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Abstract: Background: Screening for hydroxychloroquine (HCQ) retinopathy is crucial to detecting
early disease. A novel machine-learning-based optical coherence tomography (OCT) biomarker, El-
lipsoid Zone (EZ) At-Risk, can quantitatively measure EZ alterations and at-risk areas for progressive
EZ loss in a fully automated fashion. The purpose of this analysis was to compare the EZ At-Risk
burden in eyes with HCQ toxicity to eyes without toxicity. Methods: IRB-approved image analysis
study of 83 subjects on HCQ and 44 age-matched normal subjects. SD-OCT images were reviewed
for evidence of HCQ retinopathy. A ML-based, fully automatic measurement of the percentage of
the macular area with EZ At-Risk was performed. Results: The mean age for HCQ subjects was
67.1 ± 13.2 years and 64.2 ± 14.3 years for normal subjects. The mean EZ At-Risk macular burden
in the “toxic” group (n = 38) was significantly higher (10.7%) compared to the “non-toxic” group
(n = 45; 2.2%; p = 0.023) and the “normal” group (1.4%; p = 0.012). Additionally, the amount of EZ
At-Risk burden was significantly correlated with the HCQ dose based on the actual (p = 0.016) and
ideal body weight (p = 0.033). Conclusions: The novel biomarker EZ-At Risk was significantly higher
in subjects with evidence of HCQ retinopathy as well as significantly associated with HCQ dose. This
novel biomarker should be further evaluated as a potential screening tool for subjects on HCQ.

Keywords: hydroxychloroquine retinopathy; ellipsoid zone integrity; quantitative optical coherence
tomography; automated feature segmentation

1. Introduction

Hydroxychloroquine (HCQ) is a mainstay of treatment for connective tissue disorders
but can cause irreversible retinal toxicity and permanent and progressive vision loss, even
after medication cessation [1–5]. Risk factors for retinopathy include an excessive daily dose,
cumulative dose, duration of treatment, and concurrent macular disease [4,6–13]. Primary
screening tests include spectral domain optical coherence tomography (OCT), automated
visual fields (VFs), and fundus auto-fluorescence (FAF). OCT is often the frontline testing
performed and can detect the classic features of HCQ retinopathy [4,10,14,15]. These
changes include loss of the parafoveal ellipsoid zone (EZ), parafoveal thinning of the
outer nuclear layer (ONL) and inner plexiform layer (IPL), the “flying saucer” sign, and
peripapillary nerve fiber layer thinning [7,16–18]. Groups have analyzed the OCTs of
subjects with known HCQ retinopathy to retrospectively identify findings on OCT that
may precede the classic macular changes [19]. One report found that parafoveal ONL
thinning, disruption of the parafoveal interdigitation zone, and reduced reflectivity of the
parafoveal EZ may precede disruption of the parafoveal EZ [7]. Another study described
that loss of a clear continuous interdigitation zone was an early OCT change of HCQ
retinopathy in subjects with otherwise normal screening metrics that was visible before
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subjects progressed to advanced parafoveal outer retinal disruption and/or paracentral
visual field defects [20]. Other groups have recently identified OCT retinal thickness
deviation maps and rapid macular thinning as biomarkers of retinopathy [21,22].

Loss of ellipsoid zone (EZ) integrity on OCT is a hallmark feature of HCQ retinopathy,
but early alterations can be subtle [16,23–25]. The availability of an automated platform for
enhanced OCT assessment, including quantitatively analyzing outer retinal metrics with
the opportunity for a visual representation of these EZ-retinal pigment epithelium (RPE)
thickness maps, could help facilitate the earlier detection of subclinical toxicity, including
for eye care providers who are not retina specialists [16,23,24]. An automated deep-learning
(DL)-enhanced EZ mapping tool with EZ-RPE segmentation that allows for line-by-line
verification has been developed to better quantify and understand macular disease and
has been linked to outcomes and disease severity in numerous retinal disorders [26–29].
This mapping tool has been used to examine subjects with HCQ retinopathy. Significant
reductions in outer retinal parameters were found in these eyes, including partial EZ atten-
uation that was parafoveal in more mild disease and more diffuse with worse disease [25].
Additionally, machine learning algorithms utilizing clinical history and advanced OCT
segmentation from eyes on HCQ have been developed to both detect and predict HCQ
retinopathy [30].

Novel, automated imaging biomarkers have been developed to further evaluate EZ.
EZ At-Risk is a fully automated deep-learning OCT biomarker defined by regions of
unhealthy EZ but excluding regions of atrophy [31]. The initial focus and target of this
biomarker was in nonexudative age-related macular degeneration [31].

