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Abstract: Hořava–Lifshitz gravity has covariance only under the foliation-preserving
diffeomorphism. This implies that the quantities on the constant-time hypersurfaces should
be regular. In the original theory, the projectability condition, which strongly restricts the
lapse function, is proposed. We assume that a star is filled with a perfect fluid with no-radial
motion and that it has reflection symmetry about the equatorial plane. As a result, we find a
no-go theorem for stationary and axisymmetric star solutions in projectable Hořava–Lifshitz
gravity under the physically reasonable assumptions in the matter sector. Since we do not
use the gravitational action to prove it, our result also works out in other projectable theories
and applies to not only strong gravitational fields, but also weak gravitational ones.
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1. Introduction

Recently, Hořava proposed a power-counting renormalizable gravitational theory [1,2]. The theory is
called Hořava–Lifshitz gravity, because it exhibits the Lifshitz-type anisotropic scaling in the ultraviolet:

t→ bzt, xi → bxi (1)

where t, xi, b and z are the temporal coordinate, the spatial coordinates, the scaling factor and the
dynamical critical exponent, respectively, and i runs over one, two and three. Since this theory
is expected to be renormalizable and unitary, its phenomenological aspects [3,4] and variants [5,6]



Galaxies 2013, 1 262

strenuously have been investigated, including black holes [7–16], dark matter [17,18], dark energy [19],
the solar system test [20] and so on.

The field variables in this theory are the lapse function, N(t), the shift vector, N i(t, x), and the spatial
metric, gij(t, x). Note that the shift vector, N i, and the spatial metric, gij , can depend on both t and xi,
but that the lapse function, N , can only do so on t. Since the lapse function, N , can be interpreted as a
gauge field associated with the time reparametrization, it is natural to restrict it to be space independent.
This assumption, called the projectability condition, is proposed in Hořava’s original paper [1] from the
view point of quantization. However, the pathological behaviors of the projectability condition, such as
the infrared instability and the strong coupling, are found [1,2,21–26], and the theory has been extended
to avoid the adverse situation [27,28].

Since higher derivative terms do not contribute at large distances, the action of this theory can recover
the apparent form of general relativity if we tune a coupling parameter. In this context, it seems that
projectable Hořava–Lifshitz gravity passes astrophysical tests. However, we will show that, actually,
this is not true in this paper.

In this theory, black holes have been investigated eagerly, while stars have not been studied so
much [29,30]. The comparison of the features of star solutions in Hořava–Lifshitz gravity with the
corresponding ones in Einstein gravity would be one of the astrophysical tests for Hořava–Lifshitz
gravity. It is important to investigate star solutions, gravitational collapse [31] and the formation of
black holes.

The first study of stars in Hořava–Lifshitz gravity was done by Izumi and Mukohyama [29]. They
found a no-go theorem that no spherically symmetric and static solution filled a perfect fluid without
radial motion exists in this projectable theory under the assumptions that the energy density is a
piecewise-continuous and non-negative function of the pressure and that the pressure at the center is
positive. Their result is powerful, because it does not depend on the gravitational action.

To construct star solutions, we have to change at least one of their assumptions for the matter
sector, the symmetry of spacetime, the projectability and the invariance under the foliation-preserving
diffeomorphism. Greenwald, Papazoglou and Wang found spherically symmetric static solutions, which
are filled with a perfect fluid with radial motion and a class of an anisotropic fluid in the projectable
Hořava–Lifshitz gravity without the detailed balance condition [30].

