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Abstract: Our Modified Gravity Theory (MOG) is a gravitational theory without exotic dark

matter, based on an action principle. MOG has been used successfully to model astrophysical

phenomena, such as galaxy rotation curves, galaxy cluster masses and lensing. MOG may

also be able to account for cosmological observations. We assume that the MOG point

source solution can be used to describe extended distributions of matter via an appropriately

modified Poisson equation. We use this result to model perturbation growth in MOG and find

that it agrees well with the observed matter power spectrum at present. As the resolution of

the power spectrum improves with increasing survey size, however, significant differences

emerge between the predictions of MOG and the standardΛ-cold dark matter (Λ-CDM)

model, as in the absence of exotic dark matter, oscillationsof the power spectrum in MOG are

not suppressed. We can also use MOG to model the acoustic power spectrum of the cosmic

microwave background. A suitably adapted semi-analyticalmodel offers a first indication

that MOG may pass this test and correctly model the peak of theacoustic spectrum.
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1. Introduction

The preferred model of cosmology today, theΛ-cold dark matter (Λ-CDM) model, provides an

excellent fit to cosmological observations, but at a substantial cost: according to this model, about 95% of

the Universe is either invisible or undetectable, or possibly both [1]. This fact provides a strong incentive

to seek alternative explanations that can account for cosmological observations without resorting to dark

matter or Einstein’s cosmological constant.

For gravitational theories designed to challenge theΛ-CDM model, the bar is set increasingly

higher by recent discoveries. Not only do such theories haveto explain successfully the velocity

dispersions, rotational curves and gravitational lensingof galaxies and galaxy clusters, the theories must

also be in accord with cosmological observations, notably,the acoustic power spectrum of the cosmic

microwave background (CMB), the matter power spectrum of galaxies and the recent observation of the

luminosity-distance relationship of high-z supernovae, which is seen as evidence for “dark energy”.

Modified gravity (MOG [2]) has been used successfully to account for galaxy cluster masses [3], the

rotation curves of galaxies [4,5], velocity dispersions of satellite galaxies [6] and globular clusters [7].

It was also used to offer an explanation for the Bullet Cluster [8] without resorting to nonbaryonic

dark matter.

MOG may also be able to meet the challenge posed by cosmological observations. We investigate

two sets of observations in particular: the matter power spectrum that describes the spatial distribution

of galaxies in the Universe and the acoustic spectrum of the cosmic microwave background

(CMB) radiation.

In the next section, we review the key features of MOG. This isfollowed by sections presenting

detailed calculations for the galaxy power spectrum and theacoustic power spectrum of the CMB. A

concluding section summarizes our results and maps out future steps.

2. Modified Gravity Theory

Modified gravity (MOG) is a fully relativistic theory of gravitation that is derived from a relativistic

action principle [2] involving scalar, tensor and vector fields. MOG has evolvedas a result of

investigations of Nonsymmetric Gravity Theory (NGT [9]), and most recently, it has taken the form

of Scalar-Tensor-Vector Gravity (STVG [2]). In the weak field approximation, STVG, NGT and

Metric-Skew-Tensor Gravity (MSTG [10]) produce similar results.

2.1. Scalar-Tensor-Vector Gravity

Our Modified Gravity Theory is based on postulating the existence of a massive vector field,φµ. The

choice of a massive vector field is motivated by our desire to introduce arepulsivemodification of the law

of gravitation at short range. The vector field is coupled universally to matter. The theory, therefore, has

three constants: in addition to the gravitational constant,G, we must also consider the coupling constant,

ω, which determines the coupling strength between theφµ field and matter, and a further constant,µ,

which arises as a result of considering a vector field of non-zero mass and controls the coupling range.
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The theory promotesG, µ andω to scalar fields; hence, they are allowed to run, resulting inthe following

action [2,11]:

S = SG + Sφ + SS + SM (1)

where:

SG = − 1

16π

∫

1

G
(R + 2Λ)

√
−g d4x (2)

Sφ = −
∫

ω

[

1

4
BµνBµν −

1

2
µ2φµφ

µ + Vφ(φ)

]√
−g d4x (3)

SS =

∫

1

G

[

1

2
gµν

(∇µG∇νG

G2
+

∇µµ∇νµ

µ2
−∇µω∇νω

)

− VG(G)

G2
− Vµ(µ)

µ2
− Vω(ω)

]√
−g d4x (4)

Here,SM is the “matter” action, whileBµν = ∂µφν − ∂νφµ andVφ(φ), VG(G), Vω(ω) andVµ(µ) denote

the self-interaction potentials associated with the vector field and the three scalar fields. The symbol,

∇µ, is used to denote covariant differentiation with respect to the metric,gµν , while the symbols,R,

Λ andg, represent the Ricci-scalar, the cosmological constant and the determinant of the metric tensor,

respectively. We define the Ricci tensor as:

Rµν = ∂αΓ
α
µν − ∂νΓ

α
µα + Γα

µνΓ
β
αβ − Γα

µβΓ
β
αν (5)

Our units are such that the speed of light,c = 1; we use the metric signature(+,−,−,−).

