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Abstract: Classification of pediatric brain tumors with unusual histologic and clinical features 

may be a diagnostic challenge to the pathologist. We present a case of a 12-year-old girl with a 

primary intracranial tumor. The tumor classification was not certain initially, and the site of 

origin and clinical behavior were unusual. Genomic characterization of the tumor using a 

Clinical Laboratory Improvement Amendment (CLIA)-certified next-generation sequencing 

assay assisted in the diagnosis and translated into patient benefit, albeit transient. Our case 
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argues that next generation sequencing may play a role in the pathological classification of 

pediatric brain cancers and guiding targeted therapy, supporting additional studies of 

genetically targeted therapeutics. 

Keywords: glioblastoma; pediatric glioma; metastatic glioma; gene mutation;  

next generation sequencing; BRAF V600E; vemurafenib; CKDN2A 

 

1. Introduction 

Brain tumors are the most common solid malignancy of childhood [1,2]. Surgical resection, 

radiation therapy and chemotherapy are critical parts of the initial treatment strategy for high-grade, 

pediatric brain tumors [3,4]. However, there are limited effective strategies for recurrent/resistance 

disease. As our knowledge of the molecular drivers of these resistant tumors expands, genetic 

aberrations that can be therapeutically targeted may be identified [3,5,6]. 

Systemic metastasis of primary central nervous system tumors is an uncommon event [7–9].  

We report a young patient with a primary intracranial tumor with extracranial metastatic spread to the 

temporalis muscle adjacent to the operative site, cervical lymph nodes and axial bone and bone 

marrow. The tumor classification was not certain initially, and the site of origin and clinical behavior 

were unusual. Molecular characterization of the tumor demonstrated a well-described BRAF V600E 

point mutation and loss of CDKN2A/B. Both mutations have been reported in high-grade pediatric 

gliomas [6,10,11]. This case illustrates the utility of molecular analysis in both the diagnosis and 

identification of potential treatment options in pediatric cancers. 

2. Case Presentation 

A 12-year-old girl presented with a history of frontal headaches for several weeks after suffering 

minor head trauma. The initial CT scan without contrast showed no evidence of intracranial bleeding. 

Because of persistent headaches, however, as well as nausea and vomiting, she underwent another  

CT scan less than a month later that showed a 6.2 × 3.5 cm right fronto-temporal mass with associated 

edema and a midline shift. Magnetic resonance imaging (MRI) of the brain with and without 

intravenous gadolinium was then performed and demonstrated a 5.5 × 2.2 × 5.1 cm, apparently  

extra-axial mass, largely within the right Sylvian fissure (Figure 1A). The interface of the brain was 

lobulated and irregular, raising the possibility of the invasion of the brain and subarachnoid space, but 

no definite intraparenchymal component was recognized. There was vasogenic edema in the 

subcortical white matter and a 5-mm midline shift towards the left side. Based on imaging, it was felt 

that the tumor was likely to be a hemangiopericytoma. Physical examination was notable for an intact 

neurological examination. 

The patient underwent a right-sided craniotomy after a successful partial embolization of the tumor 

the day prior (Figure 1B). A significant portion of the mass was visualized, deep to middle cerebral 

artery branches shown by intraoperative ultrasound to be coursing through the mass and providing 

blood supply to the temporal and frontal lobes. The attempted dissection of the tumor off the pial 
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surface also led to devascularization of the underlying brain as the tumor had parasitized the pial 

vasculature. Therefore, further dissection following superficial excisional biopsy of the mass was not 

performed for safety reasons. A dural graft was placed. Because of significant brain swelling, the bone 

flap was not immediately replaced. The temporalis muscle was closed in apposition to the dural graft. 

Postoperative MR imaging showed that the resection of the anterior and superior aspects of the mass 

had been accomplished, although the majority of the mass remained (Figure 1C). Microscopic 

examination revealed a cellular neoplasm with clear or eosinophilic cytoplasm in sheets, small nests 

and pseudopapillary formations associated with small foci of necrosis (Figure 2A). There were rare 

mitotic figures. Thin connective tissue bands with blood vessels containing endothelial hyperplasia 

were frequent. Immunostaining revealed vimentin in all of the tumor cells and scattered tumor cells 

positive for bcl-2, p53, desmin and factor XIIIa. CD99 and CD34 were negative. The mitotic labeling index 

using Ki-67 staining was approximately 10%. The initial pathologic diagnosis was hemangiopericytoma. 