It seems that static solutions are too simple to describe realistic stars, which are generally rotational.
In this paper, we investigate a stationary and axisymmetric star in projectable Hořava–Lifshitz gravity.
We find a no-go theorem that the stationary and axisymmetric star filled with a perfect fluid without
radial motion in the reflection symmetry about the equatorial plane does not exist under the physically
reasonable conditions on the matter sector. Since we do not use the gravitational action to prove it, our
result also works out in other projectable theories [5,32] and applies to not only strong gravitational
fields, like neutron stars, but also weak gravitational ones, like planets or moons. Our proof implies
another ill behavior of the projectability condition if we follow a principle that stars should be described
by stationary solutions of a low-energy effective theory. On the other hand, even if we do not follow
this principle, our result would be useful to investigate rotating-star solutions in this theory and then
to compare the solutions with the corresponding ones in Einstein gravity for astrophysical tests of
this theory.
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This paper is organized as follows. In Section 2, we shall describe the definitions, the basic equations
and the properties of Hořava–Lifshitz gravity. In Section 3, we give the main result that there are no
stationary and axisymmetric star solutions with a perfect fluid, which does not have the radial component
of the four-velocity under a set of reasonable assumptions in the matter sector. In Section 4, we
summarize and discuss our result. In Appendix A, we show the explicit expression for the equation
of motion. In Appendix B, we show the triad components of the extrinsic curvature tensor. In this paper,
we use the units in which c = 1.

2. Properties of Hořava–Lifshitz Gravity

In this section, we shall describe the definitions, the basic equations and the properties of
Hořava–Lifshitz gravity. Hořava–Lifshitz gravity does not have general covariance, since the
Lifshitz-type anisotropic scaling treats time and space differently. Instead, this theory is invariant under
the foliation-preserving diffeomorphism:

t→ t̃(t), xi → x̃i(t, xj) (2)

This means that the foliation of the spacetime manifold by constant-time hypersurfaces has a physical
meaning. Thus, the quantities on the constant-time hypersurfaces, such as the extrinsic curvature tensor
and the shift vector, must be regular.

It is useful to describe the line element in the Arnowitt–Deser–Misner (ADM) form [33]:

ds2 = −N2dt2 + gij(dx
i +N idt)(dxj +N jdt) (3)

The action proposed by Hořava [1] is given by:

I = Ig + Im (4)

Ig =

∫
dtd3x

√
gN

{
2

κ2
(KijKij − λK2)− κ2

2ω4
CijC

ij +
κ2µ

2ω2
εijkRilDjR

l
k −

κ2µ2

8
RijR

ij

+
κ2µ2

8(1− 3λ)

(
1− 4λ

4
R2 + ΛWR− 3Λ2

W

)}
(5)

where Im is the matter action, R is the Ricci scalar of gij , Rij is the Ricci tensor of gij ,Di is the covariant
derivative compatible with gij , Kij is the extrinsic curvature of a constant-time hypersurface, defined by:

Kij =
1

2N
(∂tgij −DiNj −DjNi) (6)

K = gijKij , Cij is the Cotton tensor, defined by:

Cij = εiklDk

(
Rj

l −
1

4
Rδjl

)
(7)

εikl = ϵikl/
√
g is the antisymmetric tensor, which is covariant with respect to gij , and κ, ω, µ, λ and ΛW

are constant parameters. We can rewrite the gravitational action (5):

Ig =

∫
dtd3x

√
gN [α(KijKij − λK2) + βCijC

ij + γεijkRilDjR
l
k + ζRijR

ij + ηR2 + ξR + σ] (8)
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where parameters α, β, γ, ζ, η, ξ and σ are given by:

α =
2

κ2
, β = − κ2

2ω4
, γ =

κ2µ

2ω2
, ζ = −κ

2µ2

8
,

η =
κ2µ2

8(1− 3λ)

1− 4λ

4
, ξ =

κ2µ2

8(1− 3λ)
ΛW , σ =

κ2µ2

8(1− 3λ)
(−3Λ2

W ) (9)

If we take λ = 1 to recover the apparent form of general relativity and the apparent Lorentz invariance,
we can compare this action to that of general relativity. Then, we obtain:

α =
1

16πG
, ξ = α, σ = −2Λα (10)

where Λ is the cosmological constant and G is Newton’s constant.
Under the infinitesimal coordinate transformation:

δt = f(t), δxi = ζ i(t, x) (11)

gij , N i and N transform as:

δgij = f∂tgij + Lζgij (12)

δN i = ∂t(N
if) + ∂tζ

i + LζN
i (13)

δNi = ∂t(Nif) + gij∂tζ
j + LζNi (14)

δN = ∂t(Nf) (15)

where Lζ is the Lie derivative along ζ i(t, x). Lζgij and LζN
i are given by:

Lζgij = gjkDiζ
k + gikDjζ

k (16)