The apparent “wrong” sign of the∇µω∇µω term in the Lagrangian is of potential concern; however,

we found that in all the solutions (including numerical solutions) considered to date,ω remains constant.

Keepingω as a dynamical scalar field (with the “wrong” sign in the Lagrangian) allowed us to develop

a parameter-free solution [11], but we anticipate that theω field may disappear from the theory, as it is

being further developed.

A direct numerical solution of the theory’s field equations in the spatially homogeneous, isotropic

case (FLRW cosmology) yields an expanding Universe. Choosing a constant,VG, as one of the initial

parameters of the solution, the age of the Universe can be adjusted to fit observation. As an alternative,

we also considered changing the overall sign of the kinetic terms inSS; this solution, which violates

several energy conditions, but keeps the energy density,ρ, positive, is a “bouncing” cosmology (indeed,

a classical bouncing cosmology requires that some or all of the energy conditions be violated). In this

cosmology, the age of the Universe, since the bounce and the density of the Universe at the time of the

bounce can be tuned by choosing an appropriate constant,VG. Either way, a solution in which the age of

the Universe is in agreement with observation can be obtained. These solutions are a subject of further

study, which will be reported elsewhere.

2.2. Point Particles in a Spherically Symmetric Field

For a point particle moving in the spherically symmetric field of a gravitating source, a particularly

simple solution for the acceleration is obtained [12]:

r̈ = −GNM

r2
[

1 + α− α(1 + µr)e−µr
]

(6)
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whereM is the source mass, whileα determines the strength of the “fifth force” interaction andµ

controls its range. In prior work,α andµ were considered free parameters that were fitted to data. Our

recent work [11] allows us to determineα andµ as functions of the source massM :

α =
M

(
√
M + E)2

(

G∞

GN
− 1

)

(7)

and:

µ =
D√
M

(8)

This solution can be seen to satisfy the field equations in thespherically symmetric case, either

numerically or by deriving an approximate solution analytically [11]. The numerical values forD and

E are determined by matching the result against galaxy rotation curves [11]:

D ≃ 6250M
1/2
⊙ kpc−1 (9)

E ≃ 25000M
1/2
⊙ (10)

The value ofG∞ ≃ 20GN is set to ensure that at the horizon distance, the effective strength of gravity is

about six timesGN , eliminating the need for cold dark matter in cosmological calculations, as described

in the previous section.

2.3. The MOG Poisson Equation

The acceleration law [Equation (6)] is associated with the potential:

Φ = −G∞M

r

[

1− α

1 + α
e−µr

]

= ΦN + ΦY (11)

where:

ΦN = −G∞M

r
(12)

is the Newtonian gravitational potential withG∞ = (1 + α)GN as the gravitational constant and:

ΦY =
α

1 + α
G∞M

e−µr

r
(13)

is the Yukawa-potential. These potentials are associated with the corresponding Poisson and

inhomogeneous Helmholtz equations, which are given by [8]:

∇2ΦN(r) = 4πG∞ρ(r) (14)

(∇2 − µ2)ΦY (r) = −4π
α

1 + α
G∞ρ(r) (15)

Full solutions to these potentials are given by:

ΦN(r) = −G∞

∫

ρ(r̃)

|r− r̃| d
3r̃ (16)

ΦY (r) =
α

1 + α
G∞

∫

e−µ|r−r̃|ρ(r̃)

|r− r̃| d3r̃ (17)
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These solutions can be verified against Equations (12) and (13) by applying the delta function point

source density,ρ(r) = Mδ3(r).

Strictly speaking, Equation (17) is a valid solution only whenα is approximately constant. For

inhomogeneous matter distributions,α is expected to vary as a function of matter density, and as

such, this naive application of the spherically symmetric,static vacuum solution to model extended

distributions of matter breaks down. However, for small perturbations of a homogeneous background,

we expect Equation (17) to remain valid; this expectation can be verified once generalized (approximate)

solutions of the theory in the presence of matter become available.

