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Abstract: Biomarker-guided treatment is a rapidly developing area of medicine, where treatment
choice is personalised according to one or more of an individual’s biomarker measurements.
A number of biomarker-guided trial designs have been proposed in the past decade, including
both adaptive and non-adaptive trial designs which test the effectiveness of a biomarker-guided
approach to treatment with the aim of improving patient health. A better understanding of them
is needed as challenges occur both in terms of trial design and analysis. We have undertaken a
comprehensive literature review based on an in-depth search strategy with a view to providing
the research community with clarity in definition, methodology and terminology of the various
biomarker-guided trial designs (both adaptive and non-adaptive designs) from a total of 211 included
papers. In the present paper, we focus on non-adaptive biomarker-guided trial designs for which we
have identified five distinct main types mentioned in 100 papers. We have graphically displayed each
non-adaptive trial design and provided an in-depth overview of their key characteristics. Substantial
variability has been observed in terms of how trial designs are described and particularly in the
terminology used by different authors. Our comprehensive review provides guidance for those
designing biomarker-guided trials.

Keywords: biomarker-guided trial design; clinical research design; phase II; phase III; personalized
medicine; predictive biomarker; prognostic biomarker; non-adaptive trial designs; clinical trials
methodology; sample size

1. Introduction

The rapidly developing field of ‘personalized medicine’ [1], also known as ‘individualized
medicine’, ‘stratified medicine’, or ‘precision medicine’ is allowing scientists to treat patients by
providing them with a specific regimen according to their individual demographic, genomic or
biological characteristics. The latter two aforementioned characteristics are collectively known
as biomarkers [2]. The terms ‘personalized medicine’ and ‘individualized medicine’ often create
confusion in literature, as in reality, the objective of this approach is to identify demographic- or
biomarker-defined subgroups. Thus, as it still remains a population and not an individualized
approach, the terms ‘stratified’ or ‘precision’ medicine are often considered to be more accurate.
The National Institutes of Health Biomarkers Definitions Working Group [3] defined a biomarker to
be “a characteristic that is objectively measured and evaluated as an indicator of normal biological
processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention” [1,4–7].
Biomarkers related to clinical outcome which are measured before treatment commences can be
classified as either prognostic or predictive biomarkers. Prognostic biomarkers provide information
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regarding the likely progression of a disease without taking into account any specific treatment, whilst
predictive biomarkers provide information about the patient’s outcome given a certain treatment, i.e.,
their likely response to the treatment [4,7–34]. Prior to utilizing a patient’s biomarker information
in clinical practice, it is necessary that they have been robustly tested in terms of analytical validity
(the results of testing a specific biomarker or biomarkers can be trusted), clinical validity (the results
obtained from the test correlates with important clinical information) and clinical utility (the test will
be useful in ameliorating patients’ health) [9,13,19,25].

A number of phase II and phase III trial designs have been proposed for testing the clinical
utility of prognostic biomarkers. Due to the large amount of literature in this field, we have split
our review into two broad categories, i.e., the biomarker-guided non-adaptive trial designs which
are presented in the current study and the biomarker-guided adaptive trial designs. The latter are
extensively discussed in our published paper “Biomarker-Guided Adaptive Trial Designs in Phase II
and Phase III: a Methodological Review”, Antoniou et al., 2016 [35].

In this review we aim to communicate the different non-adaptive biomarker-guided trial designs,
which can be either randomized or non-randomized designs (e.g., single-arm designs), proposed in
the literature so far and to report on the potential advantages and weaknesses of each. Although not
included in the paper by Antoniou et al., 2016 [35] which describes and discusses adaptive designs,
some designs discussed in the current paper, although not adaptive in the traditional sense, they own
an adaptive element.

2. Methods and Findings

We undertook a search of the MEDLINE (Ovid) database, restricted to published papers in
the English language within the previous ten years aiming to identify articles which describe and
discuss biomarker-guided trial designs. Traditional trial designs, i.e., designs which do not incorporate
biomarkers aiming to aid in making treatment decisions (we will refer to as ‘traditional’ trial designs)
are part of our literature review search strategy in order to help us identify and distinguish any
potential reference to biomarker-guided designs, as the finding of the appropriate keywords in Medline
database for biomarker-guided designs was challenging. Furthermore, the restriction of published
papers within the past decade was made not only because of the large amount of literature in this field,
but also for the identification of the most recent trial designs. Two separate strategies as illustrated in
Figure 1 were used to identify relevant articles, and the keywords utilized in the search are presented
in S1 Keywords. Our initial search resulted in 9412 and 5024 relevant titles for biomarker-guided
clinical trial designs and traditional trial designs, respectively. From the 9412 papers, 104 articles
were included based on their title and abstract. From the 5024 papers, 40 articles were included
based on their title and abstract and after removing inaccessible articles or those already identified
in the search for biomarker-guided trial designs. An additional 67 eligible papers were identified
from searching both the reference list of included articles and the internet (the internet searches were
performed using the same keywords as those for the Ovid strategy), making a total of 211 included
papers. Of these 211 included papers, biomarker-guided non-adaptive trial designs were referred to in
100 papers; 107 papers for biomarker-guided adaptive trial designs were reviewed in our published
paper Antoniou et al., 2016 [35]. In the total number of 211 papers, some papers are referred to both
adaptive and non-adaptive designs. Articles from references and internet searches which did not
provide further information on each broad category of biomarker-guided designs were not included.
Cited books, web pages for actual trials and papers published before 2005 are also not included in
these numbers. For each included paper, the following details were extracted: definition of the trial
design(s) referred to in the paper, how patients were screened and/or randomized based on their
biomarker status, treatment groups randomized to, as well as other key information relating to the
trial design and methodology, including advantages and limitations. Where reference was made in the
included papers to an actual trial which had adopted a particular biomarker-guided non-adaptive trial
design, the clinical field with which the trial was associated was also recorded. However, a review of
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all implementations of the different trial designs in practice is beyond the scope of this paper; however,
and is an area for potential future work. Therefore, it is important to highlight that even where no
evidence of the implementation of a particular design was found in the papers included in our review,
the design may well be currently in use in ongoing trials.
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Figure 1. Flow diagram of the review process. From our search strategy a total number of 211 papers
have been identified giving information regarding not only the biomarker-guided designs but also
general information about personalized medicine and biomarkers. Before arriving at 211 papers, books,
web pages for actual trials and papers published before 2005 were excluded. The 211 papers are split
into two overlapping sets of 100 and 107 papers. The total of 207 is less than 211 due to overlap of
papers, and also due to the fact that some articles referring to general information about personalized
medicine and biomarkers and articles which do not provide further information on each broad of
biomarker-guided designs were excluded. The 107 papers for biomarker-guided adaptive trial designs
were reviewed in our published paper Antoniou et al. (2016) [35].

In our review, we identified five main biomarker-guided non-adaptive trial designs namely:
(i) single-arm designs; (ii) enrichment designs; (iii) randomize-all designs; (iv) biomarker-strategy
designs and (v) other designs. Within each main design several subtypes and extensions were also
identified. Graphical representations of the main designs and subtypes are given in Figures 2–16.
Graphical representations of the extensions are given in Figures S1-S4 included in File S1-S4. The
characteristics and methodology of the main design types and subtypes are discussed below and are
summarized in Table 1, whilst information on the extensions are discussed in File S1-S4. Furthermore,
sample size formulae for each biomarker-guided design are provided in Table 2.
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Table 1. Types of Biomarker guided non-adaptive designs proposed within the last ten years.

Types of Biomarker-Guided
Non-Adaptive Trial Designs Utility Advantages Limitations

Single arm designs (7 papers) [30,36–41] (see
Figure 2)

Useful for initial identification and/or
validation of a biomarker.

(A1) Considered as a simple statistical
design as there is no need for
randomization of patients.

(L1) There is no distinction between
prognostic and predictive biomarker as
patients are not randomized to experimental
and control treatment arms.

Also called: Nonrandomized clinical trial
design, Uncontrolled Cohort Pharmacogenetic
Study design

(A2) Simple logistics.

Examples of actual trials: None identified a (A3) Not complex statistical design

(A4) In some cases, these designs may be
viewed as ethical as all patients are given
the opportunity to experience the
experimental treatment. However, they
may be viewed as unethical if the novel
treatment does not benefit a subgroup of
patients or causes adverse events.

Enrichment designs (71 papers)
[1,4,7–9,11,13,15,16,18,19,21,23,25–33,36,42–86]
(see Figure 3)

Useful when we aim to test the treatment
effect only in biomarker-positive subset
for which there is prior evidence that the
novel treatment is beneficial, but the
candidate biomarker requires
prospective validation.

(A5) Evaluates the effect of the
experimental treatment in the
biomarker-positive subgroup in a simple
and efficient way.

(L2) Do not assess whether the experimental
treatment benefits the biomarker-negative
patients, thus we cannot obtain information
about this subgroup. Also unable to
demonstrate whether the targeted treatment
is beneficial in the entire study population.

Also called: Targeted design, Selection design,
Efficient Targeted design,
Biomarker-Enrichment design,
Marker-enrichment design, Gene enrichment
design, Enriched design, Clinically enriched
Phase III study design, Clinically Enriched Trial
design, Biomarker-Enriched design, Biomarker
Enriched design, Biomarker Selected trial
design, Screening enrichment design,
Randomized Controlled Trial (RCT) of test
positive design, Population enrichment design

Useful when it is not ethical to assign
biomarker-negative patients to the novel
treatment for which there is prior
evidence that it will not be beneficial for
this subpopulation, or that it will harm
them.

(A6) Provides clear information about
whether the novel treatment is effective
for the biomarker-positive subgroup,
thus these designs can identify the best
treatment for these patients and confirm
the usefulness of the biomarker.

(L3) Do not inform us directly about whether
the biomarker is itself predictive because the
relative treatment efficacy may be the same
in the unevaluated biomarker-negative
patients. Since these designs only enrol a
subgroup of patients, they do not allow for
full validation of the marker’s predictive
ability. For full validation, a trial would need
to randomize all patients in order to test for
a treatment–biomarker interaction.
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Table 1. Cont.

Types of Biomarker-Guided
Non-Adaptive Trial Designs Utility Advantages Limitations

Examples of actual trials: CRYSTAL [49], BRIM
3 [49–51], EURTAC [49], CLEOPATRA [49],
PROFILE 1007 [49,50], LUX-Lung [49], NSABP
B-31 and NCCTG N9831
[4,15,16,18,19,28–31,36,44,46,52–60],
CALGB-10603 [61], CATNON [62], CODEL [62],
Evaluation of epidermal growth factor receptor
variant III (EGFRvIII) peptide vaccination [62],
N0923 [7,21] , Flex study [64], TOGA trial [47],
IPASS [33,43], N0147 [29], PetaCC-8 [29,47],
C80405 [29], ECOG E5202 [29]

Recommended when both the cut-off
point for determination of
biomarker-status of patients and the
analytical validity of a biomarker are
well established.

(A7) Reduced sample size as the
assessment of treatment effect is
restricted only to biomarker-positive
subgroup. Therefore, if the selected
biomarker is “biologically correct” and
reliably measured, the used enrichment
strategy could result in a large saving of
randomized patients.

(L4) Researchers should carefully decide
whether or not to follow this strategy as it may
be of limited value due to the exclusion of
biomarker-negative patients. It may be that
the entire population could benefit from the
experimental treatment equally irrespective of
biomarker status, in which case enrolling only
the biomarker-positive patients will result in
slow trial accrual, increase of expenses and
unnecessary limitation of the size of the
indicated patient population.

(A8) Enables rapid accumulation of
efficacy data.

(L5) Concern over an ethical problem as we
cannot include individuals in a clinical trial if
it is believed that the treatment is not effective
for them, as raised by the US Food and Drug
Administration (FDA) [50]. It was based on
the facts that the experimental treatment can
only be approved for a particular
biomarker-defined subpopulation (i.e.,
biomarker-positive patients) if a companion
diagnostic test is also approved, and how the
test can be approved if the Phase III trial does
not show that the novel treatment does not
benefit the biomarker-negative patients.

(A9) Allow us to avoid potential dilution
of the results due to the absence of
biomarker-negative patients. For
example, if the design had included the
biomarker-negative population and the
biomarker positivity rate was low as
compared to the biomarker negative rate,
then the estimation of the overall
treatment effectiveness could be diluted
as it would be driven by the
biomarker-negative subset.

(L6) The accuracy of diagnostic devices used
to identify the biomarkers, e.g., biomarker
assays, is not always correct [45]. This can
result in incorrect selection of
biomarker-positive patients and therefore
these patients will erroneously be enrolled in a
trial yielding biased treatment effect estimates.
For example, even when the experimental
treatment works well for a specific subgroup,
if the biomarker assay is not able to identify
this subgroup robustly then a promising
treatment may be abandoned.

(A10) Can be attractive in terms of speed
and cost, meaning that patients are
provided with tailored treatment sooner.
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Table 1. Cont.

Types of Biomarker-Guided
Non-Adaptive Trial Designs Utility Advantages Limitations

Marker Stratified designs (45 papers)
[4,10,12,13,15–19,21,25–27,30,31,33,44–46,49–51,
53,58,61,62,66,68,71–74,79–81,84–93] (see
Figure 4)

Useful when there is evidence that the
novel treatment is more effective in the
positive biomarker-defined subgroup
than in the negative biomarker-defined
subgroup but there is insufficient
compelling data indicating that the
experimental treatment does not benefit
the biomarker-negative patients.

(A11) Ability to assess the treatment
effect not only in the entire population
but also in each biomarker-defined
subgroup. Thus, this design can find the
optimal treatment in the entire
population and in each
biomarker-defined subgroup.

(L7) In situations where there are several
biomarkers and treatments this design may
not be feasible as it involves randomization of
patients between all possible treatment
options and may require a large sample size.

Also called: Marker-stratified design,
Biomarker-stratified design,
Stratified-Randomized design, Stratification
design, Stratified design, Stratified Analysis
design, Marker by treatment – interaction
design, Marker-by-treatment interaction design,
Treatment by marker interaction design,
Treatment-by-marker interaction design, Marker
× treatment interaction design,
Treatment-marker interaction design,
Biomarker-by-treatment interaction design,
Non-targeted RCT (stratified by marker) design,
Genomic Signature stratified designs,
Signature-Stratified design, Randomization or
analysis stratified by biomarker status design,
marker-interaction design.

(A12) An ethical design even in
situations where the biomarker is not
useful as no treatment decisions are
made based on biomarker status; all
decisions are made randomly.
Consequently, if the biomarker’s value is
in doubt, this design may be preferred.

(L8) May not be feasible when the prevalence
of the biomarker is low.

Examples of actual trials: MARVEL (N023)
[4,16,30,31,33,44,61,89], GALGB-30506 [15,61],
RTOG0825 [45], EORTC 10994 p53 [12,66],
IBCSG trial IX [18], MINDACT [18]

(L9) Might be expensive to test the entire
population for its biomarker status.

(L10) Measuring the biomarker up front may
be logistically difficult.

(L11) There is no guarantee of balanced
groups for analysis.

Sequential Subgroup-Specific design (11
papers) [13,14,19,22,53,57,58,60,69,91,94] (see
Figure 5)

Recommended when prior evidence
indicates that the biomarker-positive
subpopulation benefits more from the
novel treatment as compared to the
biomarker-negative subpopulation.