LζN
i = ζkDkN

i −NkDkζ
i (17)

By the variation of the action with respect to N , we get the Hamiltonian constraint:

Hg⊥ +Hm⊥ = 0 (18)

where:

Hg⊥ ≡ −δIg
δN

=

∫
dx3

√
g
[
(αKijKij − λK2)− βCijC

ij − γεijkRilDjR
l
k − ζRijR

ij − ηR2 − ξR− σ
]

(19)

and:

Hm⊥ ≡ −δIm
δN

=

∫
dx3

√
gTµνn

µnν (20)

Here, nµ is defined as:

nµdx
µ = −Ndt, nµ∂µ =

1

N
(∂t −N i∂i) (21)

Notice that due to the projectability condition N = N(t), the Hamiltonian constraint is global in
Hořava–Lifshitz gravity, while it is local in general relativity.
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From the variation of the action with respect to N i, we obtain the momentum constraint:

Hgi +Hmi = 0 (22)

where:

Hgi ≡ − 1
√
g

δIg
δN i

= −2αDj(Kij − λKgij) (23)

Hmi ≡ − 1
√
g

δIm
δN i

= Tiµn
µ (24)

By the variation of the action with respect to gij , we get the equation of motion:

Egij + Emij = 0 (25)

where:
Egij ≡ gikgjl

2

N
√
g

δIg
δgkl

(26)

Emij ≡ gikgjl
2

N
√
g

δIm
δgkl

= Tij (27)

The explicit expression for the equation of motion is given in Appendix A.
By the invariance of the gravitational action and the matter action under the infinitesimal

transformation (11), we get the energy conservation:

N∂tHα⊥ +

∫
dx3

(
N i∂t(

√
gHαi) +

N
√
g

2
E ij
α ∂tgij

)
= 0 (28)

and the momentum conservation:

0 =
1

N
(∂t −N jDj)Hαi +KHαi −

1

N
HαjDiN

j −DjEαij (29)

where α represents g or m.
In the next section, we will only use the momentum conservation of the matter to show that

no stationary and axisymmetric star solution exists. Therefore, our result does not depend on the
gravitational action.

3. No Stationary and Axisymmetric Star Solutions

In this section, we show a no-go theorem for stationary and axisymmetric star solutions in projectable
Hořava–Lifshitz gravity. To prove it, we assume that a star is filled with a perfect fluid, which does not
have the radial component of the four-velocity, that it has the reflection symmetry about the equatorial
plane, that the energy density is a piecewise-continuous and non-negative function of the pressure, that
the pressure is a continuous function of r and that the pressure at the center of the star is positive.

3.1. Stationary and Axisymmetric Configuration

We consider stationary and axisymmetric configurations with the timelike and spacelike Killing
vectors, respectively, given by:
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tµ∂µ = ∂t (30)

ϕµ∂µ = ∂ϕ (31)

Under the stationary configurations, the lapse function, N , does not depend on t. In the original
theory, the projectability condition N = N(t) is proposed [1]. This condition means that the lapse
function, N , does not depend on the spatial coordinates, xi, but only can do so on the temporal
coordinate, t. Thus, the lapse function, N , is a constant.

The timelike Killing vector, tµ, implies everywhere:

N2 −NiN
i > 0 (32)

The spacelike Killing vector, ϕµ, implies that:

ϕµϕµ = gϕϕ (33)

is a geometrical invariant.
As a part of the gauge condition, we take:

grθ = grϕ = 0 (34)

Under this gauge condition, the general form for the spatial line element is described by [34]:

dl2 = ψ4[A2dr2 +
r2

B2
dθ2 + r2B2(sin θdϕ+ ξdθ)2] (35)

where ψ, A, B and ξ are functions of r and θ, but neither t nor ϕ for stationarity and axisymmetry.
Now we assume that the spacetime has a rotation axis, where sin θ = 0. This means:

ϕµϕµ = gϕϕ = 0 (36)

there [35].