Combining Equation (11) with Equations (14) and (15) yields:

∇2Φ = 4πGNρ(r) + µ2ΦY (r) (18)

= 4πGNρ(r) + αµ2GN

∫

e−µ|r−r̃|ρ(r̃)

|r− r̃| d3r̃

containing, in addition to the usual Newtonian term, a nonlocal source term on the right-hand side.

3. MOG and the Matter Power Spectrum

The distribution of mass in the Universe is not uniform. Due to gravitational self-attraction, matter

tends to “clump” into ever denser concentrations, leaving large voids in between. In the early Universe,

this process is counteracted by pressure. The process is further complicated by the fact that in the early

Universe, the energy density of radiation was comparable tothat of matter.

3.1. Density Fluctuations in Newtonian Gravity

To the first order, this process can be investigated using perturbation theory. Taking an arbitrary initial

distribution, one can proceed to introduce small perturbations in the density, velocity and acceleration

fields. These lead to a second-order differential equation for the density perturbation that can be solved

analytically or numerically. This yields the transfer function, which determines how an initial density

distribution evolves as a function of time in the presence ofsmall perturbations.

3.1.1. Newtonian Theory of Small Fluctuations

In order to see how this theory can be developed for MOG, we must first review how the density

perturbation equation is derived in the Newtonian case. Ourtreatment follows closely the approach

presented by [13]. We begin with three equations: the continuity equation, the Euler equation and the

Poisson equation.

∂ρ

∂t
+∇ · (ρv) = 0, (19a)

∂v

∂t
+ (v · ∇)v = −1

ρ
∇p+ g, (19b)

∇ · g = −4πGρ. (19c)
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First, we perturbρ, p, v andg. Spelled out in full, we get:

∂(ρ+ δρ)

∂t
+∇ · [(ρ+ δρ)(v + δv)] = 0 (20a)

∂(v + δv)

∂t
+ [(v + δv) · ∇](v + δv) = − 1

ρ+ δρ
∇(p+ δp) + g + δg (20b)

∇ · (g + δg) = −4πG(ρ+ δρ) (20c)

Subtracting the original set of equations from the new set, using1/(ρ+δρ) = (ρ−δρ)/[ρ2−(δρ)2] =

1/ρ− δρ/ρ2, and eliminating second-order terms, we obtain:

∂δρ

∂t
+∇ · (δρv + ρδv) = 0 (21a)

∂δv

∂t
+ (v · ∇)δv + (δv · ∇)v =

δρ

ρ2
∇p− 1

ρ
∇δp+ δg (21b)

∇ · δg = −4πGδρ (21c)

A further substitution can be made by observing thatδp = (δp/δρ)δρ = c2sδρ, where

c2s = (∂p/∂ρ)adiabatic is the speed of sound. We can also eliminate terms by observing that the original

(unperturbed) state is spatially homogeneous, hence∇ρ = ∇p = 0:

∂δρ

∂t
+ v · ∇δρ+ δρ∇ · v + ρ∇ · δv = 0 (22a)

∂δv

∂t
+ (v · ∇)δv + (δv · ∇)v = −c2s

ρ
∇δρ+ δg (22b)

∇ · δg = −4πGδρ (22c)

Now, we note thatv = Hx, hence:

∇ · v = H∇ · x = 3H (23)

(δv · ∇)v = (δv · ∇)(Hx) = H(δv · ∇)x = Hδv (24)

Therefore:

∂δρ

∂t
+ v · ∇δρ+ 3Hδρ+ ρ∇ · δv = 0 (25a)

∂δv

∂t
+ (v · ∇)δv +Hδv = −c2s

ρ
∇δρ+ δg (25b)

∇ · δg = −4πGδρ (25c)

The next step is a change of spatial coordinates to coordinates comoving with the Hubble flow:

x = a(t)q (26)

This means:
(

∂

∂t

)

q

=

(

∂

∂t

)

x

+ v∇x (27)
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and:

∇q = a∇x (28)

After this change of coordinates, our system of equations becomes:

∂δρ

∂t
+ 3Hδρ+

1

a
ρ∇ · δv = 0 (29a)

∂δv

∂t
+Hδv = − c2s

aρ
∇δρ+ δg (29b)

∇ · δg = −4πaGδρ (29c)

Now is the time to introduce the fractional amplitude,δ = δρ/ρ. Dividing Equation (29a) with ρ,

we get:

δ̇ +
ρ̇

ρ
δ + 3Hδ +

1

a
∇ · δv = 0 (30)

