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Abstract: We study a model of quintessential inflation constructed in R2-modified gravity with a
non-minimally coupled scalar field, in the Palatini formalism. Our non-minimal inflaton field is
characterised by a simple exponential potential. We find that successful quintessential inflation can
be achieved with no fine-tuning of the model parameters. Predictions of the characteristics of dark
energy will be tested by observations in the near future, while contrasting with existing observations
provides insights on the modified gravity background, such as the value of the non-minimal coupling
and its running.
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1. Introduction

Observations suggest that the Universe has undergone at least two phases of acceler-
ated expansion. The primordial phase is called cosmic inflation and it is responsible for
arranging the fine-tuning needed for the subsequent hot big bang evolution of the Universe,
as well as for generating cosmological perturbations, which are responsible for structure
formation [1]. The late phase is taking place at present and it is attributed to the gradual
dominance of the mysterious dark energy substance, which makes up almost 70% of the
Universe’s content today [2].

In the context of fundamental theory, cosmic inflation is typically realised according to
the inflationary paradigm, which suggests that the expansion of the Universe is accelerating
when the latter is dominated by the potential density of a scalar field, called the inflaton field.
Similarly, dark energy can also be modelled as a suitable scalar field, called quintessence [3].
It is natural to attempt to unify the two phases and consider that accelerated expansion in
the Universe is due to a single agent. The proposal is called quintessential inflation [4].

Apart from being economic, quintessential inflation addresses holistically accelerated
expansion in the early and late Universe in a single theoretical framework. A successful
quintessential inflation model has to satisfy the observations of both inflation and dark
energy. As such, constructing a quintessential inflation model is highly constrained and
very difficult to achieve, but not impossible (e.g., see Refs. [5–9] for recent reviews).

From the very beginning, modelling cosmic inflation was attempted in modified
gravity as well as particle physics. Indeed, the very first inflation model was Starobinsky’s
R2 inflation [10]. It is harder to use modified gravity for dark energy, however, because
deviation from Einstein’s general relativity should not violate stringent constraints set by a
plethora of experiments (solar system, Eötvös, etc.). This is why, in attempting to construct
a quintessential inflation model, we assume a blended approach, where modified gravity is
mainly employed for inflation, while particle theory (which is behind our scalar potential)
accounts for dark energy.

In our model, we consider the Palatini formulation of gravity [11,12]. In the Palatini
formulation, the connection and the metric are independent variables. In general relativity
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the traditional metric formalism and the Palatini formalism are equivalent. However, this
is not so when matter is non-minimally coupled to gravity or when the action is no longer
linear in R, the curvature scalar.

Metric R2 gravity introduces a new degree of freedom (dof), which can be expressed
as a scalar field (scalaron) in the Einstein frame [10]. In contrast, Palatini R2 gravity has no
extra propagating dof that can play the role of the inflaton field. Therefore, an additional
scalar field must be introduced.

In Palatini R2 inflation, one can lower the tensor-to-scalar ratio in any scalar field infla-
tion model [13,14]. Moreover, Palatini-modified gravity evades the stringent constraints on
the propagation speed of primordial gravitational waves. Finally, Palatini gravity does not
suffer that much from solar system and other related bounds on modified gravity, which
means it is ideal for modelling quintessential inflation [15].

In quintessential inflation, the thermal bath of the hot big bang is not generated by
the decay of the inflaton field, because the latter must survive until the present to become
quintessence. An alternative mechanism for reheating the Universe must be employed. In
this work, we do not consider a specific mechanism for reheating the Universe. However,
there is a plethora of such mechanisms [16–21] (see also Refs. [22,23]), and we assume the
operation of one of them.

We use natural units, where c = h̄ = 1 and 8πG = m−2
P with mP = 2.43× 1018 GeV

being the reduced Plank mass.