3.2. Triad Components of Shift Vector

We define triad basis vectors
{
e(i)

}
. e(1) is along the radial direction; e(3) is along the axial Killing

vector and e(2) is fixed by the orthonormality and the right-hand rule. The coordinate components for
the orthonormal triad are:

ei(1) =
1

ψ2

[
1

A
, 0, 0

]
(37)

ei(2) =
1

ψ2

[
0,
B

r
,− ξB

r sin θ

]
(38)

ei(3) =
1

ψ2

[
0, 0,

1

rB sin θ

]
(39)

where we have used the spatial line element (35). The projection of the shift vector on the triad is related
to its coordinate components by:

N(1) =
Nr

ψ2A
(40)

N(2) =
NθB

ψ2r
− NϕξB

ψ2r sin θ
(41)

N(3) =
Nϕ

ψ2rB sin θ
(42)
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3.3. Regularity Conditions at the Origin

Here, we give the regularity conditions of the shift vector, N i, near the origin. A tensorial quantity is
regular at r = 0 if and only if all its components can be expanded in non-negative integer powers of x, y
and z in locally Cartesian coordinates, defined by:

x ≡ r sin θ cosϕ (43)

y ≡ r sin θ sinϕ (44)

z ≡ r cos θ (45)

The Lie derivative of the shift vector, N i, along the spacelike Killing vector vanishes, or:

N i
,jϕ

j − ϕi
,jN

j = 0 (46)

In locally Cartesian coordinates, the spacelike Killing vector is written as:

ϕi∂i = −y∂x + x∂y (47)

Then, its components of Equation (46) are:

−Nx
,xy +Nx

,yx+Ny = 0 (48)

−Ny
,xy +Ny

,yx−Nx = 0 (49)

−N z
,xy +N z

,yx = 0 (50)

The general regular solution of these equations is:

Nx = F1(z, ρ
2)x− F2(z, ρ

2)y (51)

N y = F1(z, ρ
2)y + F2(z, ρ

2)x (52)

N z = F3(z, ρ
2) (53)

where F1, F2 and F3 are independent and regular functions, which depend on z and ρ2 ≡ x2 + y2.
Now, transforming N i back to the spherical coordinates, r, θ and ϕ, we get the spherical components:

N r

r
= sin2 θF1 +

1

r
cos θF3 (54)

N θ

sin θ
= cos θF1 −

F3

r
(55)

Nϕ = F2 (56)

On the rotation axis (sin θ = 0), thus, we obtain:

N θ = 0 (57)

Using Equations (35), (37)–(39) and (54)–(56), the triad components are given by:

N(1) = ψ2A(r sin2 θF1 + cos θF3) (58)

N(2) =
ψ2

B
sin θ(r cos θF1 − F3) (59)

N(3) = ψ2B sin θ(rξ cos θF1 − ξF3 + rF2) (60)
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Here, we additionally assume the reflection symmetry about the equatorial plane z = 0 or θ = π/2.
Then, Nx and Ny must be even functions of z, and N z must be an odd function of z. This implies that
F1, F2 must be even functions of z, and F3 must be an odd function of z. Since N r is an odd function of
z on the rotation axis (sin θ = 0), we get:

N r = 0 (61)

at the origin.

3.4. Matter Sector and Momentum Conservation

For simplicity, we assume that the matter consists of a perfect fluid. The stress-energy tensor is
given by:

Tµν = (ρ+ P )uµuν + Pgµν (62)

where P and ρ represent the pressure and the energy density, respectively. We assume the four-velocity
given by:

uµ∂µ =
1

D
(tµ + ωϕµ)∂µ

=
1

D
∂t +

ω

D
∂ϕ (63)

where:

D ≡ (N2 −NiN
i − 2ωNϕ − ω2gϕϕ)

1
2 (64)

is the normalization factor and ω is a function of r and θ. For the four-velocity, uµ, to be timelike, we
shall have N2 −NiN

i − 2ωNϕ − ω2gϕϕ > 0.
We set α = m, and then, the momentum conservation equation (29) of the matter becomes:

0 = − 1

N
N jDj(Tiµn

µ) +KTiµn
µ − 1

N
Tjµn

µDiN
j −DjTij (65)

After some calculation, we obtain the r component:

0 = −P,r +
ρ+ P

D2

{
1

2
(NiN

i),r + ωNϕ,r +
1

2
ω2gϕϕ,r +

N,r

N
N rNr +

N,θ

N
N θNr

}
(66)