However, sinceρ = ρ0a
3
0/a

3 and, hence,̇ρ/ρ = −3ȧ/a, the second and third terms cancel out, to give:

− aδ̇ = ∇δv (31)

Taking the gradient of Equation (29b) and using Equation (29c) to express∇ · δg, we get:

∂

∂t
(−aδ̇) +H(−aδ̇) = −c2s

a
∇2δ − 4πGaρδ (32)

Spelling out the derivatives and dividing both sides witha, we obtain:

δ̈ + 2Hδ̇ − c2s
a2

∇2δ − 4πGρδ = 0 (33)

For every Fourier mode,δ = δk(t)e
ik·q (such that∇2δ = −k2δ), this gives:

δ̈k + 2Hδ̇k +

(

c2sk
2

a2
− 4πGρ

)

δk = 0 (34)

The quantityk/a is called the co-moving wave number.

If k is large, solutions to Equation (34) are dominated by an oscillatory term; for smallk, a growth

term predominates.

A solution to Equation (34) tells us how a power spectrum evolves over time, as a function of the

wave number; it does not specify the initial power spectrum.For this reason, solutions to Equation (34)

are typically written in the form of a transfer function:

T (k) =
δk(z = 0)δ0(z = ∞)

δk(z = ∞)δ0(z = 0)
(35)

If the initial power spectrum and the transfer function are known, the power spectrum at a later time

can be calculated (without accounting for small effects) as:

P (k) = T 2(k)P0(k) (36)
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P (k) is a dimensioned quantity. It is possible to form the dimensionless power spectrum:

∆2(k) = Ak3T 2(k)P0(k) (37)

whereA is a normalization constant determined by observation. This form often appears in the literature.

In the present work, however, we are usingP (k) instead of∆(k).

The initial power spectrum is believed to be a scale invariant power spectrum:

P0(k) ∝ kn (38)

wheren ≃ 1. A recent estimate [1] on n is n = 0.963+0.014
−0.015.

3.1.2. Analytical Approximation

Equation (34) is not difficult to solve in principle. The solution can be written as the sum of oscillatory

and growing terms. The usual physical interpretation is that when pressure is sufficient to counteract

gravitational attraction, this mechanism prevents the growth of density fluctuations, and their energy is

dissipated instead in the form of sound waves. When the pressure is low, however, the growth term

dominates, and fluctuations grow. Put into the context of an expanding Universe, one can conclude

that in the early stages, when the Universe was hot and dense,the oscillatory term had to dominate.

Later, the growth term took over, and the perturbation spectrum “froze”, affected only by uniform

growth afterward.

In practice, several issues complicate the problem. First,the early Universe cannot be modeled

by matter alone; it contained a mix of matter and radiation (and, possibly, neutrinos and cold dark

matter). To correctly describe this case, even using the linear perturbation theory outlined in the previous

sections, one needs to resort to a system of coupled differential equations describing the different

mediums. Second, if the perturbations are sufficiently strong, linear theory may no longer be valid.

Third, other nonlinear effects, including Silk-damping [14], cannot be excluded, as their contribution

is significant (indeed, Silk damping at higher wave numbers is one of the reasons why a baryon-only

cosmological model based on Einstein’s theory of gravity without dark matter fails to account for the

matter power spectrum).

The authors of [15] addressed all these issues when they developed a semi-analytical solution to the

baryon transfer function. This solution reportedly yieldsgood results in the full range of0 ≤ Ωb ≤ 1.

Furthermore, unlike other approximations and numerical software codes, this approach keeps the

essential physics transparent, allowing us to adapt the formulation to the MOG case.

In [15], the transfer function is written as the sum of a baryonic term, Tb, and a cold dark matter

term,Tc:

T (k) =
Ωb

Ωm

Tb(k) +
Ωc

Ωm

Tc(k) (39)

whereΩc represents the cold dark matter content of the Universe relative to the critical density. As we

are investigating a cosmology with no cold dark matter, we ignoreTc. The baryonic part of the transfer

function departs from the cold dark matter case on scales comparable to, or smaller than, the sound

horizon. Consequently, the baryonic transfer function is written as:

Tb(k) =

[

T̃0(k, 1, 1)

1 + (ks/5.2)2
+

αbe
−(k/kSilk)

1.4

1 + (βb/ks)3

]

sin ks̃

ks̃
(40)
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with:

T̃0(k, αc, βc) =
ln (e+ 1.8βcq̄)

ln (e+ 1.8βcq̄) + Cq̄2
(41)

where:

C =
14.2

αc
+

386

1 + 69.9q̄1.08
(42)

and:

q̄ = kΘ2
2.7

(

Ωmh
2
)−1

(43)