(A13) Allows for the estimation of
treatment effect in biomarker-positive
and biomarker-negative subgroups.

(L12) Has less power when there is
homogeneity of treatment across the different
biomarker defined subgroups as compared to
the overall/biomarker-positive designs.
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Table 1. Cont.

Types of Biomarker-Guided Non-Adaptive Trial Designs Utility Advantages Limitations

Also called: sequential design, Fixed-sequence 2 design, hierarchical
fixed sequence testing procedure

(A14) Preserves the overall type I error rates
and allows for a smaller sample size than the
parallel version mentioned below.

(L13) Need a much larger sample size than the
overall/biomarker positive designs if we
assume that the treatment effect is relatively
homogeneous across the biomarker-defined
subsets.

Examples of actual trials: PRIME [49], MARVEL [49]

(A15) Considered as the best direct evidence
for clinical decision making as it tests the
treatment effectiveness in both the
biomarker-positive and biomarker-negative
subset in a sequential way.

(A16) Do not require larger sample size than
the overall/biomarker-positive designs
when the prevalence of the
biomarker-positive patients is small.

Parallel Subgroup-Specific design (3 papers) [14,49,69] (see
Figure 6)

Appropriate when the aim of the study
is to give treatment recommendations for
each biomarker-defined subgroup
separately at the same time.

(A17) Same as (A13), (A16) (L14) Same as (L12)

Also called: Phase III Biomarker-Stratified design

(L15) Allocates the overall level a between the
two biomarker-defined subgroup tests which
means that it will be more difficult to achieve
statistical significance in the
biomarker-positive subgroup.

Examples of actual trials: None identified a

Biomarker-positive and overall strategies with parallel assessment
(8 papers) [1,14,36,47,49,69,95,96] (see Figure 7)

Recommended when the aim of the
study is to assess the treatment effect in
both the entire population and in the
biomarker-positive subset but not in the
biomarker-negative population.

(A18) Can control the overall type I error a.

(L16) Can be overly conservative as in the
SATURN trial because of the correlation
between the test of treatment effect in the
overall study population and in the biomarker
subgroups.

Also called: Overall/biomarker-positive design with parallel
assessment, prospective subset design, hybrid design

(A19) Can require smaller sample size as
compared to the subgroup-specific designs,
especially when we assume that the novel
treatment equally benefits both
biomarker-defined subgroups.

(L17) Cannot control the probability of
rejecting the null hypothesis of no treatment
effect in the biomarker-negative subset when
the treatment benefit is restricted to
biomarker-positive patients. Consequently,
there is a high risk of inappropriately
recommending the novel treatment for
biomarker-negative patients due to the large
treatment effect in biomarker-positive subset.
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Table 1. Cont.

Types of Biomarker-Guided Non-Adaptive Trial Designs Utility Advantages Limitations

Examples of actual trials: S0819 [14,49], SATURN [14,36,47,49,95,96],
MONET1 [14,49], ARCHER [14,49], ZODIAC [49], MERiDiAN [49]

Biomarker-positive and overall strategies with sequential assessment
(11 papers) [13,14,30,44,49,69,80,84,85,88,94] (see Figure 8)

Might be useful in cases where the
experimental treatment is expected to be
effective in the overall population.

(A20) Same as (A18), (A19)
(L18) Can be problematic for determining
whether the treatment is beneficial in the
biomarker-negative subgroup.

Also called: Overall/biomarker-positive design with sequential
assessment, sequential design, Fixed-sequence 2 design, hierarchical
fixed sequence testing procedure

(L19) Same as (L17)

Examples of actual trials: Trial of letrozole plus lapatinib versus
letrozole plus placebo in breast cancer, with the biomarker defined by
human epidermal growth factor receptor 2 (HER2) [14], N0147 [30,49]

Biomarker-positive and overall strategies with fall-back analysis (15
papers) [10,30,36,44,47,49,53,57,60,69,84,88,94,96,97] (see Figure 9)

Recommended when there is insufficient
confidence in the predictive value of the
biomarker and the novel treatment is
assumed to probably benefit all patients.

(A21) Can assess the treatment effect in the
biomarker-positive patients, if no benefit is
detected in the overall population.

(L20) Same as (L17), (L18)

Also called: Biomarker-stratified design with fall-back analysis,
fall-back design, prospective subset design, sequential design, other
analysis plan design, Fallback design

(A22) Same as (A18), (A19)

Examples of actual trials: None identified a

Marker Sequential test design (4 papers) [14,49,69,94] (see Figure 10)

Recommended when biomarkers with
strong credentials are available and we
have convincing evidence that the novel
treatment is more effective in
biomarker-positive than in
biomarker-negative patients.

(A23) Can provide clear evidence of
treatment benefit in the biomarker-positive
subgroup and in the biomarker-negative
subgroup.

(L21) In situations where biomarker status is
not available for some of the patients included
in the study, this design can either exclude
these patients or include them in the global
test, however, further statistical adjustments
might be required in that case.

Also called: MaST design, hybrid design

Appropriate when we can assume that
the treatment will not be beneficial in the
biomarker-negative subpopulation
unless it is effective for the
biomarker-positive subpopulation.

(A24) Enables sequential testing of the
treatment effect in the entire study
population and in the biomarker-defined
subgroups to restrict testing of the treatment
effect in the entire population when there is
no significant result in the
biomarker-positive subset, while controlling
the appropriate type I error rates.

(L22) Does not decrease the sample size of the
study as it was developed in order to increase
the power compared to the sequential
subgroup-specific design in situations where
the novel treatment benefits equally both
biomarker-negative and biomarker-positive
patients.
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Table 1. Cont.

Types of Biomarker-Guided
Non-Adaptive Trial Designs Utility Advantages Limitations

Examples of actual trials: ECOG E1910 [14,49]

(A25) Results in higher power as compared to
the sequential subgroup-specific design in cases
where the treatment effect is homogeneous
across the biomarker-defined subgroups.

(A26) Preserves the power in situations where
the treatment effect is restricted only to the
biomarker-positive patients and at the same
time it controls the relevant type I error rates.

(A27) Control the type I error rate for the
biomarker-negative subgroup over all possible
prevalence values.

(A28) The probability of erroneously concluding
that the novel treatment is beneficial for the
entire population when the global effect is
driven by the biomarker-positive patients is
minimized since the design only tests the
treatment effect in the entire population when
no significant effect is detected in the
biomarker-positive subgroup.

Hybrid designs (14 papers) [1,13,15,29–31,36,46,48,55,66,84,88,98] (see
Figure 11)

Can be used when there is prior evidence
indicating that only a particular treatment
is beneficial to a biomarker-defined
subgroup which makes it unethical to
randomize patients with that specific
biomarker status to other treatment
options.

(A29) The feasibility of a prognostic biomarker
can be tested. None found.

Also called: Mixture design, Combination of trial designs, hybrid
biomarker design

(A30) Allows for better risk assessment and
improved individualized treatment since it
assigns patients to treatments based on risk
assessment scores instead of their biomarker
status (biomarker-positive and
biomarker-negative patients).

Examples of actual trials: TAILORx [15,48,55,58,63,66], EORTC MINDACT
[15,48,55,66], ECOG 5202 study [30,46]

Biomarker-strategy designs with biomarker assessment in the control arm
(21 papers) [15,25,26,32,33,36,45,61,62,64,79,82,85,86,92,93,99–103] (see
Figure 12)

Useful when we want to test the
hypothesis that the treatment effect based
on the personalized approach is superior
to that of the standard of care.

(A31) Biomarker can be validated without
including all possible biomarker–treatment
combinations [26] as in the
non-biomarker-based arm all patients receive
only the control treatment.

(L23) Unable to inform us whether
the biomarker is predictive as these
designs are able to answer the
question about whether the
biomarker-based strategy is more
effective than standard treatment,
irrespective of the biomarker status
of the study population.
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Table 1. Cont.

Types of Biomarker-Guided
Non-Adaptive Trial Designs Utility Advantages Limitations

Also called: Marker strategy design, Biomarker-strategy
design, Strategy design, Marker-based strategy design,
Marker-based design, Random disclosure design,
Customized strategy design, Parallel controlled
pharmacogenetic study design, Marker-based strategy
design I, Biomarker-guided design, Biomarker-based
assignment of specific drug therapy design,
Marker-based strategy I design, Biomarker-strategy
design with a standard control, Marker strategy design
for prognostic biomarkers

(A32) Have the option of testing the
biomarker status of patients in the
non-biomarker-strategy arm which can aid
secondary analyses [26].

(L24) The evaluation of the true biomarker by treatment effect is not
possible as the biomarker-positive patients receive only the experimental
treatment and not the alternative treatment (control treatment).
Consequently, this design cannot detect the case in which the control
treatment might be more beneficial for the entire population.

Examples of actual trials: GILT docetaxel [15],
Randomized phase III trial conducted in Spain, dedicated
to patients with advanced Non-Small Cell Lung Cancer
(NSCLC) candidates for first-line chemotherapy
[32,64,100], Study the effect of Magnetic Resonance
Imaging (MRI) in patients with low back pain on patient
outcome and to evaluate Doppler US of the umbilical
artery in the management of women with intrauterine
growth retardation (IUGR), Randomized controlled trial
in recurrent platinum-resistant ovarian carcinoma [101]

(A33) Able to inform us whether the
biomarker is prognostic.

(L25) In case that the number of biomarker-positive patients is very small,
then the treatment received will be similar in biomarker-strategy arm and
non-biomarker strategy arm. Consequently, the trial might give little
information regarding the efficacy of the experimental treatment or it
might not be able to detect it. As a result, this type of design should be
used when there is an adequate number of biomarker-positive and
biomarker-negative patients.

(A34) Can be expanded to investigate
several biomarkers and treatments [103].
Additionally, these designs can be
attractive when evaluating multiple
biomarkers or the predictive value of
molecular profiling between several
treatment options is to be assessed [45].

(L26) Unable to compare directly experimental treatment to control
treatment as the aim is to compare not the treatments but the
biomarker-strategies.

(A35) Might be used more frequently in
the future due to the wide variety of
molecular biomarkers, complexity of gene
expression arrays, and several treatments
directed at similar targets [103].

(L27) Less efficient designs than biomarker-stratified designs [4,73] and a
poor substitute for clinical trials which aim to compare the experimental
treatment to control treatment, since it is possible for some patients in both
the biomarker-based strategy arm and non-biomarker-based strategy arm
to be assigned to the same treatment (due to the existence of
biomarker-negative patients in both strategy arms the treatment effect can
be diluted) [51]. Consequently, as a large overlap of patients receiving the
same treatment might have occurred, the comparison of the two
biomarker-strategy arms results in a hazard ratio which is forced towards
unity, i.e., no treatment effect exists as the effect of experimental versus
control treatment is diluted by the biomarker-based treatment selection.
For this reason, a large sample size is needed to detect at least a small
overall difference in outcomes between the two biomarker-strategy arms.

(L28) Should be used only if you want to evaluate a complex
biomarker-guided strategy with a variety of treatment options or
biomarker categories [73].
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Table 1. Cont.

Types of Biomarker-Guided
Non-Adaptive Trial Designs Utility Advantages Limitations

Biomarker-strategy design without biomarker assessment in the control arm
(14 papers) [9,13,17,18,20,25,36,38,61,74,101,104–106] (see Figure 13)

In situations where it is not feasible or
unethical to test the biomarker in the
entire population.

(A36) Galanis et al., 2011 [45] stated that
these designs can be attractive when
evaluating multiple biomarkers or the
predictive value of molecular profiling
between several treatment options is to
be assessed. Also, Freidlin and Korn,
2010 [73] claimed that these
biomarker-strategy designs should be
used only if researchers want to evaluate
a complex biomarker-guided strategy
with a variety of treatment options or
biomarker categories.

(L29) Criticized for their potential cost increase
due to the fact that patients without predicted
responsive biomarker are double enrolled in
the trial (biomarker-negative patients receive
control treatment in both strategy arms).

Also called: Biomarker-strategy design with standard control,
Direct-predictive biomarker-based, RCT of testing, Test-treatment, Parallel
controlled pharmacogenetic diagnostic study, Marker strategy, Marker-based
with no randomization in the non-marker-based arm, Classical, Marker-based
strategy, Marker strategy design for prognostic biomarkers

(A37) Same as (A31), (A32), (A33)

(L30) Biomarker-positive and
biomarker-negative subpopulations might be
more imbalanced as compared with the first
type of biomarker-strategy design due to the
fact that the randomization to different
treatment strategies is performed before the
evaluation of the biomarker status (balancing
the randomization is useful to ensure that all
randomized patients have tissue available).
This can happen especially when the number
of patients is very small.

Examples of actual trials: A study, which evaluated the use of immediate
computed tomography in patients with acute mild head injury [101,104]. (L31) Same as (L23), (L24), (L25), (L26), (L27)

Biomarker-strategy design with treatment randomization in the control arm
(17 papers) [15,17,26,27,32,36,45,62,64,66,74,86,92,93,106–108] (see Figure 14)

In cases where we want to know
whether the biomarker is not only
prognostic but also predictive, these
designs are preferable as compared to
the two previously mentioned
biomarker-strategy designs.

(A38) These designs have the ability to
inform researchers about the potential
superiority of the control treatment in the
whole population or among a particular
biomarker-defined subpopulation.

(L32) Generally require a larger sample size as
compared to the marker-stratified designs.

Also called: Biomarker-strategy design with a randomized control, Modified
marker-based strategy design (for predictive biomarkers), Biomarker-strategy
design with randomized control, Marker-based design with randomization in
the non-marker-based arm, Marker-based strategy design II, Marker-strategy
design, Augmented strategy design, Trial design allowing the evaluation of
both the treatment and the marker effect

(A39) Able to inform us whether the
biomarker is prognostic or predictive. (L33) Same as (L27)
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Table 1. Cont.

Types of Biomarker-Guided
Non-Adaptive Trial Designs Utility Advantages Limitations

Examples of actual trials: None identified a

(A40) Allow clarification of whether the results which
indicate efficacy of the biomarker-directed approach to
treatment are caused due to a true effect of the
biomarker status or to an improved treatment
irrespective of the biomarker status.

(A41) Same as (A36)

Reverse marker-based strategy (4 papers) [86,92,93,109] (see
Figure 15)

Enables testing the interaction
hypothesis of treatment and biomarker
in a more efficient way as compared to
the first (i.e., Biomarker-strategy design
with biomarker assessment in the control
arm) and third biomarker-strategy
subtype design (i.e., Biomarker-strategy
design with randomization in the control
arm and the marker stratified design)

(A42) Can estimate directly the marker-strategy
response rate.

(L34) It has been claimed by Baker, 2014 [93]
that other designs than the reverse
marker-based strategy are more appropriate in
order to investigate questions which include
both treatment effect of biomarker-defined
subgroups and the biomarker strategy
treatment effect. These designs should allow
the estimation of treatment effects within
biomarker-defined subgroups as well as the
estimation of the global treatment effect.

Also called: None found
(A43) Allows the estimation of the effect size of the
experimental treatment compared to the control
treatment for each biomarker-defined subset separately.