Now, we use the projectability conditionN = N(t). As we mentioned above, the projectability condition
means that the lapse function, N , does not depend on the spatial coordinates, xi, but only can do on the
temporal coordinate, t. Thus, the r component of the momentum conservation equation (66) becomes:

0 = −P,r +
ρ+ P

D2

{
1

2
(−N2 +NiN

i),r + ωNϕ,r +
1

2
ω2gϕϕ,r

}
(67)

We do not use the θ and ϕ components to prove that no stationary and axisymmetric star exists.
Here, we concentrate on the r component of the momentum conservation of the matter on the rotation

axis sin θ = 0. On the rotation axis, gϕϕ and gϕϕ,r vanish from Equation (36). From Equation (42), the
regularity of the triad component of the shift vector, N(3), implies:

Nϕ = 0 (68)
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on the rotation axis. Thus, Nϕ,r = 0. Thus, the r component of the momentum conservation
equation (67) on the rotation axis becomes:

0 = −P,r −
1

2

(ρ+ P )(N2 −NiN
i),r

N2 −NiN i
(69)

3.5. Contradiction of Momentum Conservation

We assume that the star has the reflection symmetry about the equatorial plane θ = π
2
, that the energy

density, ρ, is a piecewise-continuous and non-negative function of the pressure, P , that the pressure, P
is a continuous function of r and that the pressure at the center of the star Pc ≡ P (r = 0) is positive.
Thus, ρ + P is a piecewise-continuous function of r. We have assumed that the energy density, ρ, is
non-negative everywhere and that the pressure at the center, Pc, is positive; hence, ρ+P is positive at the
center. We define rs as the minimal value of r for which at least one of (ρ+ P )|r=rs

, limr→rs−0(ρ+ P )

and limr→rs+0(ρ+ P ) is nonpositive.
Dividing the momentum conservation equation (69) by 1

2
(ρ+ P ), we have:

{
log

(
N2 −NiN

i
)}

,r
= −2

P,r

ρ+ P
(70)

Under the assumption that the energy density is a function of the pressure, ρ = ρ(P ), integrating the
momentum conservation equation (70) over the interval 0 ≤ r < rs, we obtain:

log
(
N2 −NiN

i
)∣∣

r=rs
− log

(
N2 −NiN

i
)∣∣

r=0
= −2

∫ Ps

Pc

dP

ρ+ P
(71)

where Ps ≡ P (r = rs).
The definition of rs implies that at least one of (ρ+ P )|r=rs

, limr→rs−0(ρ+P ) and limr→rs+0(ρ+P )

is nonpositive. Since we have assumed that P (r) is a continuous function and that ρ is non-negative
everywhere, Ps = limr→rs−0 P = limr→rs+0 P is non-positive. Thus, we get:

Ps ≤ 0 < Pc (72)

This implies that the right-hand side of Equation (71) is positive. However, the left-hand side of
Equation (71) is nonpositive, since we have the projectability condition N = N(t) and we obtain from
Equations (57), (61) and (68):

NiN
i
∣∣
r=0

= 0 (73)

at the center of the star. This contradicts that the right-hand side of Equation (71) is positive.

4. Discussion and Conclusions

Hořava–Lifshitz gravity is only covariant under the foliation-preserving diffeomorphism. This means
that the foliation of the spacetime manifold by the constant-time hypersurfaces has a physical meaning.
As a result, the regularity condition at the center of a star is more restrictive than the one in a theory that
has general covariance.
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Under the assumption that a star is filled with a perfect fluid that has no radial motion, that it has
reflection symmetry about the equatorial plane and that the matter sector obeys the physically reasonable
conditions, we have shown that the momentum conservation is incompatible with the projectability
condition and the regularity condition at the center for stationary and axisymmetric configurations.
Since we have not used the gravitational action to prove it, our result is also true in other projectable
theories [5,32]. Note that our result is true under not only strong-gravity circumstances, like neutron
stars, but also weak-gravity ones, like planets or moons. However, it is not certain that star solutions
can exist in non-projectable theories. Since we have used the covariance under the foliation-preserving
diffeomorphism, the projectability condition and the assumptions of the matter sector to prove the no-go
theorem for stationary and axisymmetric stars, our proof will not apply if we do not assume all the above.