Given that HCQ retinopathy is characterized by loss of EZ integrity, this study was initiated
to explore whether EZ At-Risk could be used to identify HCQ retinopathy. A fully automated
biomarker that can detect these subtle changes could be a potential screening endpoint for
subjects on HCQ. The purpose of this study is to evaluate differences in EZ At-Risk between
subjects with HCQ toxicity, HCQ subjects without toxicity, and normal controls.

2. Materials and Methods

This was an institutional review-board-approved retrospective image analysis study
and complied with the declarations of the tenets of Helsinki. The requirement for informed
consent was waived by the institutional review board due to the retrospective nature of
this analysis. Thus, written informed consent was not obtained for this analysis.

2.1. Study Subjects and Data Collection

The study utilized clinical and OCT imaging data from subjects on HCQ therapy and
age-matched healthy controls. Clinical data included age, gender, ethnicity, height, weight,
daily HCQ dose, HCQ dose in milligram (mg)/kilogram (kg) actual body weight, HCQ
dose in mg/kg ideal body weight, duration on HCQ therapy, cumulative dose of HCQ,
systemic autoimmune disease status, co-existing kidney disease, concurrent tamoxifen
use, and visual acuity. All subjects in this analysis underwent spectral-domain (SD)-OCT
imaging using the macular cube protocol (512 × 128 A-scans) with the Cirrus HD-OCT
(Zeiss, Oberkochen, Germany) covering a 6 × 6 mm fovea-centered area. SD-OCT images
was collected for all subjects (one eye per subject) and reviewed by two retina specialists
(KET, JPE) for evidence of HCQ retinopathy in a masked manner. Additionally, any
subjects with concern for co-existing macular disease were excluded. Subjects on HCQ with
retinopathy were labelled as “toxic”, and the remaining subjects on HCQ were labelled as
“non-toxic”. The subjects in the “non-toxic” and “normal” groups included in this analysis
were chosen at random to match the ”toxic” subjects in a relative 1:1 match largely based
on age [26,30]. Unfortunately, subjects were unable to be matched based on baseline clinical
characteristics, given the number involved.
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2.2. Automatic Ellipsoid Zone At-Risk Quantification

A previously described deep learning model trained to automatically identify and
quantify regions of attenuated EZ (based on ground truth segmentation masks consisting
of an EZ-RPE thickness of <10-micron) was utilized to analyze the OCT images [31]. The
training methodology of this model has been previously described. In brief, training
masks were generated from regions with an EZ-RPE thickness of 10 microns or less in eyes
with nonexudative age-related macular degeneration. Subsequently, a modified U-Net
architecture was deployed for model training, and a fully automatic segmentation and
measurement of regions with EZ At-Risk was achieved.

2.3. Statistical Analysis

All statistical analyses were performed using R (v4.0.1, Bell Laboratories, Murray
Hill, NJ, USA). Matching between healthy controls and subjects on HCQ therapy was
assessed by analyzing descriptive clinical and demographic statistics from these groups.
The mean percentage area of EZ-At-Risk was compared between the “toxic”, “non-toxic”,
and “normal” groups. Normalcy of data was assessed with a Shapiro–Wilk test. Group
means were compared using an ANOVA test with a Tukey’s post-hoc test for a normal
distribution of data and Kruskal–Wallis test with Dunn’s post-hoc test for a non-normal
data distribution. Pearson’s correlation was utilized to identify associations of EZ At-Risk
with clinical parameters for normal distributions, and Spearman’s correlation was utilized
for non-parametric calculations. Statistical significance was inferred at p < 0.05.

3. Results

A total of 83 eyes from 83 subjects on HCQ, including 38 that were determined to have
evidence of HCQ retinopathy based on OCT review, and 44 eyes from 44 age-matched nor-
mal subjects were included in the analysis. The baseline clinical characteristics are shown
in Table 1. The mean age was 67.1 ± 13.2 years in the HCQ cohort and 64.2 ± 14.3 years in
the normal eyes. In the HCQ cohort, the majority of subjects were female (n = 73; 88%) and
Caucasian (n = 65; 78%). Baseline visual acuity was a mean of 20/25 (logMAR 0.2 ± 0.3).
The mean daily HCQ dose was 380.7 ± 64.4 mg, which corresponded to a mean actual
body weight dose of 5.3 ± 1.6 mg/kg and mean ideal body weight dose of 6.9 ± 1.4 mg/kg.
Rheumatoid arthritis (n = 37; 45%) and lupus (n = 31; 37%) were the most common clinical
indications for HCQ use, and risk factors for HCQ toxicity, including concurrent tamoxifen
use (n = 2; 2%) and kidney disease (n = 6; 7%), were relatively rare.