Examples of actual trials: None identified a

(A44) There is no chance that the same treatment will be
tailored to biomarker-positive patients who are
randomized either to the biomarker-based strategy arm
or the reverse marker strategy. Also, there is no
possibility of the same treatment assignment to
biomarker-negative patients who are randomly
assigned to the two biomarker-based strategy arms.

(A45) It has been demonstrated by Eng, 2014 [92] that
this new type of design is more than four times more
efficient for testing the interaction between treatment
and biomarker compared to Biomarker-strategy design
with biomarker assessment in the control arm,
Biomarker-strategy design with randomization in the
control arm and the marker stratified design.

A specific randomized phase II trial design that can
be used to guide decision making for further development
of an experimental therapy. (1 paper) [71] (see Figure 16)

Recommended when we want to
conduct a Phase II randomized trial
which allows decisions to be made about
which type of Phase III
biomarker-guided trial should be used.

(A46) Works well in providing recommendations for
phase III trial design. None found

a Although not found within the review, the design may be implemented in ongoing trials.
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Table 2. Sample size formulae for biomarker-guided clinical trial designs.

Types of Biomarker-Guided
Non-Adaptive Trial Designs Sample Size Formula Definition

Single arm designs
Standard sample size formula can be used, more information can
be found in the ‘methodology’ part of the ‘Single arm designs’
section in the main text.

Enrichment designs [55,61,65,110–112]
Online tool for sample size calculation when using either binary
or time-to-event endpoints is available on the following website:
http://brb.nci.nih.gov/brb/samplesize/td.html [113].

E
(

Di,enrichment
)
= nTλi

2(λi+ϕi)

{
1− e−(λi+ϕi )τ

(λi+ϕi)T

[
1− e−(λi+ϕi)T

]}
E
(

Di,enrichment
)

is referred to the expected number of events per treatment arm
(time-to-event outcome), i corresponds to either the experimental or the control treatment
group, 1 : 1 ratio between the two treatment arms (experimental:control) is assumed, λ
corresponds to the event hazard rate, ϕ is the loss to follow-up rate, T denotes the accrual
time, patients enter the trial according to a Poisson process with rate n per year over the
accrual period of T years, τ corresponds to the follow-up period.

Denrichment = 4
[
(zα/2+zβ)

logθ1

]2

Denrichment is referred to the required total number of events (time-to-event outcome),
1 : 1 ratio between the two treatment arms (experimental:control) is assumed, zα/2, zβ

denote the upper α/2- and upper β-points respectively of a standard normal distribution,
α and β denote the assumed type I error and type II error respectively, θ1 denotes the
assumed hazard ratio between the two treatment groups (control vs experimental) in the
biomarker-positive subset.

Nenrichment/arm = 2pQ

(
1− pQ

)[
(zα/2+zβ)
(pQ

A−pB)

]2

Nenrichment/arm is referred to the required number of patients per treatment arm (binary
outcome), 1 : 1 ratio between the two treatment arms (experimental:control) is assumed,
pQ

A and pB are the response probabilities in the experimental and control groups

respectively, pQ =
(

pQ
A + pB

)
/2.

Nenrichment/arm =
2σ2(zα/2+zβ)

2

(µA+−µB+)
2

Nenrichment/arm is referred to the required total number of patients per treatment arm
(continuous response endpoints), 1 : 1 ratio between the two treatment arms
(experimental:control) is assumed, σ2 denotes the anticipated common variance, µA+

and µB+ the mean responses for biomarker-positive patients in the experimental and
control treatment arm respectively.

Nenrichment/arm = 2σ2
(

zα/2 + zβ

)2
{λ1[(1−ω) ζ + ω]}−2

Nenrichment/arm is referred to the required total number of patients per treatment arm
(continuous response endpoints when accounting for error in the assaying of the study
population), 1 : 1 ratio between the two treatment arms (experimental:control) is
assumed, ω measures the accuracy of the assay and corresponds to the PPV (positive
predictive value of the assay, i.e., the proportion of patients who are assigned biomarker
positive status according to the assay who are truly biomarker positive), λ1 is the
treatment effect in the biomarker-positive patients and ζ = λ0/λ1 (where λ0 is the
treatment effect in the biomarker-negative patients).

http://brb.nci.nih.gov/brb/samplesize/td.html
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Table 2. Cont.

Types of Biomarker-Guided
Non-Adaptive Trial Designs Sample Size Formula Definition

Marker Stratified designs
[31,53,60,92,111,112,114]

Online tool for sample size calculation when using either binary or time-to-event
endpoints is available on the following website:
http://brb.nci.nih.gov/brb/samplesize/sdpap.html [115].

Dstrati f ied = 4 (
za1+zβ)

2

[log(θ1)]
2 + 4 (

za2+zβ)
2

[log(θ2)]
2

Dstrati f ied is referred to the required total number of events for the achievement of
sufficient power in each biomarker-defined subgroup separately (time-to-event
endpoint), 1 : 1 ratio between the two treatment arms (experimental:control) is
assumed, θ2 corresponds to the hazard ratio of biomarker-negative subgroup,
a1 = a2 = a/2.

Dstrati f ied =
4(za/2+zβ)

2

[k log(θ1)+(1−k) log(θ2)]
2

Dstrati f ied is referred to the required total number of events for the achievement of
sufficient power in the overall population (time-to-event endpoint), k is the
proportion biomarker-positive patients, 1 : 1 ratio between the two treatment arms
(experimental:control) is assumed.

Nstrati f ied =
4(za/2+zβ)

2

{[kPr(+)(event) log(θ1)+(1−k)Pr(−)(event) log(θ2)]/
√

kPr(+)(event)+(1−k)Pr(−)(event)}2

Nstrati f ied is referred to the required total number of patients for the achievement of
sufficient power in the overall population (time-to-event endpoint), 1 : 1 ratio
between the two treatment arms (experimental:control) is assumed, Pr(+)(event),
Pr(−)(event) are the probabilities of an event in biomarker-positive subset and
biomarker-negative subset respectively.

Dstrati f ied
Denrichment

=
[log(θ1)]

2

[k log(θ1)+(1−k) log(θ2)]
2 = 1[

k+(1−k)
log(θ2)
log(θ1)

]2
Dstrati f ied
Denrichment

is referred to the ratio of the required number of events between marker
stratified and enrichment design (time-to-event endpoint).

Nstrati f ied
Nenrichment

≈ 1[
k+(1−k) δ−

δ+

]2

Nstrati f ied
Nenrichment

is referred to the ratio of the required number of patients between marker
stratified and enrichment design (binary outcome), δ−, δ+, correspond to the
treatment effectiveness in biomarker-negative and biomarker-positive subgroup
respectively.

Nstrati f ied = 2
(

za + z1−β

)2
{

rA+(1−rA+)+rB+(1−rB+)

(βA+β I )
2 +

rA−(1−rA−)+rB−(1−rB−)

(βA)
2

}
Nstrati f ied is referred to the required total number of patients (binary outcome), β0
denotes a baseline effect, βA denotes the added effect of the experimental treatment,
β+ denotes the biomarker-positive effect and β I denotes the nonadditive effect, α
corresponds to the target level, 1− β corresponds to the power, rA+, rB+ are the
assumed response rates of biomarker-positive patients receiving the experimental
and the control treatment respectively, rA−, rB− are the assumed response rates of
biomarker-negative patients receiving the experimental and the control treatment
respectively.

http://brb.nci.nih.gov/brb/samplesize/sdpap.html
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Table 2. Cont.

Types of Biomarker-Guided
Non-Adaptive Trial Designs Sample Size Formula Definition

Sequential Subgroup-Specific design [57] N+
sequential subgroup−speci f ic = Nenrichment

N+
sequential subgroup−speci f ic is referred to the required number of biomarker-positive

patients (binary outcome), Nenrichment is the required number of biomarker-positive
patients (binary outcome) in the enrichment design.

Nsequential subgroup−speci f ic =
Nenrichment

k

Nsequential subgroup−speci f ic is referred to the required total number of patients (binary
outcome), Nenrichment is the required number of biomarker-positive patients (binary
outcome) in the enrichment design.

N−sequential subgroup−speci f ic =
(1−k)Nenrichment

k

N−sequential subgroup−speci f ic is referred to the required number of biomarker-negative
patients (binary outcome), Nenrichment is the required number of biomarker-positive
patients (binary outcome) in the enrichment design.

D+
sequential subgroup−speci f ic = Denrichment

D+
sequential subgroup−speci f ic is referred to the required number of events for

biomarker-positive patients (time-to-event outcome), Denrichment is the required
number of events for biomarker-positive patients (time-to-event outcome).

D−sequential subgroup−speci f ic = Denrichment

(
λ−
λ+

)(
1−k

k

) D−sequential subgroup−speci f ic is referred to the required number of events for
biomarker-negative patients (time-to-event outcome), Denrichment is the required
number of events for biomarker-positive patients (time-to-event outcome), λ−, λ+,
are the event rates in biomarker-negative and biomarker-positive control
subgroups.

Parallel Subgroup-Specific design

Same formula proposed for marker stratified designs could be
considered to achieve sufficient power in each biomarker-defined
subgroup simultaneously. However, in order to control the overall type I
error rate of the design at the overall level of significance α it is required
to allocate this overall α between the test for the biomarker-positive
subgroup and the test for the biomarker-negative. Consequently, for
biomarker-positive subgroup the reduced significance level a1 = a− a2
can be used whereas the reduced significance level a2 = a− a1 can be
used for biomarker-negative subgroup.

Biomarker-positive and overall strategies
with parallel assessment

If there is significant confidence that the biomarker is predictive, the
sample size estimation is aimed at having a sufficient number of
biomarker-positive individuals to enable the treatment effect in the
biomarker positive subgroup to be detected. Standard formula for
sample size calculation of biomarker-positive subgroup proposed for the
enrichment designs could be considered by using the reduced
significance level a1 = a− a2. On the other hand, if there is no
confidence in the predictive value of the biomarker, the sample size
estimation is aimed at having a sufficient number of patients to detect a
treatment effect in the overall study population; consequently, for the
sample size calculation, the same formula proposed for marker stratified
designs aiming to achieve sufficient power in the overall population
could be applied by using the reduced significance level a2 = a− a1.
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Table 2. Cont.

Types of Biomarker-Guided
Non-Adaptive Trial Designs Sample Size Formula Definition

Biomarker-positive and overall strategies with
sequential assessment

At the first stage, the standard formula for a traditional randomized trial
which is the same with the formula proposed for enrichment designs can
be applied for the biomarker-positive subgroup. At the second stage, the
sample size formula proposed for marker stratified designs aiming to
yield appropriate power for the entire population could be considered.

Biomarker-positive and overall strategies with
fall-back analysis

At the first stage, the sample size formula proposed for marker stratified
designs aiming to yield appropriate power for the entire population
could be considered by using the reduced significance level a1 = a− a2.
At the second stage, the formula proposed for enrichment designs could
be applied for the biomarker-positive subgroup by using the reduced
significance level a2 = a− a1.

Marker Sequential test design (MaST)

A standard sample size calculation (i.e., the same sample size calculation
as for the enrichment designs) can be applied for the biomarker-positive
subpopulation. However, in order to have sufficient number of
biomarker-positive patients to detect treatment effectiveness in that
particular biomarker-defined subset and consequently to reach the
desired power, the sample size should be calculated by using the
reduced significance level a1 [0, a] instead of the global significance level
α which is used in the sample size formulae of the enrichment designs.
The same formula could be considered for the sample size calculation of
the biomarker-negative subgroup; however, the corresponding hazard
ratio of that subgroup and the global significance level α should be used.
For the sample size calculation of the entire population, the same
formula proposed for marker stratified designs aiming to achieve
sufficient power in the overall population could be considered by using
the reduced significance level a2 = a− a1.

Biomarker-strategy, design with biomarker
assessment in the control arm [26,61,92] Dstrategy I = 4

[
(zα/2+zβ)

klogθ1

]2 Dstrategy I is referred to the required total number of events (time-to-event outcome),
1 : 1 ratio between the two treatment arms (experimental:control) is assumed.

Nstrategy I =
2(z1−α/2+z1−β)

2
(τ2

m+τ2
n)

(vm−vn)
2

Nstrategy I is referred to the required total sample size (continuous clinical
endpoints), 1 : 1 ratio between the two treatment arms (experimental:control) is
assumed, z1−α/2, z1−β denote the lower 1− α/2- and lower 1− β-points
respectively of a standard normal distribution, vm and vn denote the mean response
from the biomarker-based strategy arm and the non-biomarker-based strategy arm
respectively, and τ2

m, τ2
n denote the variance of response for the biomarker-based

strategy arm and non-biomarker-based strategy arm respectively.

Nstrategy I/arm =
(za+z1−β)

2
[g1(1−g1)+g2(1−g2)]

∆2
2

Nstrategy I/arm is referred to the required total number of patients per arm (binary
outcome), g1 is the expected response rate in the biomarker-based strategy arm, g2
is the expected response rate in the non biomarker-based strategy arm,
∆2 = g1 − g2, g1, g2 can be found by calculating the formulae krA+ + (1− k)rB−
and rB respectively, rB denotes the marginal effect of treatment B (control
treatment).
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Table 2. Cont.

Types of Biomarker-Guided
Non-Adaptive Trial Designs Sample Size Formula Definition

Biomarker-strategy design without biomarker
assessment in the control arm

Same formulae as for the ‘Biomarker-strategy design with biomarker
assessment in the control arm’ can be considered.

Biomarker-strategy design with treatment
randomization in the control arm [26,31,92]

Dstrategy I I I =
4(za/2+zβ)

2{
log
[

2kmB++2(1−k)mA−
k(mA++mB+)+(1−k)(mA−+mB−)

]}2

Dstrategy I I I is referred to the required total number of events (time-to-event
outcome), 1 : 1 ratio between the two treatment arms (experimental:control) is
assumed, mA+, mA−, mB+, mB−, denote the median survival for
biomarker-positive and biomarker-negative patients receiving control and
experimental treatments respectively.

Nstrategy I I I =
2(z1−α/2+z1−β)

2
(τ2

m+τ2
nr)

(vm−vnr)
2

Nstrategy I I I is referred to the required total sample size (continuous clinical
endpoints), 1 : 1 ratio between the two treatment arms (experimental:control) is
assumed, vnr denotes the mean response from the non-biomarker-based strategy
arm, τ2

nr denotes the variance of response for the non-biomarker-based strategy arm
respectively.

Nstrategy I I I/arm =
(za+z1−β)

2
[g1(1−g1)+g3(1−g3)]

∆2
3

Nstrategy I I I/arm is referred to the required total number of patients per arm (binary
outcome), g3 is the expected response rate in the non biomarker-based strategy arm
and ∆3 = g1 − g3, the expected response rate g3 can be found by calculating the
formula rA/2 + rB/2, rA denotes the marginal effect of treatment A (experimental
treatment).

Reverse marker-based strategy [92] Nstrategy IV/arm =
(za+z1−β)

2
[g1(1−g1)+g4(1−g4)]

∆2
4

Nstrategy IV/arm is referred to the required total number of patients per arm (binary
outcome), g4 is the expected response rate in the reverse biomarker-based strategy
arm and ∆4 = g1 − g4, the expected response rate g4 can be found by calculating
the formula krB+ + (1− k)rA−, rB+, rA− are the assumed response rates of
biomarker-positive patients receiving the control treatment and biomarker-negative
patients receiving the experimental treatment.