Izumi and Mukohyama found that no spherically symmetric and static solution filled with a perfect
fluid without radial motion exists in this theory under the assumption that the energy density is a
piecewise-continuous and non-negative function of the pressure and that the pressure at the center is
positive [29]. They concluded that a spherically symmetric star should include a time-dependent region
near the center. Although we cannot deny that stars should be described by dynamical configurations,
the fact that we cannot find simple stationary and axisymmetric star solutions with the four-velocity
generated by the Killing vectors will be an unattractive feature of this theory.

Greenwald, Papazoglou and Wang found static spherically symmetric solutions with a perfect fluid
plus a heat flow along the radial direction and with a class of an anisotropic fluid under the assumption
that the spatial curvature is constant in a projectable theory without the detailed balance condition [30],
although it is doubtful that the constant-spatial-curvature solutions represent realistic stars. This,
however, implies that rotating star solutions with a perfect fluid plus a radial heat flow and with an
anisotropic fluid can also exist.

We might get star solutions by introducing an exotic matter with a negative pressure, but it seems that
the physical justification to introduce it is difficult.

Our result does not imply the non-existence of rotation star solutions in this theory. However, it would
be useful to investigate rotating-star solutions in this theory and then to compare the solutions with the
corresponding ones in Einstein gravity for astrophysical tests of this theory. Furthermore, although we
do not disprove the existence of rotation star solutions with radial motion, it is doubtful whether such
star solutions describe realistic astrophysical stars.

Recently, the property of matter in the non-projectable version of the extended Hořava–Lifshitz
gravity [28] at both classical and quantum levels has been investigated by Kimpton and Padilla [36].
Although the gravity sector in Hořava–Lifshitz has been investigated eagerly, the matter sector has not,
relatively. It is left as future work to answer the question of whether or not the no-go theorem applies at
a quantum level.
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Appendix

A. Explicit Expression for Equation of Motion

After a long straightforward calculation, we obtain the explicit expression for the equation of motion:

α

[
N

2
K lmKlmg

ij − 2NKimKj
m − 1

√
g
(
√
gK ij)−Dp(K

ipN j)−Dp(K
pjN i) +Dp(K

ijNp)

]
−αλ

[
N

2
K2gij − 2NKK ij − 1

√
g
(
√
gKgij)−Dp(Kg

ipN j)−Dp(Kg
jpN i) +Dp(KN

pgij)

]
+β

[
−1

2
NCklCklg

ij + 2NCjlC i
l + 2εpklRj

lDk(NC
i
p) − εpkiDmD

jDk(NC
m
p )− εpklDlD

jDk(NC
i
p)

+εpkjDlDlDk(NC
i
p) + εpklgijDmDlDk(NC

m
p )− εkilDp(NC

j
kR

p
l )− εpklDk(NC

j
pR

i
l) + εpilDk(NC

k
pR

j
l ) ]

+γ

[
εpqkDpD

i(NDqR
j
k +

1

2
Rj

kDqN) + εjqkDlD
i(NDqR

l
k +

1

2
Rl

kDqN)− εiqkDlDl(NDqR
j
k +

1

2
Rj

kDqN)

−εpqkgijDpDl(NDqR
l
k +

1

2
Rl

kDqN) + εpqkRj
kDq(NDqR

i
p) + εikpDl(NR

l
pR

j
k)

]
+ζ

[
1

2
NRklR

klgij − 2NRilRj
l + 2DkD

j(NRki)−DlDl(NR
ij)− gijDkDl(NR

kl)

]
+η

[
1

2
NR2gij − 2NRRij + 2DiDj(NR)− 2gijDlDl(NR)

]
+ξ

[
1

2
NRgij −NRij +DjDiN − gijDlDlN

]
+ σN

1

2
gij + (i↔ j) +

2
√
g

δIm
δgij

= 0 (A1)

where (i↔ j) means the terms, i and j, exchanged each other.