2. The Model

We consider the action in the Palatini formalism

S =
∫

d4x
√
−g
[

1
2

m2
PF(ϕ, R)− 1

2
gµν∂µ ϕ∂ν ϕ−V(ϕ)

]
+ Sm[gµν, ψ] , (1)

where ψ collectively represents the matter fields other than the inflaton. The function
F(ϕ, R) takes the following form1

F(ϕ, R) =

(
1 + ξ

ϕ2

m2
P

)
R +

α

2m2
P

R2 , (2)

with R being the Ricci scalar, which is a function of the connection only

R = gµνRµν(Γ) . (3)

Note that both terms in Equation (2) are well motivated in the literature since they
can naturally arise when one considers quantum corrections (e.g., see Ref. [27]). The above
action is dynamically equivalent to

S =
∫

d4x
√
−g

[
1
2

m2
P

(
1 + ξ

ϕ2

m2
P
+

α

m2
P

χ

)
R− 1

4
αχ2 − 1

2
gµν∂µ ϕ∂ν ϕ−V(ϕ)

]
+Sm[gµν, ψ] , (4)

where χ is an auxiliary scalar field, which will be dispensed below.
To assist our intuition, we switch to the Einstein frame by a suitable conformal trans-

formation

gµν → ḡµν =

(
1 + ξ

ϕ2

m2
P
+

α

m2
P

χ

)
gµν . (5)

Now we eliminate the auxiliary field by obtaining its equation of motion

δS
δχ

= 0 ⇔ χ =
4m2

PV + (m2
P + ξϕ2)(∂̄ϕ)2

(m2
P + ξϕ2)m2

P − α(∂̄ϕ)2
, (6)
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where (∂̄ϕ)2 ≡ ḡµν∂̄µ ϕ∂̄ν ϕ. Substituting χ back into the action yields

SE =
∫

d4x
√
−ḡ

1
2

m2
PR̄− 1

2
(∂ϕ)2

1 + ξϕ2

m2
P(

1 + ξϕ2

m2
P

)2
+ 4αV(ϕ)

m4
P

− V(ϕ)(
1 + ξϕ2

m2
P

)2
+ 4αV(ϕ)

m4
P

+
1
4

α

m4
P

(∂ϕ)4(
1 + ξϕ2

m2
P

)2
+ 4αV(ϕ)

m4
P

+ Sm[Ω−2 ḡµν, ψ] . (7)

Note that in the Palatini formalism the auxiliary field is not dynamical, which allowed
us to use its equation of motion to eliminate it. Thus, the resulting action only contains one
scalar field, albeit with non-canonical kinetic terms and a modified potential. This is in
contrast to the metric version of the theory, where the auxiliary field has its own kinetic
term and the resulting action is two-field.

The canonical field φ is obtained via the redefinition

dφ

dϕ
=

√√√√√√√
1 + ξϕ2

m2
P(

1 + ξϕ2

m2
P

)2
+ 4αV(ϕ)

m4
P

. (8)

One can use ϕ = ϕ(φ) to obtain the potential in the Einstein frame

V̄(φ) =
V(φ)(

1 + ξϕ2(φ)

m2
P

)2
+ 4αV(φ)

m4
P

. (9)

The above suggests that, for very large values of V(φ), the term in brackets in the de-
nominator becomes negligible and the overall potential in the Einstein frame approximates
a constant given by V̄ → m4

P/4α. This is the inflationary plateau, attained regardless of the
specific form of V(ϕ) as long as the latter becomes very large in some limit.

Regarding the quintessential tail, the second flat region of the scalar potential, which
is responsible for dark energy at present, we note that near the present time, R is tiny, so
the αR2 term in the Lagrangian is negligible. This is equivalent to setting α = 0. In this
case, Equation (8) reduces to

dφ

dϕ
=

1√
1 + ξϕ2

m2
P

(10)

which results in

ϕ =
mP√

ξ
sinh

(√
ξ φ

mP

)
. (11)

We consider that the runaway potential of the inflaton/quintessence scalar field ϕ is

V(ϕ) = M4 e−κ ϕ/mP , (12)

where the dimensionless constant κ is the strength of the exponential and M is an energy
scale. An exponential potential is well motivated in particle physics. Using the above and
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Equations (9) and (10) with α = 0, we find that the scalar potential of the quintessential tail
in the Einstein frame is

V̄(φ) = M4
exp

[
− κ√

ξ
sinh

(√
ξ φ

mP

)]
cosh4

(√
ξ φ

mP

) . (13)

Note that, in the limit
√

ξ φ� mP, the above reduces to V̄ = M4 exp(−κ φ/mP). In
this limit, Equation (8) suggests φ ≈ ϕ, i.e., ϕ is approximately canonical. Thus, in this
limit we end up with the usual exponential quintessential tail, which leads to accelerated
expansion only if κ <

√
2. When κ is larger, the exponential potential leads to the scaling

solution, which cannot result in accelerated expansion. However, as φ grows, the Einstein
frame potential becomes steeper than an exponential and accelerated expansion ceases,
even if κ is small enough.