Figure 1. (A) The post-contrast T1-weighted MRI image shows a predominantly 

heterogeneously enhancing mass extending into the right Sylvian fissure with probable 

invasion of the adjacent insular cortex; (B) a select image from the tumor embolization 

demonstrates a dramatically hypervascular tumor supplied by branches of the right middle 

meningeal artery that was successfully embolized with polyvinyl alcohol particles;  

(C) the postoperative T1-weighted MRI image with contrast demonstrates partial resection 

of the tumor. 

 

Postoperatively, the patient remained neurologically intact. One month after her initial surgery, 

however, the patient developed a rapidly worsening mental status that progressed to coma. Imaging 

studies showed a hemorrhage within and an interval growth of the tumor (Figure 3A). The patient 

underwent an emergent craniotomy with the evacuation of the hemorrhage and near total resection of 

the residual tumor (Figure 3B). Although the patient experienced a complete recovery from a cognitive 

standpoint, she did have a severe left-sided hemiparesis. Two months after the emergent surgery, she 

underwent another craniotomy for the resection of the recurrent tumor and replacement of her bone 

flap in preparation for radiation therapy. At that time the tumor was noted to be densely adherent to the 

overlying dura and temporalis muscle, from which all gross tumor was removed. The resected tumor 

revealed a few minute areas of infiltration into superficial cortex with no bulk tumor identified within 

the brain. However, areas of dural infiltration and some infiltration of the temporalis muscle were identified. 
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Figure 2. (A) Primary tumor. H&E stain. 200× magnification. The neoplasm is relatively 

cellular and formed of crowded polygonal cells with variable amounts of pale eosinophilic 

or clear cytoplasm. Nuclei are round to oval and often irregular, and they are vesicular with 

occasional small nucleoli. Binucleated tumor cells are present. Mitotic figures are rare.  

A few small tumor cells have slightly expanded cytoplasm with fibrous inclusions 

(nonspecific rhabdoid cells). Thin fibrovascular septa, mostly with capillary-size vessels, 

are present, forming vague small lobules in many areas; (B) Primary tumor. GFAP stain; 

200× magnification; (C) Primary tumor. Synaptophysin stain; 400× magnification;  

(D) Primary tumor. Nestin stain of tumor; 200× magnification. 

 

Figure 3. (A) The patient developed a delayed intratumoral hemorrhage requiring 

hemicraniectomy and evacuation of the hemorrhage and tumor. The noncontrast head CT 

shows the acute hemorrhage within the right Sylvian fissure extending into the right frontal 

lobe; (B) The post-contrast t1-weighted image after the second surgery shows subtotal 

removal of the neoplasm and evacuation of the intratumoral hemorrhage. 
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Second opinions on the pathologic diagnosis with additional immunohistochemical staining 

revealed that all of the tumor cells were positive for glial fibrillary acidic protein (GFAP). A diagnosis 

of high-grade glioma was made. Findings of astrocytic tumor cells, vascular endothelial hyperplasia 

and focal necrosis, along with accumulating imaging and intraoperative information, led to the 

conclusion that the tumor was a glioblastoma multiforme (GBM) that might have initially expanded in 

the subarachnoid space rather than subcortically. Further studies included immunostaining for nestin 

with all tumor cells being positive and for synaptophysin showing focally positive tumor cells from all 

three resections with slightly increased staining in the second tumor sample and larger foci of stained 

cells in the last resection (Figure 2B,D). E-cadherin was negative in the initial tumor biopsy, while 

there was focal membrane staining in the tumor from the third craniotomy. The patient was treated 

with external beam radiation therapy 60 Gy with concomitant temozolomide at a dose of 75 mg/m
2
/day 

during radiation. Over the course of radiation therapy, she remained clinically stable. 