Randomized Phase II trial design
with biomarkers [71]

Online tool for sample size calculation is available on the following
website: http://brb.nci.nih.gov/Data/FreidlinB/RP2BM [116].

http://brb.nci.nih.gov/Data/FreidlinB/RP2BM
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2.1. Single Arm Designs

Single arm designs were referred to in seven papers (7%). In the context of biomarkers, these
designs (Phase II designs) include the whole study population to which the same experimental
treatment is prescribed, without taking into consideration biomarker status.

Design: In this design all patients are prescribed the experimental treatment and there is no
comparison with a control treatment. These trial designs aid in the identification of association
between biomarker status and the efficacy or safety of the experimental treatment. An illustration of
this approach is shown in Figure 2.
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Figure 2. Single arm designs.

Utility: These designs can be useful for the initial identification and/or validation of a biomarker
and their aim is not to estimate the treatment effect in a definitive way but to identify whether the
biomarker is sufficiently promising to proceed to a definitive Phase III biomarker-guided randomized
controlled trial.

Methodology: In single arm designs first we assess the biomarker status of patients and then as
all patients will be treated the same way we could compare the outcome of the biomarker-positive
subgroup with the outcome of biomarker-negative subgroup. According to Tajik et al., 2012 [117],
in terms of the required sample size, a standard formula can be used, however one should take
into consideration the multiple testing issue that arise due to the exploration of several prognostic
biomarkers (e.g., Bonferroni adjustment or normal exact method to protect against type I error a for
multiple tests are often considered [118]). Further information can be found in the paper of Zaslavasky
and Scott, 2012 [118] who studied the sample size estimation in single arm clinical trials with multiple
testing under frequentist and Bayesian framework.

Statistical considerations: The single arm approach can be considered as a simple statistical
design as there is no need for randomization. However one limitation of this strategy is that there is
no distinction between prognostic and predictive biomarkers i.e., as patients are not randomized to
experimental and control treatment groups, it is not possible to determine whether an observed effect
is attributable to the natural disease progression or to the treatment. Consequently, this study designs
are unable to show the benefit of a biomarker with regard to the best choice of treatment.

2.2. Enrichment Designs

Enrichment designs are described in 71 papers (71%), either in Phase II or Phase III clinical
trials, and involve randomizing only the biomarker-positive patients and comparing the experimental
treatment versus the standard treatment only in this particular biomarker-defined subgroup.

Design: Figure 3 graphically represents the trial design. First, the entire population is screened in
order to identify the biomarker status of each patient. Next, the random assignment of individuals
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to different treatment arms is restricted only to the biomarker-positive subgroup. More precisely,
biomarker-negative patients are excluded from the study and consequently, the assessment of the
effectiveness of the experimental treatment is limited to the biomarker-positive subgroup. Thus, other
patients apart from the biomarker-positive subpopulation can receive only the standard treatment
(i.e., control treatment), but they are not included in the investigation during the trial design. The
biomarker in this design is referred to as either the ‘selection’ or ‘enrichment’ biomarker.
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Utility: Enrichment designs are useful for clinical trials aiming to test the treatment effect in
a specific biomarker-defined subpopulation where there is evidence to suggest that effectiveness
is limited to those within that subgroup, but the candidate biomarker still requires prospective
validation. This design is recommended when both the cut-off point for determination of biomarker
status of patients and the analytical validity of the biomarker have been well established. A rapid
turnaround time for assessing the biomarker status of a patient is also needed to avoid any delay
in treatment initiation. This strategy is particularly useful where it is unethical to randomize the
biomarker-negative population into different treatment arms, for example where there is prior evidence
that the experimental treatment is not beneficial for biomarker-negative individuals, or is likely to
cause them harm. However, when it remains unclear whether or not biomarker-negative individuals
will benefit from the novel treatment, the enrichment design is not appropriate and alternative designs,
which also assess effectiveness in the biomarker-negative individuals, should be considered (e.g.,
randomize-all designs).

Methodology: An online tool has been developed by Zhao and Simon [19,28,53,57,60] that
allows sample size planning for the enrichment design both for binary and time-to-event (survival)
outcomes, and is available at http://brb.nci.nih.gov/brb/samplesize/td.html [113]. For the purpose
of estimating the sample size in the case of a survival outcome, data are simulated based on a marker
stratified design (see next section for further information) in which both biomarker-positive and
biomarker-negative subgroups are investigated in the study and formulae for the enrichment design
described in the paper of Rubinstein et al., 1981 [110] are used. Furthermore, an exponential distribution
of survival for the experimental and control treatment groups within both the biomarker-positive
and biomarker-negative subpopulations is assumed. More precisely, Rubinstein et al.provide the
formula of the expected number of events per treatment group allowing to include exponential loss to
follow-up given the following assumptions: (i) patients enter the trial according to a Poisson process
and patient entry times will be independent and identically distributed uniformly over [0, T] where T
denotes the accrual time. Consequently, given the total number of patients N, the times from entry to
the end of the trial will be independent and identically distributed uniformly over [τ, T + τ], where
τ denotes the follow-up time and T + τ the total duration of the study and (ii) 1:1 randomization

http://brb.nci.nih.gov/brb/samplesize/td.html
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between experimental and control treatment group is considered. The expected number of events per
treatment arm according to Rubinstein et al. is given by

E(Di,enrichment) =
nTλi

2(λi + ϕi)

{
1− e−(λi+ϕi)t

(λi + ϕi)T
[1− e−(λi+ϕi)T ]

}
, (1)

where i corresponds to either the experimental or the control treatment group, λ corresponds to the
event hazard rate, ϕ is the loss to follow-up rate and patients enter the trial according to a Poisson
process with rate n per year over the accrual period of T years. However, the required total number of
events in the two treatment groups (experimental and control treatment group) is given by

Denrichment = 4

[(
zα/2 + zβ

)
log θ1

]2

, (2)

where θ1 denotes the assumed hazard ratio between the two treatment groups (control vs. experimental)
in the biomarker-positive subset and the constants zα/2, zβ denote the upper α/2- and upper β-points
respectively of a standard normal distribution where α and β denote the assumed type I error and
type II error respectively. Freidlin et al., 2010 [61] provided the aforementioned formula assuming that
all random assignments use 1:1 randomization. As in a traditional randomized controlled trial, if the
randomization is not equal, i.e., the ratio of allocation to treatment and control is R : 1 rather than
1:1, the aforementioned formula for the required total number of events Denrichment which assumes
1:1 randomization can be multiplied by (R + 1)2/4R [119]. Consequently, the “4” in the formula of
Denrichment becomes (R + 1)2/R and the corresponding formula for the total number of events becomes

Denrichment =
(R + 1)2

R

[(
zα/2 + zβ

)
log θ1

]2

. (3)

In a survival study, the calculation of the total sample size in terms of number of patients required
in the two treatment groups (experimental and control treatment group) to be enrolled in order to
yield the aforementioned total number of events depends on the probability of event over the duration
of the study [120]. Consequently, the actual number of patients required in a survival study can be
given by

Nenrichment =
Denrichment
Pr(event)

, (4)

where Pr(event) is the probability of observing an event in the two treatment groups in the study and
Denrichment is the required total number of events. Pr(event) in a survival study can be given by

Pr(event) = πAPrA(event) + πBPrB(event), (5)

where
πA =

R
R + 1

and πB =
1

R + 1
, (6)

are the proportions of patients who are randomized to experimental and control treatment group
respectively and PrA(event) and PrB(event) are the probability of events in experimental and control
arm respectively [121]. Freedman, 1982 [122] provided an approximation of the probability of event
for each treatment group assuming equal follow-up for all patients and thus simultaneous accrual for
all patients whereas Schoenfeld, 1983 [123] provided a more exact approximation of the expected event
rate as compared to Freedman’s approximation. More precisely, according to Freedman’s idea,

Pri(event) ≈ 1− Si(τ) (7)
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and according to Schoenfeld’s idea,

Pri(event) ≈ 1− {Si(τ) + 4Si(T/2 + τ) + Si(T + τ)}/6, (8)

where i denotes the corresponding treatment group (either experimental or control), τ denotes the
follow-up time and T the accrual period, T/2 + τ denotes the median follow-up time and T + τ

denotes the total duration of the study. Another approximation of the probability of event could be

Pri(event) ≈ 1− Si(T/2 + τ) (9)

considering that the survival probability can be approximated as the probability that a patient survives
past the median follow-up time (i.e., T/2 + τ) [121].

The web-based interface is composed of two options. If the first option is chosen, the treatment
effects for assay-negative and assay-positive patients must be specified in order to evaluate the relative
efficiency of enrichment and untargeted design, i.e., marker stratified design (see next section for
further information) in which apart from the biomarker-positive patients, biomarker-negative patients
are also included; if the second option is chosen, it is possible to account for error in the assaying of the
study population, thus, both the treatment effects for target-negative and target-positive patients must
be specified as well as the assay’s sensitivity and specificity.

The sample size calculation using binary data is based on the formulas described by Simon and
Maitournam [65,111,112] and again the two options offered when assuming a time-to-event outcome
are available, i.e., options both with and without accounting for error in assaying the study population
the biomarker status. When binary outcome is assumed and the allocation ratio is 1:1, the sample size
of randomized patients required in each treatment arm (experimental and control) can be given as

Nenrichment/arm = 2pQ

(
1− pQ

)(zα/2 + zβ

)(
pQ

A − pB

)
2

, (10)

where pQ
A and pB are the response probabilities in the experimental and control groups respectively,

pQ =
pQ

A + pB

2
(11)

and zα/2, zβ denote the upper α/2- and upper β-points respectively of a standard normal distribution
where α and β denote the assumed type I error and type II error respectively. The response probability
in the experimental group can be found by

pQ
A = pB + δ+, (12)

where δ+ denotes the improvement in response probability for biomarker-positive patients.
Consequently, the total sample size of randomized patients will be

Nenrichment = 2Nenrichment/arm (13)

For continuous response endpoints the aforementioned formula Nenrichment/arm changes to

Nenrichment/arm =
2σ2(zα/2 + zβ

)2

(µA+ − µB+)
2 , (14)
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where σ2 denotes the anticipated common variance, µA+ and µB+ the mean responses for
biomarker-positive patients in the experimental and control treatment arm respectively. These formulae
are the standard formulae used for a standard randomized trial.

In addition, if we want to account for error in the assaying of the study population, the number
of patients to be randomized in each arm of the enrichment trial when using continuous response
endpoints can be given by the following formula

Nenrichment/arm = 2σ2(zα/2 + zβ

)2{λ1[(1−ω) ζ + ω]}−2 (15)

where ω measures the accuracy of the assay and corresponds to the PPV (positive predictive value of
the assay, i.e., the proportion of patients who are assigned the biomarker-positive status according
to the assay who are truly biomarker positive), λ1 is the treatment effect in the biomarker-positive
patients and ζ = λ0/λ1 (where λ0 is the treatment effect in the biomarker-negative patients) [55].

Simon and Maitournam [65,111,112] considered that apart from the number of patients to be
randomized, the number of patients needed to be screened should be also reported. Thus, they stated
that the expected number of patients to be screened in the enrichment design is Nenrichment/k where k
corresponds to the proportion of biomarker-positive patients. The online tool developed by Zhao and
Simon provides both the number of patients to be screened and to be randomized.

Statistical considerations: Simon and Maitournam [65,111,112] undertook a simulation study,
assuming a binary outcome, to compare power of the enrichment design with an untargeted design
(i.e., marker stratified design, see next section for further information) in which all patients are
randomized without measuring the biomarker. They concluded that the efficiency of the enrichment
design relies both on the prevalence of the biomarker-positive patients and on the accuracy of the assay.
Whilst in the situation where the assay cut-off point is not well established, there is a risk of severely
compromising the power of the trial when using an enrichment design, if fewer than half of the entire
study population are biomarker-positive and there is robust evidence that the experimental treatment
does not benefit the biomarker-negative patients, the required number of randomized patients to
allow sufficient power to detect a significant treatment effect is much smaller in the enrichment design
than in the untargeted trial design. However, in the latter situation a greater number of individuals
would need to be screened when using the enrichment design, and accruing the required number of
biomarker positive patients could take a longer period of time. More precisely, Simon and Maitournam
showed that an approximation of the ratio of the required number of patients to be randomized for
the untargeted trial design as compared with the required number of patients randomized in the
enrichment design when using binary outcome can be given by the following equation

Nstrati f ied

Nenrichment
≈ 1[

k + (1− k) δ−
δ+

]2 =

[
δ+

kδ+ + (1− k)δ−

]2
, (16)

where k denotes the proportion of biomarker-positive patients, δ− and δ+ correspond to the treatment
effectiveness (i.e., improvement in response probability) in biomarker-negative and biomarker-positive
subgroups respectively. Consequently, in the situation where it is known that the novel treatment
does not benefit the biomarker-negative patients at all, the ratio of the number of patients needed for
randomization in the untargeted design relative to the number of patients required for the enrichment
design is approximately

Nstrati f ied

Nenrichment
≈ 1

k2 , (17)

as δ− = 0. For example, if half of patients are biomarker-positive (k = 0.5) then a quarter of those
needed to be randomized to the untargeted design trial would need to be randomized to the enrichment
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design trial. In cases where the novel treatment is half as effective in biomarker-negative patients as in
the biomarker-positive patients (i.e., δ−/δ+ = 1/2), the aforementioned ratio changes to

Nstrati f ied

Nenrichment
≈ 4

(k + 1)2 . (18)

2.3. Randomize-All Designs

Randomize-all designs (also named as all-comers/untargeted/unselected/non-targeted/simple
randomization designs) allow the inclusion of the entire population as eligible for randomization.
Consequently, the whole study population who meet the eligibility criteria, is randomly assigned to the
different treatment groups (experimental and control treatment group) regardless of biomarker status.
This design allows assessment of treatment benefit for the entire population irrespective of biomarker
status whilst at the same time allowing for treatment benefit to be tested in the two biomarker-defined
subgroups separately.

Generally, they are useful when we are uncertain about the benefit of the experimental treatment
in the overall population versus the biomarker-defined subgroups, the targeted treatment may benefit
both biomarker-positive and biomarker-negative patients, the goal is to test the predictive ability of a
biomarker, the assay reproducibility and accuracy is questionable, the turnaround time for biomarker
assessment is long and the biomarker prevalence is high.

Randomize-all designs are composed of two main subtypes: the Marker-stratified designs and
the Hybrid designs, which are discussed separately below.

2.3.1. Marker Stratified Designs

These designs (prospective validation Phase III trials) were identified in 45 papers (45%) of
our review.