The sound horizon is calculated as:

s =
2

3keq

√

G

Req

ln

√
1 +Rd +

√

Rd +Req

1 +
√

Req

(44)

The scale at the equalization epoch is calculated as:

keq = 7.46× 10−2Ωmh
2Θ−2

2.7 (45)

The transition from a radiation-dominated to a matter-dominated era happens at the redshift:

zeq = 25000Ωmh
2Θ−4

2.7 (46)

while the drag era is defined as:

zd = 1291
(Ωmh

2)0.251

1 + 0.659(Ωmh2)0.828
[1 + b1(Ωmh

2)b2 ] (47)

where:

b1 = 0.313(Ωmh
2)−0.419[1 + 0.607(Ωmh

2)0.674] (48)

and:

b2 = 0.238(Ωmh
2)0.223 (49)

The baryon-to-photon density ratio at a given redshift is calculated as:

R = 31.5Ωmh
2Θ−4

2.7

1000

z
(50)

The Silk damping scale is obtained using:

kSilk = 1.6(Ωbh
2)0.52(Ωmh

2)0.73[1 + (10.4Ωmh
2)−0.95] (51)

The coefficients in the second term of the baryonic transfer function are written as:

αb = 2.07keqs(1 +Rd)
−3/4F

(

1 + zeq
1 + zd

)

(52)

βb = 0.5 +
Ωb

Ωm
+

(

3− 2
Ωb

Ωm

)

√

(17.2Ωmh2)2 + 1 (53)

where we used the function:

F (y) = y

[

−6
√

1 + y + (2 + 3y) ln

√
1 + y + 1√
1 + y − 1

]

(54)
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A shifting of nodes in the baryonic transfer function is accounted for by the quantity:

s̃(k) =
s

[

1 + (βnode/ks)
3]1/3

(55)

where:

βnode = 8.41(Ωmh
2)0.435 (56)

The symbol, Θ2.7 = T/2.7, is the temperature of the CMB relative to 2.7 K, while

h = H/(100 km/s/Mpc). The wave number,k, is in units of Mpc−1.

3.2. Density Fluctuations in Modified Gravity

We consider the MOG Poisson Equation (18), established in Section2.3. As the initial unperturbed

distribution is assumed to be homogeneous,ρ is not a function ofr and can be taken outside the

integral sign:

ΦY (r) = GNαρ

∫

1

|r− r′|e
−µ|r−r′|d3r′ (57)

Varyingρ, we get:

∇ · δg(r) = −4πGNδρ(r)

−µ2GNαδρ

∫

1

|r− r′|e
−µ|r−r′|d3r′ (58)

Accordingly, Equation (33) now reads:

δ̈ + 2Hδ̇ − c2s
a2

∇2δ − 4πGNρδ − µ2GNαρδ

∫

e−µ|r−r′|

|r− r′| d
3r′ = 0 (59)

The integral can be readily calculated. Assuming that|r−r′| runs from zero to the comoving wavelength,

a/k, we get:

∫

e−µ|r−r′|

|r− r′| d
3r′ = 2

π/2
∫

0

2π
∫

0

a/k
∫

0

e−µr

r
r2 sin θ dr dφ dθ

=
4π

[

1− (1 + µa/k)e−µa/k
]

µ2
(60)

Substituting into Equation (59), we get:

δ̈ + 2Hδ̇ − c2s
a2

∇2δ − 4πGNρδ

− 4πGNα
[

1−
(

1 +
µa

k

)

e−µa/k
]

ρδ = 0 (61)

or:

δ̈ + 2Hδ̇ − c2s
a2

∇2δ (62)

−4πGN

{

1 + α
[

1−
(

1 +
µa

k

)

e−µa/k
]}

ρδ = 0
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This demonstrates how the effective gravitational constant:

Geff = GN

{

1 + α
[

1−
(

1 +
µa

k

)

e−µa/k
]}

(63)

depends on the wave number.

UsingGeff , we can express the perturbation equation as:

δ̈k + 2Hδ̇k +

(

c2sk
2

a2
− 4πGeffρ

)

δk = 0 (64)

As the wave number,k, appears only in the source term,
(

c2sk
2

a2
− 4πGeffρ

)

,

it is easy to see that any solution of Equation (34) is also a solution of Equation (64), provided thatk is

replaced byk′ in accordance with the following prescription:

k′2 = k2 + 4πa2
(

Geff −GN

GN

)

λ−2
J (65)

whereλJ =
√

c2s/GNρ is the Jeans wavelength.