If κ is small enough to lead to accelerated expansion when φ is small, then inflation
would not be able to end even after the field exits the inflationary plateau. This is why
we consider the effect of the αR2 term, which is negligible at late times, but important
at early times and high energies. Thereby, we can facilitate a graceful exit from inflation
and still achieve accelerated expansion at present. However, we find that the value of the
non-minimal coupling ξ is not the same for successful inflation and quintessence. Therefore,
we consider a mild running of ξ as follows

ξ(ϕ) = ξ∗

[
1 + β ln

(
ϕ2

µ2

)]
, (14)

where µ is a suitable mass scale, and ξ∗ and β are constants, to be determined by the
observations. The above is suggested by renormalisation considerations. The scalar field
only slowly varies (rolls) when the cosmological scales exit the horizon during inflation and
also when quintessence thaws while dominating the Universe at present. This means that,
in both cases, ξ ' constant. However, because ϕ changes dramatically between inflation
and quintessence, the non-minimal coupling is not going to be the same in both cases.

The scalar potential in the Einstein frame is depicted in Figure 1.

0.1 1 10 100
ϕ

5.× 10
-13

1.× 10
-12

1.5× 10
-12

2.× 10
-12

2.5× 10
-12

V

Figure 1. The scalar potential V̄ in Planck units in the Einstein frame, featuring the inflationary
plateau and the quintessential tail.

3. Equation of Motion

Varying the action with respect to ϕ, we have

ϕ̈ + 3H ϕ̇ + V′(ϕ)−
[

ξ(ϕ) +
1
2

ξ ′(ϕ)ϕ

]
ϕR = 0, (15)
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which, using Equation (14), immediately reads

ϕ̈ + 3H ϕ̇ + V′(ϕ) = ξ∗

[
1 + β

(
1 + ln

ϕ2

µ2

)]
ϕR , (16)

where the prime denotes a derivative with respect to the argument (ϕ in this case) and the
dot denotes a derivative with respect to time in the Jordan frame.

To investigate R, we need to consider the energy-momentum tensor. We have

Tµν = − 2√−g
δS

δgµν =

(
FRR(µν) −

1
2

gµνF
)

m2
P , (17)

where FR(ϕ, R) ≡ ∂RF(ϕ, R) with F(ϕ, R) given in Equation (2). The trace of the above is
T = (FRR− 2F)m2

P. Thus, the (Palatini) Ricci scalar is algebraically related to the matter
sources as

R =
1

m2
P + ξϕ2

[
ρ(1− 3w)− ϕ̇2 + 4V(ϕ)

]
, (18)

where we used that the trace of the energy-momentum tensor is [28]

T = ϕ̇2 − 4V(ϕ)− ρ(1− 3w) , (19)

with ρ the energy density and w the barotropic parameter of the background matter,
dominant or not. Note that, when the background matter is dominant, then T = (3w− 1)ρ,
which is zero during radiation domination, since then w = 1

3 . The same is true of R itself.
As a result, during radiation domination the equation of motion of ϕ reduces to the usual
Klein–Gordon of a minimally coupled scalar field. It is also interesting that both R and T
above are independent from the value of α.2

In the Einstein frame, there is a new coupling between the matter action and the
inflaton field. Indeed, its equation of motion now reads [28]

δSE
δφ

=
√
−ḡ(φ̈ + 3Hφ̇) +

dϕ

dφ

(√
−ḡV̄′(ϕ) +

δSm

δϕ

)
= 0 , (20)

where dϕ/dφ is given by Equation (8). The functional derivative of the matter action is [28]

δSm

δϕ
=

√−ḡ ξϕ

m2
P + ξϕ2 − α(∂̄ϕ)2/m2

P
ρ̄(1− 3w̄) , (21)

where w̄ is the barotropic parameter of the background matter (assumed to be a barotropic
ideal fluid), which is the same in both the Einstein and the Jordan frames w̄ = w [28]. From
the above we see that, when the background matter is radiation (dominant or not), for
which w = 1

3 , then the coupling of the inflaton to matter disappears. Thus, this coupling is
only effective after matter–radiation equality, when the Universe is matter-dominated. As
we have discussed, at late times the contribution of the αR2 term in the Lagrangian density
is negligible. This is equivalent to setting α→ 0 in the above.