Design: An illustration of the design is shown in Figure 4. Individuals are stratified into
biomarker-positive and biomarker-negative subgroups according to the results of the biomarker
assessment and then they are randomized either to the experimental or to the control treatment
group. The biomarker status in the Marker-Stratified design acts as a stratification factor where
stratification is used to ensure balance across treatment groups with regard to biomarkers. Only
individuals with valid biomarker results enter the trial. Consequently, we have four treatment groups,
i.e., biomarker-positive patients assigned to either the experimental treatment arm or the control
treatment arm and biomarker-negative patients assigned to either the experimental treatment arm
or the control treatment arm. Thus, we can assess the relationship between treatment effect and
biomarker status.
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Utility: When there is enough evidence that the experimental treatment is more effective in the
positive biomarker-defined subgroup than in the negative biomarker-defined subgroup but there is
no sufficient compelling data that the experimental treatment is of no benefit in biomarker-negative
individuals, the marker stratified design can be used.

Methodology: Biomarker status is used to stratify the randomization, rather than to restrict
eligibility. Marker-stratified designs can be conducted using two different testing plans; the
so-called marker-by-treatment interaction with separate tests and marker-by-treatment interaction
with interaction test. Both of these approaches involve conducting two independent clinical trials.

Marker-by-treatment interaction using separate test was referred to in 15 papers (15%) of our
review [4,11,12,15,29,42,45,53,57,60,80,82,84,87,88] and is also referred to as ‘separate randomization
design’ and ‘separate by treatment interaction design’. This analysis plan is based on separate
superiority tests in each biomarker-defined subgroup in order to detect the treatment efficacy in each
subset. Two examples of actual trials which use this testing plan are the following: National Cancer
Institute (NCI)-sponsored North Central Cancer Treatment Group Study N0975 [29] and the MARVEL
trial [29].

The ‘marker-by-treatment interaction design using separate tests’ is a testing plan which
determines whether the novel treatment is superior to the control treatment separately within each
biomarker-defined subgroup. Consequently, the hypothesis to be tested, the calculation of the
number of patients required for the trial, the estimation of the statistical power of the design and
the randomization procedure of patients to different treatments are independent among the different
subgroups [12]. The sample size of the trial should be calculated in such a way so as to yield adequate
statistical power when testing whether the experimental treatment is superior to the control treatment
separately in the two biomarker-defined subgroups. Hence, this approach is not widely used due to the
required large sample size as essentially two separate trials are being conducted. Another limitation of
this approach is that when multiple biomarker-defined subsets and treatments are to be investigated,
it is difficult to implement in practice.

The ‘marker-by-treatment interaction using interaction test’ uses a test for interaction between
the biomarker status and treatment assignment and was identified in 12 papers (12%) of our
review [4,12,15,42,53,57,60,82,84,87,88,94]. A marker stratified design which uses this testing plan
is also referred to in the literature as an ‘interaction design’ or ‘genomic signature stratified design’.
First, a formal statistical test for interaction between biomarker status and treatment assignment is
undertaken. If this interaction is not significant, then the study is continued by testing the different
treatments overall at a two-sided significance level of 0.05, otherwise, the treatments are compared
within each biomarker-defined subpopulation at a two-sided 0.05 significance level (i.e., the same
as in the marker-by-treatment interaction design using separate tests). The sample size for this
second testing plan is calculated with reference to the treatment effect in the entire study population.
Therefore, it might not provide sufficient power for detecting the treatment effect in each biomarker
defined-subset individually. More precisely, if the sample size is calculated for the overall analysis and
the proportion of the biomarker-defined subpopulation which responds to the novel treatment is very
small, the statistical power for the subgroup analysis may be inadequate. In addition, when several
biomarker-defined subpopulations and treatments are to be investigated, this strategy is not easy to
be implemented.

For the case of binary outcomes, Eng, 2014 [92] provided the formula for the required sample size
to power the biomarker-positive and biomarker-negative patients separately. It is assumed that Y is a
binary variable which corresponds to a patient’s response to their randomly tailored treatment and
P(Y|Trt = i, M = j) = rij where i corresponds to either the experimental or control treatment and j
corresponds to either the biomarker-positive patients or the biomarker-negative patients. Hence,

rij = β0 + βA I(Trt = A) + β+ I
(

M = M+
)
+ β I I

(
Trt = A, M = M+

)
, (19)
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where β0 denotes a baseline effect, βA denotes the added effect of the experimental treatment, β+

denotes the biomarker-positive effect and β I denotes the nonadditive effect. Consequently, the
proposed formula for the required sample size can be given by

Nstrati f ied = 2
(
za + z1−β

)2
{

rA+(1− rA+) + rB+(1− rB+)

(βA + β I)
2 +

rA−(1− rA−) + rB−(1− rB−)

(βA)
2

}
, (20)

where α correspond to the target level, 1− β corresponds to the power. Also, rA+, rB+ are the assumed
response rates of biomarker-positive patients receiving the experimental and the control treatment
respectively. Additionally, rA−, rB− are the assumed response rates of biomarker-negative patients
receiving the experimental and the control treatment respectively.

Mandrekar and Sargent, 2009 [31] provide a formula to calculate the required number of events
when the trial has a survival outcome with 1:1 randomization to treatment arms, i.e.,

Dstrati f ied =
4
(
za/2 + zβ

)2[
log
(

mA+
mB+

)]2 +
4
(
za/2 + zβ

)2[
log
(

mA−
mB−

)]2 , (21)

where mA+, mA−, mB+, mB−, indicate the median overall survival for biomarker-positive and
biomarker-negative patients receiving control and experimental treatment, respectively and

θ1 =
mA+

mB+
= HRbiom+ , (22)

θ2 =
mA−
mB−

= HRbiom− , (23)

correspond to the hazard ratios of biomarker-positive and biomarker-negative subgroups and zα/2, zβ

denote the upper α/2- and upper β-points respectively of a standard normal distribution where α and
β denote the assumed type I error and type II error respectively. More precisely, the total number of
events is the sum of the required number of events for the biomarker-negative and biomarker-positive
subpopulation. Freidlin et al., 2010 [61] stated that the required number of events in order to compare
the experimental to the control treatment among the biomarker-positive patients for detecting a given
effect size in this biomarker-positive subpopulation is identical to the number of events needed by an
enrichment design (i.e., Denrichment).

Another potential formula for the required total number of events when 1:1 randomization to
treatment arms is assumed is given by

Dstrati f ied =
4
(
za/2 + zβ

)2

[k log(θ1) + (1− k) log(θ2)]
2 . (24)

Although the formula proposed by Mandrekar and Sargent, 2009 [31] achieves a specific power
(1− β) for each biomarker-defined subgroup separately, the aforementioned formula proposed in the
book of Harrington, 2012 [114] aims to reach a power (1− β) for the overall population. According to
Harrington, 2012 the required total number of patients to be entered to a stratified trial can be given by

Nstrati f ied =
4
(
za/2 + zβ

)2{
[kPr(+)(event) log(θ1)+(1−k)Pr(−)(event) log(θ2)]√

kPr(+)(event)+(1−k)Pr(−)(event)

} , (25)

where Pr(+)(event), Pr(−)(event) are the probability of an event in biomarker-positive subset and
biomarker-negative subset respectively. If we divide the required total number of events for the



J. Pers. Med. 2017, 7, 1 26 of 52

enrichment design by the aforementioned formula for the required total number of events for the
stratified design, we can get the following approximation of the ratio

Dstrati f ied

Denrichment
=

[log(θ1)]
2

[k log(θ1) + (1− k) log(θ2)]
2 =

1[
k + (1− k) log(θ2)

log(θ1)

]2 . (26)

Further, Zhao and Simon [19,28,53,57,60] have developed an online tool for the calculation of
sample size for biomarker stratified randomized designs with binary or time-to-event endpoints which
is available online at the following web site http://brb.nci.nih.gov/brb/samplesize/sdpap.html [115].
More precisely, the sample size for both binary and time-to-event endpoints can be performed with
three different analysis plans; A, B and C. Before choosing one of these analysis plans in the web
site, for binary endpoints we need to specify the probability of treatment response in the control arm
as well as the proportion of biomarker-positive patients. For survival endpoints, the hazard ratio
of biomarker-positive patients versus the biomarker-negative control patients which corresponds to
the hazard ratio of prognostic effect as well as the proportion of biomarker-positive patients must
be specified.

Analysis plan A is performed when there is confidence that an overall treatment effect exists.
It determines the sample size on the basis of first of all comparing the experimental treatment to
the control treatment in the entire randomized population at a reduced two-sided significance level
a < 0.05. If the overall test is not significant, then the experimental treatment is compared to the
control treatment in the biomarker-positive patients using the type I error a = 0.05. Analysis Plan A is
similar to the ‘Biomarker-positive and overall strategies design’ with fall-back analysis described later
in this paper; the difference lies in this in terms of the significance levels they have used. In order for
the sample size to be estimated, the anticipated overall effect estimate, reduced two-sided significance
level and power for the overall test need to be specified.

Analysis plan B is performed when there is confidence that there is a treatment effect in the
biomarker-positive subpopulation. It determines the sample size on the basis of first of all comparing
the experimental treatment to the control treatment in the biomarker-positive subgroup at a two-sided
significance level of a = 0.05 level. If the treatment effect is found to be significant at this 0.05 level,
then treatment effect is evaluated in the biomarker-negative subgroup again at a two-sided significance
level of 0.05 level. This analysis plan is identical to the ‘Sequential subgroup specific design’ described
later in this paper. In order for the sample size to be estimated, apart from the fixed significance level
set to 0.05, the anticipated effect estimate in the biomarker-positive subpopulation and power need to
be specified.

Analysis plan C first tests whether there is a statistically significant interaction between treatment
and biomarker [60] at a significance level a ≤ 0.05. If the interaction is not significant, then the
treatments are compared in the overall study population at a two-sided significance level 0.05.
Otherwise, the treatments are compared within the two biomarker subgroups separately at a two-sided
0.05 significance level for each subgroup. Analysis Plan C follows either the ‘marker-by-treatment
interaction process with interaction or the separate test process’ described above. In order for the
sample size to be estimated, the anticipated treatment effect in the overall study population, the
one-sided significance level for interaction test and the power for testing the treatment effect in the
overall population need to be specified.

In marker stratified designs, three designs can be included which differ in terms of their statistical
testing strategies, i.e., (i) Subgroup-specific designs (i.e., sequential subgroup-specific design, parallel
subgroup-specific design); (ii) Biomarker-positive and overall strategies (i.e., biomarker-positive and
overall strategies with parallel assessment, biomarker-positive and overall strategies with sequential
assessment, biomarker-positive and overall strategies with fall-back analysis); (iii) Marker sequential
test design (MaST) and they are discussed in the following sections.

http://brb.nci.nih.gov/brb/samplesize/sdpap.html
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Statistical considerations: Despite the fact that the marker stratified designs allow testing the
treatment effect not only in the entire population but also in each biomarker-defined subpopulation,
they might not be feasible when the prevalence of biomarker is low. Another limitation of such designs
is that they might require a large sample size where several treatments and biomarkers are investigated
in the study.

Subgroup-Specific designs: This strategy is an approach to analyze a biomarker-stratified
trial. It is composed of two types; ‘Sequential Subgroup-Specific design’ and ‘Parallel Subgroup
Specific design’. Both biomarker-positive and biomarker-negative subgroups can be tested in
a sequential or in a parallel way. With the parallel way, we can assess simultaneously both
biomarker-positive and biomarker-negative patients, whereas, with the sequential way we perform
first the assessment of biomarker-positive patients and if the result is positive then we continue with
the biomarker-negative patients.

Sequential Subgroup-Specific design: This approach was referred to in 11 papers (11%) of our
review. Figure 5 graphically represents this approach.J. Pers. Med. 2017, 7, x FOR PEER REVIEW  29 of 53 
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Design: The sequential testing procedure uses the assumption that it is unlikely that the
new treatment will be effective in the biomarker-negative patients unless it is effective in the
biomarker-positive patients. First treatment effect is tested in the biomarker-positive subpopulation
using the overall two-sided significance level α = 0.05 (Type I error); if this test is significant then
treatment effect is tested in the biomarker-negative subgroup using the same level of significance α.

Utility: Its use is recommended when there is compelling evidence that biomarker-positive
individuals benefit more from the experimental treatment than the biomarker-negative patients.
More precisely, it is appropriate when it is not expected for the novel treatment to be effective in
biomarker-negative patients unless it is beneficial for the biomarker-positive patients.
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Methodology: As this subgroup-specific design follows a sequential assessment and thus the
design is composed of two stages, the sample size calculation is also staged. For binary outcome the
required number of biomarker-positive patients is the same as for the enrichment design, i.e.,

N+
Sequential subgroup−speci f ic = Nenrichment (27)

As Simon, 2008 [60] stated, the total number of patients will be approximately

NSequential subgroup−speci f ic =
Nenrichment

k
(28)

where k is the proportion of biomarker-positive patients and the number of biomarker-negative patients
will be approximately

N−Sequential subgroup−speci f ic =
(1− k)Nenrichment

k
. (29)

For the conduct of this design, it is important to ensure that there is also an adequate number of
biomarker-negative patients for analysis purposes. For time-to-event outcomes, the required number
of events for biomarker-positive patients is the same with the required number of events in the
enrichment design, i.e.,

D+
Sequential subgroup−speci f ic = Denrichment. (30)

At the time that there are Denrichment patients, the required number of events among
biomarker-negative patients in terms of that among biomarker-positive patients (Denrichment) is
given by

D−Sequential subgroup−speci f ic = Denrichment

(
λ−
λ+

)(
1− k

k

)
, (31)

where λ−, λ+ are the event rates in biomarker-negative and biomarker-positive control subsets at the
time when there are Denrichment events in the biomarker-positive subgroup [60].

The significance levels a can also be considered as one-sided significance levels in situations where
our alternative hypothesis is not that there is just a treatment effect but that the treatment benefit in the
experimental group is greater than that of the control group.

Statistical considerations: This strategy preserves the overall type I error rate a but requires
a smaller number of positive patients as compared to the second type of subgroup-specific
design, the so-called parallel subgroup-specific design (see below). Furthermore, it enables the
identification of treatment efficacy in the biomarker-positive and biomarker-negative subpopulations
separately. However, it yields low power when there is homogeneity of treatment effect across
the different biomarker-defined subpopulations. Furthermore, in case that test for treatment effect
among biomarker-negative patients is not statistically significant, an ‘exploratory’ analysis on the
biomarker-negative subgroup might be considered.

Parallel Subgroup-Specific design: This design was identified in three papers (3%) of our review.
Design: Parallel subgroup-specific design (Phase III), also referred to as a Phase III

Biomarker-Stratified design evaluates treatment effects separately in the positive biomarker-defined
subgroup and in the negative biomarker-defined subgroup simultaneously. A graphical illustration of
this strategy is given in Figure 6.
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Utility: It is appropriate when the aim of the study is to give treatment recommendations for each
biomarker-defined subgroup separately at the same time.

Methodology: In order to control the overall type I error rate of the design at the overall
level of significance α (Type I error) it is required to allocate this overall α between the test for the
biomarker-positive subgroup and the test for the biomarker-negative subgroup using the Bonferroni
correction method [124] for multiple testing; e.g., if we choose the value of 0.025 for the global
significance level α, then we could choose the values of a1 = 0.010 and a2 = 0.015 for testing the
biomarker-negative and biomarker-positive subgroups respectively. This trial design is powered in
such a way so as to detect the treatment effect in each biomarker-defined subgroup separately. A higher
portion of the type I error rate can be given for the test within the biomarker-positive subgroup in order
to maximize the power of the trial to identify the treatment effect in this subpopulation. However, even
if there is a slight increase in the type I error probability spent on the test of one of the biomarker-defined
subgroups, the power would probably not change much.

