Given the biological
involvement of MHC in immune response, it was unsurprising that this precise genomic
region contained the strongest associated loci for current medication use.

The genome-wide associated loci have previously been linked to a large number of
different quantitative traits and multifactorial complex diseases. Since genetic correla-
tions express the extent to which two quantitative phenotypes reflect what is genetically
the same character [30], it was not surprising to observe good correspondence between
the identified genome-wide associated genomic loci and their previous associations and
significant genetic correlations. For example, among the candidate genes were known
susceptibility loci for diabetes (PTPN22, CEP68, RREB1, TCF7L2 [31]), coronary artery
disease (PSRC1, UNC5C, LPLA [32]), depression (MAD1L1, YLPM1 [33,34]) and insomnia
(NMT1 [35]). Genes previously associated with non-disease traits, including BMI (RAB-
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GAP1L, HEYL [36,37]), smoking (NLGN1 [38]) and age at menarche (RBM6 [39]), were also
among the associated loci.

The polygenic nature of medication use was—aside from the large number of identified
quantitative trait loci—further supported by the linear association between the proportion
of genetic variance captured by each autosomal chromosome and the proportion of genetic
variants located on each chromosome, which was similar to what is observed for other
polygenic traits [25,40–43]. Low-frequency genetic variants captured more genetic variance
than common genetic variants, which was similar to what is observed in, for example, type 2
diabetes [44] and coronary artery disease [42,45]. Neuro-developmental and -degenerative
disorders, such as schizophrenia, Tourette syndrome and Alzheimer’s disease, do, however,
show the opposite pattern [40,41,46]. Therefore, it is not surprising that the findings
correspond with what is observed for common diseases, since the disease prevalence of
common diseases in the UKB follows population prevalence; furthermore, the prevalence
of mental disorders is too low compared to population frequency.

The statistical genetic analysis was performed across all in-hospital medical conditions
the UKB participants may have been diagnosed with prior to the initial assessment between
2006 and 2010. The focus of the present study was on studying the genetic contributions
to variation in current medication use. Thus, the results of the genetic association could
be biased towards common diseases with the highest disease prevalence, for example,
through partially shared genetic aetiology. However, this would inevitably imply that some
disease groups require numerically more drugs for treatment than other disease groups.
Moreover, medication use was also strongly genetically correlated with complex traits, such
as smoking behaviour, parents’ age at death, educational level and insomnia, suggesting
that the genetic architecture of medication use was not per se biased towards common
diseases. Clearly, the statistical genetic findings presented in the current study should
be validated in future studies. Other large biobank projects, such as Japan Biobank [10]
or Estonia Biobank [11], could serve as valuable replication cohorts, although they are
subject to other selection and recruitment biases than the UK Biobank. Moreover, as dis-
cussed below, inaccurate trait definitions increase phenotypic heterogeneity among cohorts,
which reduces statistical power and diminishes the prediction accuracy of polygenic pre-
dictions [47,48]; therefore, these should be taken into consideration when performing any
genetic replication.

The results presented demonstrated that individuals with high polygenic scores for
medication use had an increased medication usage, although the degree of variance ex-
plained by polygenic scores remained very moderate. The increased polygenic burden for
medication use was associated with higher probability of being diagnosed with multiple
diseases and also having experienced adverse drug reactions. Therefore, this presents
an opportunity for future applications, wherein the polygenic score associated with med-
ication usage could potentially serve as a means of identifying individuals at elevated
risk. Specifically, individuals with the highest polygenic scores for medication usage could
be targeted for heightened medical attention to mitigate the occurrence of adverse drug
reactions. This proactive approach holds promise in optimising medication management
and enhancing patient safety by tailoring medical interventions to individuals’ genetic
predispositions. Medication use was genetically correlated with known indicators of poor
health. For example, overweight and high body mass index—known to be strongly ge-
netically influenced [49]—were positively correlated with medication use, and these are
strongly associated with poor health [50]. Moreover, the behavioural characteristics of
smoking and sleep patterns are also known factors for bad state of health [51], and they
also exhibited significant genetic correlations with medication use.