This shifting of the wave number applies to the growth term ofthe baryonic transfer function (40).

However, as the sound horizon scale is not affected by changes in the effective gravitational constant,

terms containing the product,ks, must remain unchanged. Furthermore, the Silk damping scale must

also change as a result of changing gravity; this change is proportional to the3/4th power ofG, as

demonstrated by [14] (cf. Equation (4.210) in [14]; note thatΩh2 ∝ G), thus:

k′
Silk = kSilk

(

Geff

GN

)3/4

(66)

[note also Equation (51)]. Using these considerations, we obtain the modified baryonic transfer function:

T ′
b(k) =

sin ks̃

ks̃

{

T̃0(k
′, 1, 1)

1 + (ks/5.2)2
+

αb exp (−[k/k′
Silk]

1.4)

1 + (βb/ks)3

}

(67)

The effects of these changes can be summed up as follows. At low values ofk, the transfer function is

suppressed. At high values ofk, where the transfer function is usually suppressed by Silk damping, the

effect of this suppression is reduced. The combined result is that the tilt of the transfer function changes,

such that its peaks are now approximately in agreement with data points, as seen in Figure1.

Data points shown in this figure come from several sources. First and foremost, the two data

releases of the Sloan Digital Sky Survey (SDSS [16,17]) are presented. Additionally, data from the

Two-degree-Field (2dF) Galaxy Redshift Survey [18], UK Schmidt Telescope (UKST) [19], and

CfA130 [20] surveys are shown. Apart from normalization issues, the data from these surveys are

consistent in the range of0.01 h Mpc−1 ≤ k ≤ 0.5 h Mpc−1. Some surveys provide data points outside

this range, but they are not in agreement with each other.
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Figure 1. The matter power spectrum. Three models are compared against five data sets

(see text):Λ-cold dark matter (Λ-CDM) (dashed blue line,Ωb = 0.035, Ωc = 0.245,ΩΛ =

0.72, H = 71 km/s/Mpc), a baryon-only model (dotted green line,Ωb = 0.035, H =

71 km/s/Mpc) and modified gravity (MOG) (solid red line,α = 19, µ = 5 h Mpc−1, Ωb =

0.035, H = 71 km/s/Mpc), Data points are colored light blue [Sloan Digital Sky Survey

(SDSS) 2006], gold (SDSS 2004), pink [Two-degree-Field (2dF)], light green [UK Schmidt

Telescope (UKST)] and dark blue (CfA).

3.3. Discussion

As a result of the combined effects of dampened structure growth at low values ofk and reduced

Silk damping at high values ofk, the slope of the MOG transfer function differs significantly from

the slope of the baryonic transfer function and matches closely with the observed values of the matter

power spectrum. On the other hand, the predictions of MOG andΛ-CDM cosmology differ in

fundamental ways.

First, MOG predicts oscillations in the power spectrum, which are not smoothed out by dark matter.

These oscillations may be detectable in future galaxy surveys that utilize a large enough number of

galaxies and sufficiently narrow window functions in order to be sensitive to such fluctuations. However,

the finite size of samples and the associated window functions used to produce presently available power

spectra mask any such oscillations. To illustrate this, we applied the same window function to the MOG

prediction, which resulted in a smoothed curve, seen in Figure 2. A χ2 comparison actually suggests

that MOG offers a better fit (χ2
MOG = 0.03, χ2

ΛCDM = 0.09 per degree of freedom), although we must be

cautious: theΛ-CDM approximation we used is not necessarily the best approximation available, and the

MOG result is dependent on the validity of the analysis presented in this section, which was developed

without the benefit of an interior solution.
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Figure 2. The effect of window functions on the power spectrum is demonstrated by

applying the SDSS luminous red galaxy survey window functions to the MOG prediction.

Baryonic oscillations are greatly dampened in the resulting curve (solid red line). A

normalized linearΛ−CDM estimate is also shown (thin blue line) for comparison.

Second, MOG predicts a dampened power spectrum at both high and low values ofk relative

to Λ-CDM. Observations at sufficiently high values ofk may not be practical, as we are entering

sub-galactic length scales. Low values ofk are a different matter: as accurate three-dimensional

information becomes available on ever more distant galaxies, power spectrum observations are likely

to be extended in this direction.

In the present work, we made no attempt to account for the possibility of a non-zero neutrino mass

and its effects on the power spectrum. Given the uncertainties in the semi-analytical approximations that

we utilized, such an attempt would not have been very fruitful. Future numerical work, however, must

take into account the possibility of a non-negligible contribution of neutrinos to the matter density.