The mean EZ At-Risk macular burden in the “toxic” group was significantly higher
(10.7%) compared to the “non-toxic” group (2.2%; p = 0.023). The mean EZ At-Risk in
the “toxic” group was also significantly higher than the “normal” group (1.4%; p = 0.012).
There was no significant difference between the “non-toxic” and “normal” group (p = 0.580;
Table 2). Eyes in the “non-toxic” group generally did not show any significant areas of EZ
At-Risk, with a representative subject shown in Figure 1. In contrast, eyes in the “toxic”
group showed parafoveal areas of EZ At-Risk that corresponded to areas of partial EZ-RPE
attenuation on en face mapping in the representative subject (Figures 2 and 3).
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Table 1. Demographics and baseline clinical characteristics of included subjects and eyes.

Parameter Normal Group
(n = 44 Eyes)

Total HCQ Cohort
(n = 83 Eyes)

Toxic HCQ Group
(n = 38 Eyes)

Nontoxic HCQ
Group (n = 45 Eyes) p-Value

Age (years; mean ± SD) 64.2 ± 14.3 67.1 ± 13.2 69.5 ± 13.6 65.1 ± 12.6 0.128
Gender (n)

Male 19 10 3 7
Female 25 73 35 38

Ethnicity (n)
White 28 65 28 37
Black 12 15 8 7
Hispanic 3 1 1 0
Asian 0 2 1 1
Others 2 0 0 0
Declined to answer 2 0 0 0

Daily HCQ Dose (mg; mean ± SD) - 380.7 ± 64.4 378.9 ± 57.7 382.2 ± 68.4 0.816
HCQ daily dose per ideal body
weight (mg/kg; mean ± SD) - 6.9 ± 1.4 7.2 ± 1.5 6.7 ± 1.3 0.155

HCQ daily dose per actual body
weight (mg/kg; mean ± SD) - 5.3 ± 1.6 5.6 ± 1.8 5.1 ± 1.4 0.122

Duration on HCQ therapy (years;
mean ± SD) - 10.9 ± 4.2 10.9 ± 5.1 10.8 ± 3.3 0.810

Cumulative HCQ dose (grams;
mean ± SD) - 1505.8 ± 633.2 1520.1 ± 765.3 1493.7 ± 504.3 0.851

Systemic autoimmune illness (n)
Rheumatoid arthritis - 37 14 23
Lupus - 31 15 16
Other - 15 9 6

Concurrent kidney disease (n) - 6 2 4
Concurrent tamoxifen use (n) - 2 0 2
Visual Acuity (Snellen logMAR;
mean ± SD) 0.0 ± 0.2 0.2 ± 0.3 0.2 ± 0.3 0.2 ± 0.3 0.479

SD = standard deviation, cm = centimeter, kg = kilogram, HCQ = hydroxychloroquine, mg = milligram; p-value
bolded if p < 0.05.

Table 2. Comparison of mean percentage area of EZ At-Risk between various groups.

Mean Macular EZ At-Risk Burden (in %)

Toxic group Nontoxic group p-value
10.7 ± 23.3 2.2 ± 5.4 0.023

Toxic group Normal group p-value
10.7 ± 23.3 1.38 ± 5.72 0.012

Nontoxic group Normal group p-value
2.2 ± 5.4 1.38 ± 5.72 0.580

Compared using Kruskal–Wallis test and Dunn’s post-hoc test; bolded if p < 0.05.

Additionally, the percentage area of EZ At-Risk was compared to clinical parameters
in subjects on HCQ in both the “toxic” and “non-toxic” groups. The percentage area of
EZ At-Risk was significantly correlated with the HCQ dose based on the actual (p = 0.016)
and ideal body weight (p = 0.033) and trended towards a significant correlation with the
cumulative dose (p = 0.069). Subject age, vision, HCQ daily dose, and duration of HCQ
therapy were not significantly correlated with EZ At-Risk (Table 3; all p > 0.136).
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Table 3. Correlation of percentage area of EZ At Risk in subjects on hydroxychloroquine (HCQ)
therapy with various clinical parameters.