Two weeks after the completion of radiation therapy, the patient developed painless bilateral cervical 

adenopathy with several firm, immobile, right posterior cervical lymph nodes approximately 2 cm in the 

greatest diameter. One week later, the patient developed midline back pain primarily in the lumbar area 

and also pancytopenia. An MRI demonstrated the bilateral cervical adenopathy, as well as lytic vertebral 

lesions of the cervical, thoracic and lumbar spine with multifocal bone marrow involvement (Figure 4A).  

A mass deep to the right sternocleidomastoid muscle was excised. Microscopically, there was an 

infiltrated lymph node along one edge, and the mass consisted of sheets of poorly-differentiated 

metastatic tumor cells positive for GFAP and rarely for synaptophysin. A right iliac crest bone marrow 

biopsy was performed, and it showed 60% infiltration with GFAP-positive and nestin-positive tumor 

cells, while synaptophysin was focally positive (Figure 5). 

Figure 4. (A) The sagittal STIR (short TI inversion recovery) MRI image demonstrates 

extensive new osseous metastases with multiple pathologic compression fractures of the 

lumbar spine; (B) The sagittal T-weighted MRI image demonstrates interval mild 

improvement in bone marrow signal abnormality after treatment; the fatty replacement of 

tumor is shown by white arrows. 
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Figure 5. (A) Bone metastases aspirate smear. Wright-Giemsa stain; 600× magnification. The 

arrows point to some of the malignant cells in this field; (B) Bone metastases, high power: 

bone marrow biopsy. Hematoxylin and eosin stain; 400× magnification. A sheet of malignant 

cells at high magnification; (C) Bone metastases, synaptophysin stain: bone marrow biopsy. 

Immunohistochemical stain for synaptophysin; 400× magnification. A stain for synaptophysin 

shows peri-nuclear dot-positivity in the malignant cells; (D) Bone metastases, GFAP stain: 

bone marrow biopsy. Immunohistochemical stain for GFAP; 400× magnification. A stain for 

GFAP marks the cytoplasm of the malignant cells. 

 

Since the tumor had progressed with extracranial metastases on temozolomide, the patient was 

started on treatment with vincristine, dactinomycin and cyclophosphamide, as well as external 

radiation therapy to the lower spine and hip. Because of the unusual course of the disease, a metastatic 

tumor of the neck was tested for molecular alterations, using a CLIA certified targeted resequencing 

panel of “actionable” genes using hybrid-capture and next-generation sequencing approaches [12,13]. 

Briefly, formalin-fixed, paraffin embedded tumor specimens were sent to have targeted sequencing 

performed on 236 genes and 47 introns of 19 genes that are involved in fusions. The alterations found 

in this tumor were the BRAFV600E mutation, CDKN2A loss and PTPRD S1845fs*2. Allele 

frequencies for BRAF and PTPRD were 64% for BRAF, with a read depth of 2,838; 70% for PRPRD 

at a read depth of 1,504. The tumor purity was estimated at 60% computationally.  

This pattern of mutations has been reported in high-grade pediatric gliomas and supported this 

diagnosis. The presence of a BRAF V600E mutation suggested additional therapeutic options. 

Following the discussion of this case at the Rutgers Cancer Institute of New Jersey Molecular Tumor 

Board, vemurafenib (960 mg BID), an oral BRAF inhibitor, was added to her treatment regimen. She 

developed a macular rash on the extremities five days after starting vemurafenib, while both back pain 



J. Pers. Med. 2014, 4 408 

 

 

and pancytopenia improved and the cervical adenopathy regressed. An MRI of the spine also showed 

partial regression of the bone marrow disease (Figure 4B). After four weeks of this treatment, she 

developed worsening back and hip pain, and the size of the cervical adenopathy increased.  

Her chemotherapy regimen was changed to carboplatin, which did not result in a sustained response. 

Comfort care was pursued, and the patient subsequently died of her disease, 11 months after symptoms 

began and 10 months after the initial craniotomy. No autopsy was performed. 