B. Triad Components of Extrinsic Curvature Tensor

In this theory, the triad components of the extrinsic curvature tensor also should be regular. The Lie
derivative of gij along N i is:

LNgij = DjNi +DiNj

= gikN
k
,j + gjkN

k
,i + gij,kN

k (A2)

The extrinsic curvature tensor (6) and (A2) yield:

dgij
dt

−Nk
,igjk −Nk

,jgki = 2NKij (A3)
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where:

d

dt
≡ ∂

∂t
−N i ∂

∂xi
(A4)

By projecting Equation (A3) onto the triad (37)–(39), we obtain the following equations [34]:

NK(1)(1) = −N r
,r +

1

A

dA

dt
+

2

ψ

dψ

dt
(A5)

2NK(1)(2)

sin θ
=
AB

r
N r

,X − r

AB sin θ
N θ

,r (A6)

2NK(1)(3)

sin θ
= −rB

A
[Nϕ

,r +
ξ

sin θ
N θ

,r] (A7)

NK(2)(2) =
1

r

dr

dt
+

2

ψ

dψ

dt
− 1

B

dB

dt
−N θ

,θ (A8)

NK(3)(3) =
1

r

dr

dt
+

2

ψ

dψ

dt
+

1

B

dB

dt
− cos θ

sin θ
N θ (A9)

2NK(2)(3) = B2dξ

dt
+ (1−X2)B2(Nϕ

,X +
ξ

sin θ
N θ

,X) (A10)

where:

X ≡ cos θ (A11)
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Rev. Lett. 2013, 110, 091101:1–091101:5.

17. Mukohyama, S. Dark matter as integration constant in Horava-Lifshitz gravity. Phys. Rev. D 2009,
80, 064005:1–064005:6.

18. Mukohyama, S. Horava-Lifshitz cosmology: A review. Class. Quantum Gravity 2010, 27,
223101:1–223101:25.

19. Saridakis, E.N. Horava-Lifshitz dark energy. Eur. Phys. J. C 2010, 67, 229–235.
20. Harko, T.; Kovacs, Z.; Lobo, F.S.N. Solar system tests of Horava-Lifshitz gravity. Proc. R. Soc. A

Math. Phys. Eng. Sci. 2011, 467, 1390–1407.
21. Wang, A.; Maartens, R. Linear perturbations of cosmological models in the Horava-Lifshitz theory

of gravity without detailed balance. Phys. Rev. D 2010, 81, 024009:1–024009:9.
22. Koyama, K.; Arroja, F. Pathological behaviour of the scalar graviton in Horava-Lifshitz gravity.

J. High Energy Phys. 2010, 2010, 061:1–061:11.
23. Wang, A.; Wu, Q. Stability of spin-0 graviton and strong coupling in Horava-Lifshitz theory of

gravity. Phys. Rev. D 2011, 83, 044025:1–044025:13.
24. Horava, P. Spectral dimension of the universe in quantum gravity at a lifshitz point. Phys. Rev.

Lett. 2009, 102, 161301:1–161301:4.
25. Charmousis, C.; Niz, G.; Padilla, A.; Saffin, P.M. Strong coupling in Horava gravity. J. High

Energy Phys. 2009, 2009, 070:1–070:17.
26. Blas, D.; Pujolas, O.; Sibiryakov, S. On the Extra Mode and Inconsistency of Horava Gravity.

J. High Energy Phys. 2009, 2009, 029:1–029:29.
27. Horava, P; Melby-Thompson, C.M. General covariance in quantum gravity at a Lifshitz point.

Phys. Rev. D 2010, 82, 064027:1–064027:21.
28. Blas, D.; Pujolas, O.; Sibiryakov, S. Consistent extension of Horava gravity. Phys. Rev. Lett. 2010,

104, 181302:1–181302:4.
29. Izumi, K.; Mukohyama, S. Stellar center is dynamical in Horava-Lifshitz gravity. Phys. Rev. D

2010, 81, 044008:1–044008:9.
30. Greenwald, J.; Papazoglou, A.; Wang, A. Black holes and stars in Horava-Lifshitz theory with

projectability condition. Phys. Rev. D 2010, 81, 084046:1–084046:20.
31. Greenwald, J.; Lenells, J.; Satheeshkumar, V.H.; Wang, A. Gravitational collapse in
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