As in the sequential subgroup-specific design, the probability of rejecting either the null hypothesis
of no treatment effect in the biomarker-positive subset or in the biomarker-negative effect under the
global null hypothesis is less than or equal to the overall type I error rate a. Additionally, the probability
of rejecting the null hypothesis of no treatment effect in the biomarker-negative subpopulation when
the treatment benefit is only restricted to biomarker-positive patients is less than or equal to a.
The significance levels a can be considered as one-sided or two-sided significance levels.

Statistical considerations: With this approach, in case that the overall level of significance a
is equal in both subgroup-specific designs, it is more difficult to achieve statistical significance in
the biomarker-positive subgroup as compared to the sequential subgroup-specific design due to the
allocation of the overall significance level between the two biomarker-defined subgroup tests.
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Biomarker-positive and overall strategies: This design provides an alternative strategy to
analysing a biomarker-stratified design. It is an indirect way of evaluating both biomarker and
treatment by testing the treatment effect in the entire study population and in the biomarker-positive
subgroup separately. Three approaches are included in the biomarker-positive and overall strategies;
the parallel assessment, the sequential assessment and the fall-back design (see below).

Despite the fact that the biomarker-positive subgroup and overall strategy design allows the
treatment effect to be tested in the biomarker-positive subpopulation and provides good statistical
power when the treatment effect is homogeneous across subgroups, this design is usually considered
problematic and its use is not often recommended. More precisely, a major concern is that when the
benefit of the novel treatment is limited to the biomarker-positive patients, it is possible that the design
might lead to a wrong recommendation of treatment for the biomarker-negative patients. This might
happen because when there is no treatment effect in the biomarker-negative subgroup, there might be
an observed effect in the entire population due to the potentially large effect in the biomarker-positive
patients. This concern is particularly pronounced in the sequential version of the design, which first
tests the biomarker-positive subgroup and then, if it is positive, it tests the overall population.

Biomarker-positive and overall strategies with parallel assessment: This approach was
identified in eight papers (8%) of our review. Figure 7 graphically represents this strategy. In the
parallel version, we test both the overall population and biomarker-positive subgroup simultaneously.J. Pers. Med. 2017, 7, x FOR PEER REVIEW  32 of 53 
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Design: In this approach the treatment effect is tested in both the entire study population and in
the biomarker-positive patients while controlling the type I error by allocating the overall significance
level α between the two tests. The significance level a can be considered as one-sided or two-sided.

Utility: The parallel version is recommended when the aim of the study is to assess the treatment
effect in both the overall study population and in the biomarker-positive subgroup but not in the
biomarker-negative subgroup.

Methodology: If there is significant confidence that the biomarker is predictive, the sample size
estimation is aimed at having a sufficient number of biomarker-positive individuals to enable the
treatment effect in the biomarker positive subgroup to be detected. On the other hand, if there is no
confidence in the predictive value of the biomarker, the sample size estimation is aimed at having a
sufficient number of patients to detect a treatment effect in the overall study population [14].

Statistical considerations: This design has the ability to control the probability of rejecting
the null hypothesis of no treatment effect either in the biomarker-positive population or in the
biomarker-negative population under the global null hypothesis of no treatment effect in the entire
population at the overall significance level a. However, it cannot control the probability of rejecting
the null hypothesis of no treatment effect in the biomarker-negative subset when the treatment
benefit is restricted to biomarker-positive patients. Consequently, there is high risk of inappropriately
recommending the experimental treatment for biomarker-negative patients.

When the experimental treatment is compared to the control treatment within the overall
population and the overall treatment effect is significant, then the test has high statistical power.
If we are testing only the biomarker-positive subgroup and the treatment effect in this subgroup is
significant, the statistical power is again high. This prospective subset analysis plan is based on testing
both the overall study population and the biomarker-positive subgroup using significance levels,
which are chosen in such a way that the overall significance level is equal or less than a (type I error).
An easy way is to split a in such a way that the significance level for the entire population and the
significance level for the biomarker-positive subset equals to overall significance level a (typically
a = 0.05). For example, the SATURN trial (NCT00556712) [96] which employs a prospective subset
strategy used the value of 0.03 as level of significance to test the treatment effect in the entire population
and the value of 0.02 to test the treatment effect in the biomarker-positive subset; therefore, the overall
level of significance was preserved at 0.05. The approach can be overly conservative as in the SATURN
trial because of the correlation between the global and subgroup test. Other approaches [98,125–128]
have been proposed for adjusting the level of significance of both tests in a more accurate and less
conservative way.

Biomarker-positive and overall strategies with sequential assessment: This approach was
referred to in 11 papers (11%) of our review. A graphical illustration of this approach is shown
in Figure 8.

Design: In this sequential version of the biomarker-positive and overall strategies, we first test
the biomarker-positive subgroup using the significance level α; if the test is significant, then we test
the treatment effect in the overall population using the same α level. The significance levels a can be
considered as one-sided or two-sided significance levels.

Utility: The sequential version might be useful in cases where the experimental treatment is
expected to be effective in the overall study population.

Methodology: As this design comprises two sequential stages, it follows that the sample size
calculation should also be staged. At the first stage, the standard formula for a traditional randomized
trial can be used for the biomarker-positive subgroup using the significance level α to estimate the
treatment effect in that subset. More precisely, the formula used in the enrichment design for the
required total number of events or the required number of patients can be used at the first stage of this
design. At the second stage, the sample size must be adjusted in order to yield appropriate power for
the entire population.
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Statistical considerations: As in the parallel version of this designs, this strategy does not allow
for identification of treatment efficacy in the biomarker-negative subgroup and despite the fact that it
can control the overall type I error α it cannot control the probability of rejecting the null hypothesis
of no treatment effect in the biomarker-negative subset when the treatment benefit is restricted to
biomarker-positive patients. Consequently, for this design also there is high risk of inappropriately
recommending the novel treatment for biomarker-negative patients.

Biomarker-positive and overall strategies with fall-back analysis: This strategy was identified
in 15 papers (15%) of our review. It evaluates both the treatment effect in the overall study population
and in the biomarker-positive subgroup sequentially. Figure 9 graphically represents this strategy.

Design: In the fall-back design, we first test the overall population using the reduced significance
level a1 and if the test is significant, we consider that the novel treatment is effective in the
overall population; however, if the result is not significant then we test the treatment effect in the
biomarker-positive subgroup using the level of significance a2 = a − a1, where a is the overall
significance level (Type I error rate). The significance levels a can be considered as one-sided or
two-sided significance levels. The same analysis plan was used in the adaptive signature design which
is further described in our methodological review regarding the biomarker-guided adaptive designs,
Antoniou et al., 2016 [35]. More precisely, the difference between the adaptive signature design and the
fall-back design is the following: in the adaptive signature design, in case that the first stage failures to
show treatment effectiveness in the entire population, then the study population is divided in order to
develop and validate a biomarker, using a split sample strategy, whereas in the biomarker-positive
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and overall strategies design with fall-back analysis the biomarker assessment is conducted at the
beginning of the trial. However, both of the designs test at the first stage the entire population at the
significance level a1 and at the second stage the biomarker-positive patients at the significance level
a2 = a− a1.
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Utility: This approach is recommended when there is insufficient confidence in the predictive
value of the biomarker and that the novel treatment is believed to be effective in all individuals (i.e.,
the rationale for the biomarker is weak). This design can be used in order to avoid the possibility of
missing an important treatment effect in the biomarker-positive patients (with insufficient benefit in
the biomarker-negative subgroup).

Methodology: The sample size should be set in such a way so as to yield adequate power for
the overall test at the reduced significance level a1 and for the potential biomarker positive subgroup
analysis at significance level a− a1 [60]. The fall-back version is identical to the parallel version of
biomarker-positive and overall strategies in terms of sample sizes and study outcomes, however
the difference between these approaches is that the fall-back strategy is useful in settings where a
biomarker will be assessed only if the overall population benefit is not promising [14]. This strategy
can test the treatment effectiveness in biomarker-positive patients even if there is no detected benefit
of the novel treatment in the overall population. However, it does not evaluate clearly the treatment
benefit in the biomarker-negative subpopulation.

Statistical considerations: As the two aforementioned biomarker-positive and overall designs,
this strategy can again control the overall type I error α but it cannot control the probability of rejecting
the null hypothesis of no treatment effect in the biomarker-negative subgroup when the treatment
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benefit is restricted to biomarker-positive patients. Consequently, there is high risk of inappropriately
recommending the novel treatment for biomarker-negative patients. Song et al., 2007 [129] and
George, 2008 [1] have discussed refinement of the significance levels associated with this design,
which takes into account the correlation between the test for overall treatment effect and the test for
the biomarker-positive treatment effect [60]. Additionally, a recent paper by Choai et al., 2015 [97]
proposes a bias-corrected estimation method for treatment effects for the all-comers randomized
clinical trials with a predictive biomarker which incorporate the fall-back analysis. For Choai et al.,
2015 [97] the terminology “all-comers randomized clinical trials” is referred to the “Biomarker-positive
and overall strategies with fall-back analysis”. More precisely, as this study design has an adaptive
nature and is composed of two stages, a bias is possible to arise in the treatment effect estimation in
the biomarker-positive subset when the first stage of the trial yields an overall result which is not
significant and thus fails to demonstrate a treatment efficacy in the entire population. For this reason,
Choai et al. ,2015 [97], formulate a bias function using polynomials in order to take into account the
possibility of failing to demonstrate overall treatment efficacy during the first stage of the trial.

Marker Sequential test design (MaST): This design was identified in four papers (4%) of
our review and while controlling the appropriate type I error rates, it evaluates not only the
biomarker-positive and biomarker-negative subgroups but also the entire population sequentially
to limit the assessment of treatment effect in the overall population when it seems that the
biomarker-positive subgroup does not benefit from the novel treatment. A graphical illustration
of this approach is given in Figure 10.
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Design: In this design which owns an adaptive nature, first, the biomarker-positive subgroup
is tested at a reduced level a1 in [0, a] and if the result is significant, then the biomarker-negative
subgroup is tested at the global significance level α. Otherwise, if the result is not significant, then the
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overall population is tested at level a2 = a− a1 in order to make a treatment recommendation for the
biomarker-negative patients.

Utility: It is generally recommended when robust evidence is available regarding a biomarker and
there is prior evidence showing that the novel treatment is more beneficial for the biomarker-positive
patients as compared to the biomarker-negative patients. Additionally, it is appropriate when we
can assume that the treatment will not be beneficial for the biomarker-negative subgroup unless it
is effective for the biomarker-positive subgroup. Additionally, the marker sequential test design is
considered as an alternative to the sequential subgroup-specific design when the aim is to consider the
treatment effect not only in biomarker-positive but also in the biomarker-negative patients.

Methodology: Freidlin et al., 2014 [69] recommended using the value of 0.022 for the reduced
significance level a1 in order to control the type I error rate for biomarker-negative patients at the
global significance level α = 0.025 and the value of 0.04 for the reduced significance level a1 in order to
control the type I error rate for biomarker-negative patients at the global significance level α = 0.05.

Regarding the sample size for such a design where there is prior evidence indicating strong
predictive ability of the biomarker, a standard sample size calculation (i.e., the same sample size
calculation as for the enrichment designs) can be used for biomarker-positive subpopulation or
alternatively, researchers can use the sample size calculation used for the sequential subgroup-specific
design. However, in order to have sufficient number of biomarker-positive patients to detect treatment
effectiveness in that particular biomarker-defined subset and consequently to reach the desired power,
the sample size should be calculated using the reduced level a1 [0, a] instead of the global significance
level α which is used in the sample size formulae of the enrichment and sequential subgroup-specific
designs. This will result in a small increase in the number of patients as compared to the enrichment
and sequential subgroup-specific designs. Otherwise, if the reduced significance level a1 is not used,
this would yield minor loss of power.

Statistical consideration: Freidlin et al., 2014 [69] performed a comparison between the MaST
and the sequential subgroup-specific design through a simulation study and concluded that the marker
sequential design yields higher power in cases where the treatment effect is homogeneous across
biomarker-defined subgroups. Additionally, with this approach, the power is preserved in situations
where the experimental treatment is effective only for the biomarker-positive patients. Furthermore,
in situations where biomarker status is not available for a portion of patients included in the trial,
the marker sequential test design can either exclude these patients or include them in the global test,
whereas, the proposed subgroup-specific designs do not consider inclusion of these patients in the
analyses. If researchers decide to exclude patients with unavailable biomarker status from the study
when using a MaST design, no statistical adjustment is required. On the other hand, if the inclusion
of this study population is chosen, then this can result in inflation of the type I error rate for the
biomarker-negative subpopulation above the global significance level α due to the modification of
correlation structure between the biomarker-defined subgroup tests and global test. In addition, while
both MaST and subgroup-specific designs have the ability to control the probability of incorrectly
rejecting the null hypothesis of no treatment effect in the biomarker-negative patients at the significance
level α when the experimental treatment does not work in either biomarker-defined subgroup, the
sequential subgroup-specific approach typically has a smaller probability of incorrectly rejecting the
null hypothesis of no treatment effect in the biomarker-negative subset (when the null hypothesis is
true) as compared to the MaST design, especially under the global null hypothesis of no treatment effect
in the entire population; the probability of incorrectly rejecting the null hypothesis of no treatment
effect in the biomarker-negative patients depends on the choice of a1. This conservativeness of
sequential subgroup-specific design, which is due to its sequential nature, makes the MaST design
advantageous [69].
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2.3.2. Hybrid Designs

Hybrid designs (Phase III) were identified in 14 papers (14%) of our review and they can be
included in the all-comers designs, where the entire population is firstly screened for biomarker status
and all individuals enter the trial. A graphical illustration of this design is given in Figure 11.
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Design: In this approach, only the biomarker-positive patients are randomly assigned to either
the experimental treatment group or to the control treatment group whereas the biomarker-negative
patients receive the control treatment. These designs were first defined by Mandrekar and
Sargent [30,31]. The difference compared with the enrichment designs is that the biomarker-negative
patients are not excluded from the study.

Utility: Hybrid designs can be used when there is compelling prior evidence which shows
detrimental effect of the experimental treatment for a specific biomarker-defined subgroup
(i.e., biomarker-negative subgroup) or some indication of its possible excessive toxicity in that
subgroup, thus making it unethical to randomize the patients within this population to the
experimental treatment.

Methodology: Similar to the enrichment design, hybrid designs are powered to identify treatment
effect only in the biomarker-defined subgroup which is randomly assigned to the experimental or
control treatment groups. Consequently, the same formula used for the required number of patients or
events for the enrichment designs can be used for hybrid designs. This design is a combination of an
enrichment design where we randomize patients to either the experimental or the control treatment
group and a single-arm design in biomarker-negative patients.

Statistical considerations: The strength of the hybrid design is that apart from the evaluation of
the predictive ability of a biomarker, the feasibility of a prognostic biomarker can also be tested. It
can be considered as an advantageous design of the enrichment designs when there is prior evidence
showing not only that the control treatment works well for the biomarker-negative population but
also a detrimental effect of the experimental treatment for that subgroup or possible excessive toxicity
as we do not exclude these patients from the trial as it happens in the enrichment designs.