3. Discussion 

The tumor unexpectedly contained a BRAF V600E mutation, CDKN2A loss and PTPRD 

S1845fs*2 mutation. This case illustrates that in the treatment of pediatric oncology patients with  

an atypical clinical course, molecular data may play a role both in tumor classification and  

in the identification of therapeutic options. While overall gene expression is qualitatively comparable 

in congenital, pediatric and primary adult GBM [14], the frequency of common genetic alterations 

differ. In pediatric diffuse astrocytomas (WHO Grades 2 to 4, including GBM), there is a lower 

frequency of the genetic alterations most commonly observed in adult cases [15]. An exception exists 

for a specific point mutation of the v-raf murine sarcoma viral oncogene homolog B1 (BRAF). The 

BRAF gene is the second most common gene mutated in human cancers [16]. The BRAF V600E point 

mutation has been identified in 6% of pediatric GBM, while it has not been identified in adult  

GBM [17]. Conversely, homozygous deletion in CDKN2A occurs at a lower rate in pediatric GBM 

than in adult cases [15]. The CDKN2A tumor suppressor genes appear to contribute to glioma 

predisposition, both from common single nucleotide polymorphisms and from rare mutations. Their loss 

carries a poor prognosis [18]. A subset of high-grade pediatric astrocytomas into which our patient fits 

has a BRAF mutation and CDKN2A inactivation [12,15]. The combination of BRAF V600E mutation 

and CDKN2A deletion leads to reduced differentiation in murine neural progenitor cells [12]. 

Some pediatric astrocytomas lacking the BRAF V600E mutation contain KRAS or other mutations 

in pathways that increase BRAF activity [17]. BRAF V600E mutations are found in small subsets of 

some low-grade gliomas, including cerebellar and non-cerebellar pilocytic astrocytomas, pleomorphic 

xanthoastrocytomas and gangliogliomas [12,17]. Patients with low-grade gliomas and the BRAF 

V600E mutation have poorer outcomes and a decreased progression-free survival [12]. 

The prevalence of the BRAF V600E mutation in several solid tumors led to the development of its 

specific inhibitor, vemurafenib. Although there is very little experience using vemurafenib in children, 

it has shown significant activity against BRAF V600E mutation-positive metastatic melanoma in 

adults. Eighty percent of patients with metastatic melanoma had either partial or complete remission, 

and 74% had a reduction in disease progression or mortality [19]. Vemurafenib is well tolerated, with 

major side effects including fatigue and photosensitivity. Unfortunately, the response to vemurafenib 

in melanoma is often transient. The combination of BRAF inhibitor and MEK inhibitors may be more 

effective than BRAF inhibitors alone. 

Murine models of BRAF V600E mutant gliomas suggest that BRAF inhibitors may be active in this 

setting [20,21]. A recent study using a glioma model in which there is concomitant BRAF V600E 

mutation and CDKN2A loss, as seen in our patient, demonstrated that these tumors respond to a 

single-agent BRAF inhibitor [13]. However, much better responses were seen with the combination of 
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BRAF inhibitor and CDK 4/6 inhibitor. These data suggest that combination therapy targeting both 

BRAF and CDK 4/6 may be useful in high-grade gliomas harboring BRAF V600E and CDKN2A  

loss [13]. Unfortunately no clinical trials, open to pediatric patients, testing BRAF inhibitors, MEK 

inhibitors or CDK4/6 inhibitors were available for our patient. She was treated with vemurafenib, as it 

was the only appropriate agent targeting BRAF V600E that was FDA approved at the time, and she 

had a transient response. Use of BRAF inhibitors in pediatric brain cancers has been reported in a case 

report of pediatric brain stem ganglioglioma with a BRAF V600E mutation, where the patient was 

successfully treated with vemurafenib and vinblastine [22]. 

4. Conclusions  

The current case demonstrates the importance of the use of clinical genomic sequencing to identify 

molecular alterations that drive tumor development, especially in rare, pathologically ambiguous 

cancers. This case also emphasizes that genetic alterations should be determined early rather than late 

in the diagnostic process to aid with both diagnosis and treatment decisions. If genomic sequencing 

information had been present earlier in the course of this patient, there might have been more time to 

develop more sophisticated targeted treatment options. In this era of personalized medicine, 

molecularly targeted agents developed to inhibit specific oncogenic pathways offer more treatment 

options that may decrease recurrence and prolong survival. Clinical trials are needed to investigate 

optimal targeted therapy for BRAF V600E mutant pediatric brain cancers. 
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