The results clearly demonstrated a link between the polygenic burden for the number
of different medications being used by the individual and the individual’s overall health
status. These findings could have future clinical applications within precision medicine
initiatives, as the current—and potentially future—medication profile is predictive of an
individual’s future health status. Polygenic scores play a crucial role in customising pre-
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ventive measures and treatments based on an individual’s genetic risk profile, leading
to notable enhancements in patient outcomes and healthcare efficiency. Furthermore,
the incorporation of polygenic scores into healthcare systems facilitates better informed
decision making by healthcare providers, advocating for a transition from a generalised
approach to a more tailored, personalised healthcare strategy. Given that individuals inherit
genetic predispositions to common complex diseases, leveraging polygenic scores holds
promise in clinical applications, particularly in disease prevention and the refinement of
more precise polygenic scoring systems. Recently, we developed a multiple trait poly-
genic score for type 2 diabetes, which, compared to a single trait polygenic score, had an
improved prediction accuracy—quantified by explained variance—of 34% [52]. One of
the information traits included was the polygenic contribution from current medication
use [52]. In addition to body mass index, current medication use was the trait, which
exhibited the largest importance in the construction of the multiple trait polygenic score.
Similarly, multiple trait polygenic scores for coronary artery disease and ischaemic stroke
were recently developed based on several similar information traits, which also enhanced
the prediction accuracy [53,54]. The improvement in risk stratification is obtained by lever-
aging correlated trait information, i.e., the degree to which two, or more, complex traits
share genetic information. It is not the information traits per se, which are important, but
the degree of shared genetic information among them. Given the many different types of
traits current medication use was genetically correlated with, medication use is a useful
genetic information source. Although multiple trait polygenic scores have shown increased
predictive performances, they do not currently have the discriminative ability needed to be
used clinically.

This study has a number of limitations, which need to be addressed. First, despite the
information on medication use being obtained by trained nurses during interviews, the
same drug may have been reported under different names, which may limit the accuracy
of the analysis. Second, the definition of drug usage used by UKB also included supple-
mentary vitamins. However, for many diseases, dietary supplements, such as vitamins,
are regularly used in the pharmacological intervention in common diseases. Thus, the
exclusion of supplementary vitamins might not capture an individual’s medication profile
more accurately. There is a clear need for future studies utilising more objective measures
of medication usage. For example, a recent study by Aguayo-Orozco et al. utilised more
than 1.1 billion prescriptions from the Danish prescription registry, aiming to model the risk
of sequentially redeeming one drug after another [55]. Although this approach provides
unprecedented insight into the prescription trajectories, it does not provide insight into
the genetic predisposition towards medication use. It is imperative to utilise objective
measures of any complex phenotypes when conducting genetic studies; equally impor-
tantly, as cross-study phenotypic heterogeneity attenuates statistical power and predictive
ability [47,48], there is a need to better align phenotypic definitions, such as medication
use, across studies. Third, the lack of information on medication duration, dosage and
response means that true pharmacogenomic analysis cannot be performed. Similarly, this
also limits the possibility of studying specific genetic alternations within the cytochrome
P450 metabolising enzymes. Fourth, the assessment of current medication usage relied on
self-reported questionnaires, potentially subject to individual interpretation and influenced
by personal viewpoints. Such subjectivity could impact the accuracy of the gathered data.
A previous study highlighted significant genetic correlations between self-reported diseases
and medically diagnosed conditions [56], pointing to the fact that what people report in
questionnaire data reflects their current health status. Similar findings have been reported
for medication usage [57]. However, the responses are limited by potential recall bias,
influencing the accuracy of participants’ recollection of past events or experiences. More-
over, the well-known healthy-volunteer bias, which is inherent to the UKB resource, does
call for caution when interpreting the results obtained from UKB [58]. Fifth, the findings
presented here are specific to UK Biobank participants, who are not representative of the
general UK population [59,60] and may not translate to other populations and other health
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systems. In general, the majority of participants in existing GWASs are of European descent,
despite the European population only accounting for 16% of the global population [61].
This constitutes a great inequity challenge, as it limits the discovery of novel causal genetic
variants, which are exclusive to certain populations due to genetic drift [62]. Moreover,
because the discovery GWASs lack ancestral diversity, the polygenic scores translate into
poor generalisability across diverse ancestries and cohorts [63]. Many global efforts are
currently under way to expand the diversity of GWAS data, which are further supported
by the development of new statistical methods for improving the accuracy of PGS across
populations by leveraging cross-population LD panels.

In conclusion, it was demonstrated that the genetic basis of current medication use
in the UK Biobank among 335,744 individuals appeared genetically heterogeneous. A
total of 59 independent quantitative trait loci for medication use were identified, and 18%
of the observed variation could be ascribed to common genetic variants. The genetically
heterogenous nature of medication use was further supported, as the genetic variance
was spread across the genome, and the highest prediction accuracy was observed when
1.5 million genetic markers were included. Understanding the genetic aetiology of complex
diseases has been suggested as a route for improving medical treatment. The majority
of genetic variation within the human genome contributes to a large number of different
complex traits and diseases. Therefore, incorporating correlated trait information into the
polygenic score can increase the accuracy of risk stratification. Medication use—as defined
in the current study—is an easily quantifiable trait, and due to its genetically corelated
nature with many complex traits and diseases, leveraging such information into new
multiple trait polygenic scores could further increase the accuracy of predicting disease
predispositions and disease trajectories. Based on genetic data, individuals with high
medication use can be identified; concurrently, these are the most diseased individuals, and
they are at an increased risk for adverse drug reaction. Thus, individual medication profiles
are likely to be yet another puzzle piece for understanding complex human diseases and
for providing better medical treatment for the future generation.
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