2.4. Biomarker-Strategy Designs

Generally, with biomarker-strategy designs, the study population is randomized to treatment
strategies as opposed to treatments per se. More precisely, patients are randomized to either a
biomarker-based treatment strategy arm where the biomarker is used in deciding on approach
to treatment, or to an arm that does not use the biomarker to guide treatment. Consequently,
biomarker-strategy designs make a comparison between two strategies—one which uses biomarker
information to inform treatment approach and the other that does not.
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These designs are also known as biomarker-based strategy designs or signature-based strategy
designs and they are composed of four subtypes; (i) biomarker-strategy designs with biomarker
assessment in the control arm; (ii) biomarker-strategy designs without biomarker assessment in
the control arm; (iii) biomarker-strategy designs with treatment randomization in the control arm
and (iv) reverse marker-based strategy designs. Whilst patients randomized to the non-biomarker
based strategy arm in the first two design subtypes are allocated the control treatment, in the third
design subtype those patients undergo secondary randomization to either the control or experimental
treatment. The fourth design subtype differs from the three aforementioned subtype designs as the
non-biomarker based strategy arm is replaced by the reverse marker-strategy arm. The first and second
types are similar with the difference being only in terms of ethical/feasibility issues regarding the
acquisition of biomarker status at the beginning of the trial.

This approach is preferred when the study is planned for a confirmatory phase of a certain
biomarker-based strategy allowing for comparison between the biomarker-based strategy and
non-biomarker-based strategy.

2.4.1. Biomarker-Strategy Design with Biomarker Assessment in the Control Arm

This approach is described in 21 (21%) papers of our review.
Design: First, the study population enrolled in the trial is tested for its marker status. Next,

patients irrespective of their biomarker status are randomized either to the biomarker-based strategy
arm (also referred to as personalized arm) or to the non-biomarker-based strategy arm. In the
biomarker-based strategy arm, biomarker-positive patients receive the experimental treatment,
whereas, biomarker-negative patients receive the control treatment. Patients who are randomized to
the non-biomarker-based strategy arm receive the control treatment irrespective of their biomarker
status. A graphical illustration of this design is given in Figure 12. This biomarker-strategy design can
be extended to more than one experimental treatment. More precisely, this extension is referred to as
Individual profile design in literature and was identified in two papers [36,72] (2%) of our review. This
design includes different individual status, e.g., instead of biomarker-positive and biomarker-negative
subgroups we can have patients who are positive for biomarker 1, biomarker 2, biomarker n, leading
to the selection of personalized treatments, (patients who are positive for biomarker 1 are treated with
the corresponding experimental treatment 1, etc.).

J. Pers. Med. 2017, 7, x FOR PEER REVIEW  39 of 53 

 

the non-biomarker-based strategy arm receive the control treatment irrespective of their biomarker 

status. A graphical illustration of this design is given in Figure 12. This biomarker-strategy design 

can be extended to more than one experimental treatment. More precisely, this extension is referred 

to as Individual profile design in literature and was identified in two papers [36,72] (2%) of our 

review. This design includes different individual status, e.g., instead of biomarker-positive and 

biomarker-negative subgroups we can have patients who are positive for biomarker 1, biomarker 2, 

biomarker n, leading to the selection of personalized treatments, (patients who are positive for 

biomarker 1 are treated with the corresponding experimental treatment 1, etc.). 

 

Figure 12. Biomarker-strategy design with biomarker assessment in the control arm. “R” refers to 

randomization of patients. 

Utility: This approach is useful when we want to test the hypothesis that the treatment effect 

based on the biomarker-based strategy approach is superior to that of the standard of care. 

Methodology: The clinical utility of a biomarker can be evaluated by comparing the two strategy 

groups. The predictive utility of the marker-based treatment strategy could be assessed by comparing 

the outcome of all patients in the biomarker-based strategy arm to all patients in the non-biomarker-

based strategy arm. Patients in the marker-based strategy arm do not need to be limited to two 

treatments; in principle, a marker-based strategy involving many biomarkers and many possible 

treatments could be compared to standard of care treatment. 

According to Freidlin et al., 2010 [61], assuming a survival outcome, the required sample size in 

terms of number of events for this type of biomarker-strategy design in order to reach power (1 − 𝛽) 

at significance level 𝛼 (type I error) can be given by 

𝐷𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 𝐼 = 4 [
(z𝛼/2 + z𝛽)

𝑘 logθ1

]

2

, (32) 

where 𝑘 denotes the prevalence of biomarker-positive patients, θ < 1 denotes the assumed hazard 

ratio in the biomarker-positive subpopulation and 𝑧𝛼/2,  𝑧𝛽  denote the upper 𝛼/2- and upper 𝛽-

points respectively of a standard normal distribution where 𝛼 and 𝛽 denote the assumed type I 

error and type II error respectively. According to Freidlin et al. 2010 [61], it is assumed that there is 

no treatment effect in the biomarker-negative subpopulation (corresponding to a hazard ratio of 

experimental treatment versus control treatment of 1) and that there is no prognostic effect of the 

biomarker under the control treatment. Consequently, the overall hazard ratio between experimental 

and control arms in biomarker-positive patients and biomarker-negative patients can be 

approximated by exp[𝑘 logθ + (1 − 𝑘) log1] = θ𝑘 [61] and this is the reason why the formula which 

Figure 12. Biomarker-strategy design with biomarker assessment in the control arm. “R” refers to
randomization of patients.



J. Pers. Med. 2017, 7, 1 38 of 52

Utility: This approach is useful when we want to test the hypothesis that the treatment effect
based on the biomarker-based strategy approach is superior to that of the standard of care.

Methodology: The clinical utility of a biomarker can be evaluated by comparing the two
strategy groups. The predictive utility of the marker-based treatment strategy could be assessed
by comparing the outcome of all patients in the biomarker-based strategy arm to all patients in the
non-biomarker-based strategy arm. Patients in the marker-based strategy arm do not need to be
limited to two treatments; in principle, a marker-based strategy involving many biomarkers and many
possible treatments could be compared to standard of care treatment.

According to Freidlin et al., 2010 [61], assuming a survival outcome, the required sample size in
terms of number of events for this type of biomarker-strategy design in order to reach power (1− β)

at significance level α (type I error) can be given by

Dstrategy I = 4

[(
zα/2 + zβ

)
k log θ1

]2

, (32)

where k denotes the prevalence of biomarker-positive patients, θ < 1 denotes the assumed hazard ratio
in the biomarker-positive subpopulation and zα/2, zβ denote the upper α/2- and upper β-points
respectively of a standard normal distribution where α and β denote the assumed type I error
and type II error respectively. According to Freidlin et al. 2010 [61], it is assumed that there is
no treatment effect in the biomarker-negative subpopulation (corresponding to a hazard ratio of
experimental treatment versus control treatment of 1) and that there is no prognostic effect of the
biomarker under the control treatment. Consequently, the overall hazard ratio between experimental
and control arms in biomarker-positive patients and biomarker-negative patients can be approximated
by exp[k log θ+ (1− k) log 1] = θk [61] and this is the reason why the formula which gives the
required total number of events

(
Dstrategy

)
contains only the hazard ratio of biomarker-positive

patients. Freidlin et al., 2010 [61] provided the aforementioned formula assuming that all random
assignments use 1:1 randomization.

Additionally, Young et al., 2010 [26] determined the total sample size needed for this type of
biomarker-strategy designs when using continuous clinical endpoints by

Nstrategy I =
2
(
z1−α/2 + z1−β

)2(
τ2

m + τ2
n
)

(vm − vn)
2 , (33)

where z1−α/2, z1−β denote the lower 1− α/2- and lower 1− β-points respectively of a standard normal
distribution, α and β denote the assumed type I error and type II error respectively, vm and vn denote
the mean response from the biomarker-based strategy arm and the non-biomarker-based strategy arm
respectively, and τ2

m, τ2
n denote the variance of response for the biomarker-based strategy arm and

non-biomarker-based strategy arm respectively. Young et al., 2010 [26] also provided formulae for the
aforementioned variances which depend on sensitivity and specificity of the assay, such that any error
in the evaluation of biomarker in the biomarker-based strategy can be accounted for.

For the case of binary outcomes, Eng, 2014 [92] provided the formula for the required sample size
for each arm in a test of proportions between the two randomization arms (biomarker-based strategy
arm and non-biomarker-based strategy arm). This formula can be given by

Nstrategy I/arm =

(
za + z1−β

)2
[g1(1− g1) + g2(1− g2)]

∆2
2

(34)

where α corresponds to the target level, 1− β corresponds to the power, g1 is the expected response
rate in the biomarker-based strategy arm, g2 is the expected response rate in the non-biomarker-based
strategy arm and ∆2 = g1 − g2. The expected response rates g1, g2 can be found by calculating
the formulae krA+ + (1− k)rB− and rB respectively, the prevalence of biomarker-positive patients
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corresponds to k and rA+, rB− are the assumed response rates of biomarker-positive patients receiving
the experimental treatment and biomarker-negative patients receiving the control treatment, rB denotes
the marginal effect of treatment B (control treatment).

Statistical considerations: This type of designs is able to inform researchers whether the
biomarker is prognostic, since both biomarker positive and negative patients are exposed to the
control treatment, but it cannot answer the question of whether the biomarker is predictive since
only biomarker positive patients are exposed to the experimental treatment. Additionally, these
designs have been criticized by many authors as less efficient than the marker-stratified designs since
it is possible for some patients in both the biomarker-based strategy arm and non-biomarker-based
strategy arm to be assigned to the same treatment (due to the existence of biomarker-negative patients
in both strategy arms the treatment effect can be diluted) and they require a large sample size to
detect an overall difference in outcomes between arms. Furthermore, these designs cannot compare
experimental treatment to control treatment directly as they are designed to compare not the treatments
but the biomarker-strategies. Another limitation of these designs is the uncertainty about whether the
results which indicate efficacy of the biomarker-directed approach to treatment are caused due to a
true effect of the biomarker or due to a treatment effect irrespective of the biomarker status.

2.4.2. Biomarker-Strategy Design without Biomarker Assessment in the Control Arm

This strategy was identified in 14 papers (14%) of our review.
Design: In this approach, patients are again randomized between testing strategies (i.e.,

biomarker-based strategy and non-biomarker-based strategy) but it differs in terms of the timing
of biomarker evaluation. More precisely, first, patients are randomized to either the biomarker-based
strategy or to the non-biomarker-based strategy. Next, this design evaluates the biomarkers only
in patients who are assigned to the biomarker-based strategy. Patients who are found to be
biomarker-positive will receive the experimental treatment and patients who are biomarker-negative
will receive the control treatment. On the other hand, the population which is randomized to the
non-biomarker-based strategy will receive the control treatment. A graphical illustration of this design
is given in Figure 13.
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Utility: This design is useful in situations where it is either not feasible or ethical to test the
biomarker in the entire population due to several logistical (e.g., specimens not submitted), technical
(e.g., assay failure) or clinical reasons (e.g., tumor inaccessible); thus the biomarker status is obtained
only in patients who are tailored to the biomarker-based strategy arm.

Methodology: The same mathematical formula for sample size calculation assuming a continuous
clinical outcome proposed by Young et al. (2010) [26] and the formula assuming binary outcome
proposed by Eng, 2014 [92] for the biomarker-strategy design with biomarker assessment in the control
arm could be applied. Further, in terms of survival outcome, the same formula provided for the
required number of events in the first version of biomarker-strategy designs (i.e., biomarker-strategy
design with biomarker assessment in the control arm) could be considered.

Statistical considerations: These designs have the same advantages and limitations as the
previously discussed biomarker-strategy design with biomarker assessment in the control arm, e.g.,
they have been criticized for their lack of efficiency due to the fact that biomarker negative patients
are exposed to the control treatment in both arms of the trial. An additional limitation is that the
biomarker-positive and biomarker-negative subpopulations might be more imbalanced as compared
with the first type of biomarker-strategy design due to the fact that the randomization is performed
before the evaluation of biomarker (balancing the randomization is useful to ensure that all randomized
patients have tissue available).

2.4.3. Biomarker-Strategy Design with Treatment Randomization in the Control Arm

Sargent and Allegra [108] proposed another version of Biomarker-strategy designs where there is
a second randomization between experimental and control treatment in the non-biomarker guided
strategy arm. This strategy is referred to in 17 papers (17%) of our review.

Design: A graphical illustration of this approach is given in Figure 14. The two previously
described biomarker-strategy designs can answer the question about whether the biomarker-based
strategy is more effective than standard treatment, irrespective of the biomarker status of the study
population, whereas the biomarker-strategy design with treatment randomization in the control
treatment is able to inform us about whether the biomarker-based strategy is better than not only
the standard treatment but also better than the experimental treatment in the overall population.
This is achieved by using a second randomization the ratio of which should be informed by the
prevalence of the biomarker in question in the population as a whole to ensure balance between the
study arms. Patients are first randomly assigned to either the biomarker-based strategy arm or to
the non-biomarker-based strategy arm. Next, patients who are allocated to the non-biomarker-based
strategy are again randomized either to the experimental treatment arm or to the standard treatment
arm irrespective of their biomarker status. Patients who are allocated to the biomarker-based
strategy and who are biomarker-positive are given the experimental treatment and patients who are
biomarker-negative are given the control treatment. The clinical utility of the biomarker is evaluated
by comparing treatment effect between the biomarker-based strategy arm and non-biomarker-based
strategy arm. Such an approach can also identify whether a novel treatment is more effective in
the entire population or in a biomarker-defined subgroup only, since both biomarker subgroups are
exposed to both treatments.

Utility: These designs are preferable as compared to the two previously discussed
biomarker-strategy designs in cases where there is interest in whether the biomarker is not only
prognostic but also predictive.

Methodology: Mandrekar and Sargent, 2009 [31] calculated the total required sample size in
terms of number of events for the comparison of a survival outcome in the biomarker-based strategy
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versus the non-biomarker-based strategy. According to them, the required total number of events
when using 1:1 randomization to treatment arms is given by

Dstrategy I I I =
4
(
za/2 + zβ

)2{
log
[

2kmB+ + 2(1−k)mA−
k(mA+ + mB+) + (1−k)(mA− + mB−)

]}2 , (35)

where κ denotes the prevalence of the biomarker-positive patients, mA+, mA−, mB+, mB−, denote
the median survival for biomarker-positive and biomarker-negative patients receiving control and
experimental treatments respectively. Also, the constants zα/2, zβ denote the upper α/2- and upper
β-points respectively of a standard normal distribution where α and β denote the assumed type I error
and type II error respectively.
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Additionally, Young et al., 2010 [26], considering continuous clinical outcomes, calculated the
total sample size by

Nstrategy I I I =
2
(
z1−α/2 + z1−β

)2(
τ2

m + τ2
nr
)

(vm − vnr)
2 , (36)

where z1−α/2, z1−β denote the lower 1 − α/2- and lower 1 − β-points respectively of a standard
normal distribution, α and β denote the assumed type I error and type II error respectively, vm and
vnr denote the mean response from the biomarker-based strategy arm and the non-biomarker-based
strategy arm,) and τ2

m, τ2
nr denote the variance of response for the biomarker-based strategy arm and

non-biomarker-based strategy arm respectively. The only differences in the mathematical formula
for the total sample size nt between this type of biomarker-strategy design and the first and second
types mentioned above are the values of vnr and τ2

nr, to reflect the fact that in the non-biomarker-based
strategy arm patients are randomly assigned to either the experimental or control treatment. Again,
the formulae can be adjusted to account for uncertainty in biomarker assessment.