4. MOG and the CMB

The cosmic microwave background (CMB) is highly isotropic,showing only small temperature

fluctuations as a function of sky direction. These fluctuations are not uniformly random; they show

a distinct dependence on angular size, as has been demonstrated by the measurements of the Boomerang

experiment [21] and the Wilkinson Microwave Anisotropy Probe (WMAP [1]).

The angular power spectrum of the CMB can be calculated in a variety of ways. The preferred

method is to use numerical software, such asCMBFAST [22]. Unfortunately, such software packages

cannot easily be adapted for use with MOG. Instead, at the present time, we opt to use the excellent

semi-analytical approximation developed by [23]. While not as accurate as numerical software, it lends

itself more easily to nontrivial modifications, as the physics remain evident in the equations.

What justifies the use of this semi-analytical approach is the fact that the phenomenology of MOGvs.

dark matter can be understood easily. Collisionless cold dark matter interacts with normal matter only
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through gravity. In the late Universe, the ratio of cold darkmattervs.baryonic matter varies significantly

from region to region; this is why the results of the previoussection are nontrivial and significant.

However, in the early Universe (recombination era), the Universe was still largely homogeneous, and

cold dark matter effectively acted as a “gravity enhancer”:its effects can be mimicked by simply

increasing the effective gravitational constant.

This may seem surprising in view of studies that have placed stringent constraints on the variability of

G. For example, after substitutingG → λ2G in the Friedmann equation, the authors of [24] have shown

thatλ is constrained to be 10% or better by WMAP data. At first sight,this seems inconsistent with our

assertion that MOG, withGeff > GN , can successfully mimic the effects of dark matter on the CMB

acoustic spectrum. Yet, that this is the case, as can be seen if one writes down the Friedmann equation

after incorporatingλ:

H2 ∼ 8π

3
λ2Gρ

The full form of the substitution rule, therefore, isGρ → λ2Gρ. In MOG, we substituteG → Geff and

ρ → ρb (no CDM component), but(Gρ)ΛCDM = (Geffρb)MOG; hence,λ ≡ 1.

This discussion leads to a simple substitution rule that is applicable when the Universe is

approximately homogeneous. When a quantity containingG appears in an equation describing a

gravitational interaction,Geff must be used. However, when a quantity likeΩb is used to describe a

nongravitational effect, the Newtonian value ofGN must be retained.

Our choice to use Mukhanov’s semianalytical approximationis motivated by the fact that these

substitutions can be made in the formulae in a straightforward and unambiguous manner.

4.1. Semi-Analytical Estimation of CMB Anisotropies

In [23], we find a calculation of the correlation function,C(l), wherel is the multipole number of the

acoustic power spectrum of the CMB using the solution:

C(l)

[C(l)]low l

=
100

9
(O +N) (68)

wherel ≫ 1, O denotes the oscillating part of the spectrum, while the non-oscillating part is written as

the sum of three parts:

N = N1 +N2 +N3 (69)

These, in turn, are expressed as:

N1 = 0.063ξ2
[P − 0.22(l/lf)

0.3 − 2.6]2

1 + 0.65(l/lf)1.4
e−(l/lf )

2

(70)

N2 =
0.037

(1 + ξ)1/2
[P − 0.22(l/ls)

0.3 + 1.7]2

1 + 0.65(l/ls)1.4
e−(l/ls)2 (71)

N3 =
0.033

(1 + ξ)3/2
[P − 0.5(l/ls)

0.55 + 2.2]2

1 + 2(l/ls)2
e−(l/ls)2 (72)

The oscillating part of the spectrum is written as:

O = e−(l/ls)2
√

π

ρ̄l

×
[

A1 cos
(

ρ̄l +
π

4

)

+ A2 cos
(

2ρ̄l +
π

4

)]

(73)
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where:

A1 = 0.1ξ
(P − 0.78)2 − 4.3

(1 + ξ)1/4
e

1

2
(l−2
s −l−2

f )l2 (74)

and:

A2 = 0.14
(0.5 + 0.36P )2

(1 + ξ)1/2
(75)

The parameters that occur in these expressions are as follows. First, the baryon density parameter:

ξ = 17
(

Ωbh
2
75

)

, (76)

whereΩb ≃ 0.035 is the baryon content of the Universe at present relative to the critical density and

h75 = H/(75 km/s/Mpc). The growth term of the transfer function is represented by:

P = ln
Ω−0.09

m l

200
√

Ωmh
2
75

(77)

whereΩm ≃ 0.3 is the total matter content (baryonic matter, neutrinos andcold dark matter). The

free-streaming and Silk damping scales are determined, respectively, by:

lf = 1300
[

1 + 7.8× 10−2
(

Ωmh
2
75

)−1
]1/2

Ω0.09
m (78)

ls =
0.7lf

√

√

√

√

1+0.56ξ
1+ξ

+ 0.8
ξ(1+ξ)

(Ωmh2
75)

1/2

[

1+(1+ 100

7.8
Ωmh2

75)
−1/2

]2

(79)

Lastly, the location of the acoustic peaks is determined by the parameter:

ρ̄ = 0.015(1 + 0.13ξ)−1(Ωmh
3.1
75 )

0.16 (80)

Note that we slightly adjusted the coefficients of Equations(78) and (80), which improved the fit

noticeably, while remaining fully consistent with Mukhanov’s derivation.

4.2. The MOG CMB Spectrum

The semi-analytical approximation presented in the previous section can be adapted to the MOG case

by making two important observations.

First, in all expressions involving the value of Mukhanov’sΩm (which includes contributions from

baryonic matter and cold dark matter using Newton’s gravitational constant), we need to useΩM ≃ 0.3

(which includes baryonic matter only, using the running value of the gravitational constant,Geff ≃ 6GN ).

Second, we notice that the value ofΩb in Equation (76) does not depend on the effective value of the

gravitational constant, as this value is a function of the speed of sound, which depends on the (baryonic)

matter density, regardless of gravitation. In other words,Ωb ≃ 0.035 is calculated using Newton’s

gravitational constant.

After we modify Mukhanov’s semi-analytical formulation bytaking these considerations into

account, we obtain the fit to the acoustic power spectrum shown in Figure3.
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Figure 3. MOG and the acoustic power spectrum. Calculated usingΩM = 0.3, Ωb =

0.035,H0 = 71 km/s/Mpc. Also shown are the raw Wilkinson Microwave Anisotropy Probe

(WMAP) three-year data set (light blue), binned averages with horizontal and vertical error

bars provided by the WMAP project (red) and data from the Boomerang experiment (green).

4.3. Discussion

As Figure3 demonstrates, to the extent that Mukhanov’s formulation isapplicable to MOG, the

theory achieves agreement with the observed acoustic powerspectrum. This result was obtained without

fine-tuning or parameter fitting. The MOG constant,µ, was assumed to be equal to the inverse of the

radius of the visible Universe. Thereafter, the value ofα is fixed if we wish to ensureΩM ≃ 0.3. This

was sufficient to achieve consistency with the data.

5. Conclusions

In this paper, we demonstrated how MOG can account for key cosmological observations using a

minimum number of free parameters. We applied the MOG point source solution in a suitably modified

form of the Poisson equation and re-derived the equations ofstructure growth. We found that the result

is in agreement with presently available observational data.

Notably, we also found that as the available data sets grow insize, a significant and, likely,

irreconcilable disagreement emerges between the predictions of MOG and those of theΛ-CDM

concordance model. InΛ-CDM, the presence of collisionless exotic dark matter leads to a significant

dampening of the baryonic oscillations in the matter power spectrum: unit oscillations are suppressed

and appear only as a slight modulation of the power spectrum at shorter wavelengths. In contrast, unit

oscillations arenot suppressed in MOG. Presently, these oscillations are not seen, only because the

resolution of the data is not high enough: when we apply the appropriate bin sizes and window functions

to a simulated data set, the resulting curve is nearly smooth. As galaxy surveys grow in size, however,

bin sizes will get smaller and, if MOG is correct, the unit oscillations will emerge in the data.
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We also investigated the acoustic power spectrum of the cosmic microwave background using MOG.

Existing software codes, notably the programCMBFAST [22] and its derivatives, are ill suited for this

investigation, as it is difficult to disentangle the use of quantities proportional toGρ in gravitationalvs.

nongravitational contexts. Before embarking on what seemsto be a formidable task, we turned to a

semi-analytical approximation [23]. While many of the approximations employed by [23] are

not physically motivated, but numerical fitting formulae, nonetheless, the role played by quantities

proportional toGρ can be clearly discerned, and the formulae can be suitably adapted. While we

recognize that this is not a conclusive result, we find it nonetheless encouraging that the CMB acoustic

power spectrum was faithfully reproduced.

In conclusion, we have demonstrated that cosmological observations of the matter power spectrum

and the CMB acoustic spectrum do not trivially rule out MOG asa possible alternative to the standard

Λ-CDM model of cosmology.
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