Parameter R p-Value

Cumulative HCQ dose 0.20 0.069
HCQ daily dose per kg of
ideal body weight 0.23 0.033

HCQ daily dose per kg of
actual body weight 0.26 0.016

Duration on HCQ 0.17 0.136
Age −0.10 0.362
Daily HCQ Dose 0.10 0.369
Snellen VA −0.05 0.675
Snellen logMAR VA 0.02 0.868

Spearman’s correlation; bolded if p < 0.05; HCQ = hydroxychloroquine, kg = kilogram, VA = visual acuity.
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Figure 1. Case example of ellipsoid zone (EZ) at-risk in non-toxic eye while on hydroxychloroquine 
(HCQ). A 62 year old woman on HCQ; daily dosing, based on actual body weight, was 5.65 mg/kg 
for 7 years at the time of the OCT (A,B). There was no significant partial parafoveal ellipsoid zone 
(EZ)-retinal pigment epithelium (RPE) attenuation on en face EZ-RPE mapping (C), which would 
have appeared as areas of purple, or EZ At-Risk on en face mapping (D), which would have ap-
peared as areas of white. 

Figure 1. Case example of ellipsoid zone (EZ) at-risk in non-toxic eye while on hydroxychloroquine
(HCQ). A 62 year old woman on HCQ; daily dosing, based on actual body weight, was 5.65 mg/kg
for 7 years at the time of the OCT (A,B). There was no significant partial parafoveal ellipsoid zone
(EZ)-retinal pigment epithelium (RPE) attenuation on en face EZ-RPE mapping (C), which would
have appeared as areas of purple, or EZ At-Risk on en face mapping (D), which would have appeared
as areas of white.
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Figure 2. Case example of significant parafoveal ellipsoid zone (EZ) at-risk in eye in toxic eye while 
on hydroxychloroquine (HCQ). A 70 year old woman on HCQ; daily dosing, based on actual body 
weight, was 5.22 mg/kg for 6 years at the time of the OCT (A,B). There were significant areas of 
parafoveal partial ellipsoid zone (EZ)-retinal pigment epithelium (RPE) attenuation on en face EZ-
RPE mapping (C), which appear as purple. These areas correlated well with the white areas of EZ 
At-Risk on en face mapping (D). 

Figure 2. Case example of significant parafoveal ellipsoid zone (EZ) at-risk in eye in toxic eye while
on hydroxychloroquine (HCQ). A 70 year old woman on HCQ; daily dosing, based on actual body
weight, was 5.22 mg/kg for 6 years at the time of the OCT (A,B). There were significant areas of
parafoveal partial ellipsoid zone (EZ)-retinal pigment epithelium (RPE) attenuation on en face EZ-
RPE mapping (C), which appear as purple. These areas correlated well with the white areas of EZ
At-Risk on en face mapping (D).



J. Pers. Med. 2024, 14, 448 7 of 10J. Pers. Med. 2024, 14, x FOR PEER REVIEW 7 of 11 
 

 

 
Figure 3. Case example of parafoveal ellipsoid zone (EZ) at-risk in eye in toxic eye while on hy-
droxychloroquine (HCQ). A 71 year old man on HCQ; daily dosing, based on actual body weight, 
was 5.45 mg/kg for 10 years at the time of the OCT (A,B). There were subtle areas of parafoveal 
partial ellipsoid zone (EZ)-retinal pigment epithelium (RPE) attenuation on en face EZ-RPE map-
ping (C), which appear as purple. These areas correlated well with the white areas of EZ At-Risk on 
en face mapping (D). 

Additionally, the percentage area of EZ At-Risk was compared to clinical parameters 
in subjects on HCQ in both the “toxic” and “non-toxic” groups. The percentage area of EZ 
At-Risk was significantly correlated with the HCQ dose based on the actual (p = 0.016) and 
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Table 3. Correlation of percentage area of EZ At Risk in subjects on hydroxychloroquine (HCQ) 
therapy with various clinical parameters. 
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Cumulative HCQ dose 0.20 0.069 
HCQ daily dose per kg of ideal body weight 0.23 0.033 
HCQ daily dose per kg of actual body weight 0.26 0.016 

Figure 3. Case example of parafoveal ellipsoid zone (EZ) at-risk in eye in toxic eye while on
hydroxychloroquine (HCQ). A 71 year old man on HCQ; daily dosing, based on actual body weight,
was 5.45 mg/kg for 10 years at the time of the OCT (A,B). There were subtle areas of parafoveal
partial ellipsoid zone (EZ)-retinal pigment epithelium (RPE) attenuation on en face EZ-RPE mapping
(C), which appear as purple. These areas correlated well with the white areas of EZ At-Risk on en
face mapping (D).