For the case of binary outcomes, Eng, 2014 [92] provided the formula for the required sample size
for each arm in a test of proportions between the two randomization arms (biomarker-based strategy
arm and non-biomarker-based strategy arm). This formula can be given by

Nstrategy I I I/arm =

(
za + z1−β

)2
[g1(1− g1) + g3(1− g3)]

∆2
3

(37)
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where α correspond to the target level, 1− β corresponds to the power, g1 is the expected response
rate in the biomarker-based strategy arm, g3 is the expected response rate in the non biomarker-based
strategy arm and ∆3 = g1 − g3. The expected response rates g1, g3 can be found by calculating the
formulae krA+ + (1− k)rB− and rA/2 + rB/2 respectively, rA and rB denote the marginal effect of
treatment A (experimental treatment) and treatment B (control treatment) respectively. rA+, rB− are
the assumed response rates of biomarker-positive patients receiving the experimental treatment and
biomarker-negative patients receiving the control treatment. The prevalence of biomarker-positive
patients corresponds to k.

Statistical considerations: Similar to both aforementioned biomarker-strategy designs, the
biomarker-strategy design with treatment randomization in the control arm will need larger sample
size as compared to the marker-stratified designs. However, one strength is that they allow clarification
of whether the results which indicate efficacy of the biomarker-directed approach to treatment are
caused due to a true effect of the biomarker or due to a treatment effect irrespective of the biomarker
status which does not happen in the first two types of biomarker-strategy designs.

2.4.4. Reverse Marker-Based Strategy Design

Eng, 2014 [92] proposed another version of biomarker-strategy designs where the
non-biomarker-based strategy arm which is included in the three aforementioned subtypes of
biomarker-strategy designs is replaced by the reverse marker-strategy arm. This strategy is referred to
in four papers (4%) of our review.

Design: A graphical illustration of this approach is given in Figure 15. In this design patients are
randomized either to the biomarker-based strategy arm or the reverse biomarker-based strategy
arm. As in the previous three biomarker-strategy subtype designs, patients who are allocated
to the biomarker-strategy arm receive the experimental treatment if they are biomarker-positive
whereas biomarker-negative patients receive the control treatment. By contrast, patients who are
randomly assigned to the reverse biomarker-based strategy arm receive control treatment if they are
biomarker-positive, whereas biomarker-negative patients receive experimental treatment.J. Pers. Med. 2017, 7, x FOR PEER REVIEW  44 of 53 
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Utility: Reverse marker-based strategy is a more efficient strategy as compared to the first
and third biomarker-strategy subtype design for testing the interaction hypothesis of treatment
and biomarker. This design should be used in cases where prior evidence indicates that both
experimental and control treatment are effective in treating patients but the optimal strategy has
not yet been identified.
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Methodology: This subtype design is balanced (i.e., the randomization frequencies for each
treatment are equal independent of the prevalence of the biomarker) and it is powered to evaluate
the interaction between treatment and biomarker. For the case of binary outcomes, Eng, 2014 [92]
provided the formula for the required sample size for each arm in a test of proportions between the
two randomization arms (biomarker-based strategy arm and reverse biomarker-based strategy arm).
This formula can be given by

Nstrategy IV/arm =

(
za + z1−β

)2
[g1(1− g1) + g4(1− g4)]

∆2
4

(38)

where α correspond to the target level, 1 − β corresponds to the power, g1 is the expected
response rate in the biomarker-based strategy arm, g4 is the expected response rate in the reverse
biomarker-based strategy arm and ∆4 = g1 − g4. The expected response rates g1, g4 can be found
by calculating the formulae krA+ + (1− k)rB− and krB+ + (1− k)rA− respectively, rA+, rB− are the
assumed response rates of biomarker-positive patients receiving the experimental treatment and
biomarker-negative patients receiving the control treatment and rA−, rB+ are the assumed response
rates of biomarker-negative patients receiving the experimental treatment and biomarker-positive
patients receiving the control treatment The prevalence of biomarker-positive patients corresponds
to k.

Statistical considerations: This design enables the evaluation of the interaction between the
biomarker and different treatments and can estimate directly the marker-strategy response rate.
Additionally, this subtype design allows the estimation of the effect size of the experimental
treatment compared to the control treatment for each biomarker-defined subgroup separately. Also,
there is no chance that the same treatment will be tailored to biomarker-positive patients who
are randomized either to the biomarker-based strategy arm or the reverse marker strategy (i.e.,
biomarker-positive patients in the biomarker-based strategy will be given only the experimental
treatment and biomarker-positive patients in the reverse marker strategy arm will be given only the
control treatment). Also, there is no possibility of the same treatment assignment to biomarker-negative
patients who are randomly assigned to the two biomarker-based strategy arms (i.e., biomarker-negative
patients in the marker-based strategy arm will be treated with the control treatment, whereas
biomarker-negative patients in the reverse marker strategy arm will be treated with the experimental
treatment). According to Eng, 2014 [92] who compared the reverse marker-based strategy design
with the first (i.e., biomarker-strategy design with biomarker assessment in the control arm) and
third (i.e., biomarker-strategy design with treatment randomization in the control arm) subtype
of biomarker-strategy designs in the case of binary outcomes, the effect size in order to make a
comparison of the different treatment strategy arms would be larger than in the first and third subtype
designs. Furthermore, it has been shown by Eng, 2014 that in situations where a randomly chosen
treatment has a better than 7% response rate, the reverse marker-based strategy design works better
as compared to the third biomarker-strategy subtype (i.e., Biomarker-strategy design with treatment
randomization in the control arm). It has also been demonstrated that this novel design is more than
four times more efficient in order to test the interaction between treatment and biomarker compared to
Biomarker-strategy design with biomarker assessment in the control arm, Biomarker-strategy design
with randomization in the control arm and the marker stratified design. Eng, 2014 demonstrated the
benefits of the Reverse Marker-Based strategy design with the aim to assess the interaction between
treatment and biomarker. However, Baker, 2014 [93] stated that other designs than the Reverse
Marker-Based strategy design would be more appropriate in order to investigate questions which
include treatment effect of biomarker-defined subgroups and biomarker-based strategy arms.
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2.5. Other Designs

A Randomized Phase II Trial Design with Biomarker Proposed by Freidlin et al., 2012

Freidlin et al., 2012 [71] proposed a biomarker-guided Phase II clinical trial design in which when
it is completed, it recommends which type of Phase III trial should be used. These recommendations for
a Phase III trial are the following: (i) enrichment design; (ii) marker-stratified design; (iii) a traditional
trial design without a biomarker; or (iv) drop consideration of the experimental treatment. A graphical
illustration of this design is given in Figure 16.
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CI refers to the confidence interval. Uncolored boxes are referred to the first stage of the trial and
colored boxes are referred to the second stage of the trial.

Design: For this type of randomized Phase II trial, it is assumed that the experimental treatment
will be more beneficial among biomarker-positive patients than biomarker-negative patients without
ruling out the efficacy of the novel treatment in biomarker-negative patients. The intermediate endpoint
of progression-free survival (PFS) is used which is able not only to give the results earlier but also to
target larger treatment effects as compared to overall survival (OS) endpoint.

The design starts by comparing the experimental treatment with the control treatment in the
biomarker-positive subgroup using a one-sided level of significance a1 = 0.10. The null hypothesis is
that the progression-free survival for biomarker-positive patients is the same for both experimental
and control treatment arm (HR0, biom+ ≤ 1 vs. HR1, biom+ > 1). Next, if the null hypothesis is
rejected, which means that the experimental treatment is better than the control treatment in the
biomarker-positive subgroup we continue with the calculation of an 80% two-sided confidence interval
(CI) for the hazard ratio (control vs experimental) in the biomarker-negative subpopulation. Three
decisions are made according to the values of the CI: (i) if the entire CI is less than 1.3 then we can
continue with a Phase III enrichment design; (ii) if the CI includes the values 1.3 or 1.5 then we can
continue with a Phase III marker-stratified design and (iii) if the entire CI is greater than 1.5 then it
seems that the biomarker is not useful as the novel treatment benefits only the biomarker-negative
patients, thus, the biomarker should be dropped and a traditional randomized Phase III design should
be conducted. Otherwise, if the null hypothesis is not rejected at the one-sided significance a1 = 0.10
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(meaning that that the experimental treatment is not better than the experimental treatment in the
biomarker-positive subgroup), then we continue with the comparison of treatments in the overall
study population at one-sided level of significance a = 0.05. If the null hypothesis of no treatment
effect in the entire population is rejected, then the authors recommend to drop the biomarker and to
continue with a traditional randomized Phase III trial due to the fact that the biomarker seems to be
useless. On the other hand, if the null hypothesis is not rejected, the experimental treatment should
not be tested further as it does not seem to be effective.

Utility: This design should be used when we want to conduct a Phase II randomized trial
which allows decisions to be made about which type of Phase III biomarker-guided trial to proceed
with. It is appropriate when there is prior evidence that the novel treatment benefits mostly the
biomarker-positive patients without ruling out treatment effect in biomarker-negative patients.

Methodology: Freidlin et al., 2012 [71] have provided an online tool for calculating the sample size
which can be found on the following website http://brb.nci.nih.gov/Data/FreidlinB/RP2BM [116].
In order for a sample size to be estimated, the following information is required: (i) the significance
levels for testing the treatment effect in the biomarker-positive subgroup and in the entire population;
(ii) cut-offs and confidence intervals for the hazard ratio in the biomarker-negative subgroup; (iii)
the prevalence of biomarker-positive patients; (iv) the median progression-free survival in each
treatment arm in each biomarker-defined subgroup and (v) the accrual parameters. Regarding the
accrual parameters, the author specifies the minimum sample size for biomarker-positive patients for
which the accrual continues until this number is reached, the maximum number of over-accrual in
biomarker-positive subgroup for which the accrual to the entire population stops after this number is
reached and the maximum accrual number in biomarker-negative patients for which the accrual to
this biomarker-defined subgroup stops when this number is reached.

Statistical considerations: In real life, it might not be possible to obtain the biomarker status for
the entire population. If the biomarker status is unknown for some patients, then these individuals
could be included in the analysis of the overall population. More precisely, in case that the proportions
of patients with unknown biomarker status is low, the randomization of them to either the experimental
or the control treatment could be considered in the second stage of this Phase II trial where we test the
treatment effectiveness in the entire population. Another statistical consideration is that researchers
should take into account the adjustment for inflation in Phase III type I error as the chosen Phase III
trial design depends on the performance of the aforementioned randomized Phase II trial. Additionally,
the authors suggest generally that in cases where it seems that the control treatment has been shown
more beneficial, an aggressive interim inefficacy/futility should be used, i.e., when the estimated
hazard ratio of control treatment versus the experimental treatment is equal or less than one when
half of the required number of events have been observed, then the accrual should stop to that
biomarker-defined subgroup.

3. Discussion

A number of biomarker-guided trial designs have been proposed in the past decade, including
both biomarker-guided adaptive and non-adaptive trial designs. We have undertaken a comprehensive
review of the literature using an in-depth search strategy to report on the biomarker-guided designs
proposed to date, with a view to providing the research community with clarity in definition,
methodology and terminology of the various trial designs. The review is split in two parts due
to its size; the first part of the review is focused on adaptive designs which are extensively discussed
in our published paper “Biomarker-Guided Adaptive Trial Designs in Phase II and Phase III: a
Methodological Review”, Antoniou et al., 2016 [35], whereas, herein we focus on non-adaptive designs
which incorporate biomarkers.

The review has demonstrated ambiguity and confusion regarding the biomarker-guided
non-adaptive designs proposed by different authors. In this review, we focus on 5 main types of such
designs including their subtypes and variations. Knowledge on how to implement and analyse these

http://brb.nci.nih.gov/Data/FreidlinB/RP2BM
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designs are essential in testing the effectiveness of a biomarker-guided approach to treatment; hence, a
comprehensive review giving this knowledge is essential for the research community. In our in-depth
study, we provide researchers with analytical information of these study designs not only in terms of
their utility, advantages and limitations but also in terms of their methodology. In addition, a graphical
illustration for each biomarker-guided design is given. A guidance document by Tajik et al., 2012 [117]
regarding the evaluation of putative biomarkers in randomized clinical trials came to our knowledge
by personal communication as we were not able to identify it during our literature search.

The non-adaptive designs do not allow modifications of important aspects of the trial such as
refinement of the existing study population, treatment assignment, study endpoints, study duration,
etc. In non-adaptive designs, all these factors are defined before the initiation of the study and they
are kept fixed during the course of the clinical trial. However, there is a great potential of failure
when implementing such conventional designs due to potential wrong design assumptions of the key
aspects of the study that might be made before the conduct of the trial. Hence, an adaptive design
clinical study which allows on-going adaptations based on accumulating study data from interim
analysis might hold advantageous position as compared to the non-adaptive trial design due to its
flexibility. However, before implementing an adaptive design a lot of issues should be taken into
careful consideration by research teams in order to prove that there are good reasons for conducting
such designs. Regulatory and logistical issues, requirement of additional efforts for the achievement
of the design, potential difficulties, possible increased cost and time, statistical challenges including
the potential increase of the chance of a false conclusion that the treatment is effective (inflation of
Type I error) and whether the adaptation process has led to positive study results that are difficult to
interpret irrespective of having control of Type I error should be considered [130]. A recent paper by
Dimairo et al., 2015 [131] refers to a number of obstacles and barriers when implementing adaptive
designs in practice. Several key stakeholders in clinical trials research have been interviewed (i.e.,
UK Clinical Trials Units directors, funding board and panel members, statisticians, regulators, chief
investigators, data monitoring committee members and health economists) expressing difficulties of
adaptive designs. Lack of appropriate knowledge and familiarity of these designs in the scientific
community, insufficient time and funding structure, additional work required due to the complexity of
such designs and the needed statistical expertise and appropriate software are some of the highlighted
difficulties mentioned in the paper of Dimairo et al., 2015 [131]. In addition, this study includes the
characterisation of potential benefits of an adaptive design to patients, clinical trials as well as funders.

The different designs proposed so far for biomarker-guided designs, both non-adaptive designs
which remain an appealing approach to a great extent mainly due to their simplicity and adaptive
designs which are more flexible need to be further explored by the research community, as the proper
choice and use of such designs can result in a great increase in the efficiency of a trial and expedite the
development of novel treatments.

The characteristics and methodology of the five main designs and their subtypes are discussed
in the current paper, whilst information on their variations are summarized in File S1-S4. Additional
references for these variations and the literature review search strategy are provided in [132,133].

Supplementary Materials: The following are available online at www.mdpi.com/2075-4426/7/1/1/s1,
File S1–S4: Extensions of Biomarker-guided non-adaptive trial designs, Keywords S1: Literature review search
strategies for both biomarker-guided clinical trial designs and for traditional trial designs.
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