4. Discussion

In this study, a novel fully automated OCT biomarker examining EZ At-Risk was
examined in subjects on HCQ and with evidence of HCQ retinopathy. Loss of EZ integrity
on OCT is a classic feature of HCQ toxicity, but early alterations can be subtle, even for those
well-versed in interpreting OCTs. A fully automated metric able to detect EZ attenuation
may provide an opportunity for screening and improved detection of HCQ retinopathy.
This assessment found significantly higher levels of EZ At-Risk in subjects with HCQ
retinopathy (10.7%) as compared to subjects on HCQ without evidence of retinopathy
(2.2%), a nearly five-fold increase. The macular EZ At-Risk burden was also found to be
significantly correlated with HCQ dose based on actual and ideal body weight. There was
no significant difference in EZ At-Risk between HCQ subjects without retinopathy and
age-matched controls. While outer retinal metrics on OCT have previously been noted in
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subjects with HCQ retinopathy, the application of this novel and fully automated biomarker
is unique [7,23,25,30,32].

This study builds on previous work demonstrating the utility of using an automated
EZ mapping platform to identify outer retinal changes on OCT in HCQ subjects [25,30].
This EZ mapping tool was previously utilized in eyes with clinically recognized HCQ
retinopathy, finding a significant reduction of outer retinal parameters, including en face
EZ attenuation, compared to controls. The current analysis demonstrated similar results,
specifically a significant increase in EZ At-Risk in subjects with HCQ retinopathy as com-
pared to HCQ retinopathy subjects and age-matched controls. The pattern of EZ At-Risk on
en face mapping for eyes in the “toxic” group showed a similar pattern to those with mild
toxicity described in previous reports, namely parafoveal attenuation, which would be
expected for HCQ retinopathy [25]. This study also helps validate this novel EZ biomarker
and reinforces its generalizability beyond nonexudative age-related macular degeneration
for a unique indication and points toward its promise as an OCT biomarker and screening
tool [31].

Given the progressive and irreversible nature of HCQ retinopathy, early detection of
toxic changes on OCT is of great interest. For instance, Lally et al. examined 30 eyes with
HCQ retinopathy and found that parafoveal ONL thinning, disruption of the parafoveal
interdigitation zone, and reduced reflectivity of the parafoveal EZ preceded parafoveal
EZ disruption [7]. Disruption of the parafoveal interdigitation zone is likely reflected
in the measurement of EZ At-Risk. Additionally, Garrity et al. reported on 10 subjects
with HCQ retinopathy with OCT changes but reassuring visual field tests, finding early
OCT alterations including parafoveal EZ attenuation [20]. These studies describe subtle
qualitative OCT that can be easily missed. This is true not only for retinal specialists who
are well-versed in OCTs, but also for other eye care providers, including optometrists
and comprehensive ophthalmologists, who may be less adept at detecting subtle outer
retinal changes on OCT. This highlights the need for better OCT screening tools and fully
automated biomarkers of HCQ retinopathy.

Prior studies have shown that HCQ subjects have stable OCTs until they may develop
retinopathy rather than a slow accumulation of toxic changes [23]. This study supports this,
given that there was no significant difference in EZ At-Risk between the “non-toxic” and
“normal” group. However, the relatively small size of the groups may not be able to detect
a difference.

There are several limitations to this study, largely resulting from its retrospective nature
and relatively small size. OCT orientation was not prospectively optimized. Significant
tilt may result in alterations to EZ reflectivity, and it is not clear of this impact on EZ At-
Risk detection. Additionally, other tests and imaging modalities, including VFs, FAF, and
multifocal electroretinogram, may have been used clinically for HCQ screening, but were
not included in this study and should be investigated to correlate for changes in the future.
Additionally, the relatively small sample size may have limited additional correlations
of EZ At-Risk with clinical characteristics. The sample size also limited the ability to
perform matching based on clinical characteristics, including HCQ dose and duration,
although there were no significant differences between the HCQ cohorts. Although this
OCT biomarker was found to be significantly associated with HCQ dose based on ideal
and actual body weight, the sample size might not have been large enough to detect a
difference for the other clinical characteristics. Finally, EZ At-Risk was not compared to
other quantitative outer retinal metrics, and examined these metrics at a single timepoint
rather than dynamically.

Overall, this study examines a novel fully automated OCT biomarker, examining EZ
At-Risk in HCQ subjects. The assessment demonstrated increased EZ At-Risk in HCQ
subjects with retinopathy compared to HCQ subjects without retinopathy as well as age-
matched controls. This metric was also significant associated with HCQ dose based on
actual and ideal body weight. Our findings provide a “proof of concept” that this biomarker
has a significant potential as a screening tool, especially given that it is fully automated.
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Further studies are needed to better elucidate this novel biomarker longitudinally in HCQ
subjects, compare to other quantitative metrics, evaluate for potential threshold risks for
toxicity classification, and better correlate with disease severity.
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