Regarding the derivative of the potential in Equation (20) (but neglecting the running
of ξ as subleading), we have

dV̄(ϕ)

dϕ
=

V′(ϕ)(
1 + ξϕ2

m2
P

)2
+ 4αV

m4
P

−
V(ϕ)

[
4α
m4

P
V′(ϕ) + 4ξϕ

m2
P

(
1 + ξϕ2

m2
P

)]
[(

1 + ξϕ2

m2
P

)2
+ 4αV

mP24

]2 , (22)

where we considered Equation (9).
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4. Inflation

Inflation is expected to occur when we are on the inflationary plateau (in the Einstein
frame) with a large value of V, i.e., ϕ� 0. In this limit, we can consider slow-roll inflation
in the Einstein frame, which is determined by the slow-roll parameters

ε ≡ 1
2

(
dV̄
dφ

mP

V̄

)2

and η ≡ d2V̄
dφ2

m2
P

V̄
. (23)

To have slow-roll, ε < 1 and |η| < 1. Ref. [13] suggests that the above are given by

ε =
ε̃

1 + 4αṼ
with ε̃ =

1
2

[
κ

(
1 + ξϕ2

m2
P

)
+ 4ξ

ϕ
mP

]2

1 + ξϕ2

m2
P

, (24)

η = η̃ − 3
4αṼ

1 + 4αṼ
with η̃ =

(
7κξ

ϕ
mP

+ κ2
)(

1 + ξϕ2

m2
P

)
− 4ξ + 16ξ2 ϕ2

m2
P

1 + ξϕ2

m2
P

, (25)

where the tilded quantities correspond to α = 0 (and we have taken the limit of constant ξ).
In the above

Ṽ ≡ M4 e−κϕ/mP

(1 + ξϕ2

m2
P
)2

(26)

which is readily obtained by Equations (9) and (12) when α→ 0. To contrast with observa-
tions, we obtain the standard inflationary observables

ns = 1− 6ε + 2η = 1− 6ε̃ + 2η̃ , (27)

r = 16ε and 24π2m4
P As =

V̄
ε
=

Ṽ
ε̃

, (28)

where As is the scalar power spectrum, ns is the spectral index and r is the tensor-to-scalar
ratio at the CMB pivot scale k∗ = 0.05 Mpc−1. In the above, we used that V̄/ε = Ṽ/ε̃
as shown in Ref. [13]. Technically, β 6= 0, so Equations (27) and (28) are not exact, but
we expect the modification to be minor because the non-minimal coupling depends only
logarithmicaly on the slowly rolling inflaton (see Equation (14)).

The observations suggest [29,30]

ln
(

1010 As

)
= 3.044± 0.014 , ns = 0.9649± 0.0042 , r < 0.036 . (29)

From this and Equation (28), it is straightforward to find

2.1× 10−9 = As =
M4 e−κϕ∗/mP

12π2m4
P

(
1 + ξϕ2∗

m2
P

)[
κ

(
1 + ξϕ2∗

m2
P

)
+ 4ξϕ∗

]2 , (30)

where the subscript ‘∗’ denotes the exit of the pivot scale during inflation and we employed
Equations (24) and (26). From Equations (24), (25) and (27), the spectral index is

ns − 1 = −κ2

(
1 +

ξϕ2
∗

m2
P

)
− 10 ξκ

ϕ∗
mP
− 8ξ

1 + 2
(

ξϕ2
∗

m2
P

)
1 + ξϕ2∗

m2
P

. (31)
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Finally, for the number of e-folds we have

N = − 1
mP

∫ dφ√
2ε

= − 1
mP

∫ dϕ

κ

(
1 + ξϕ2

m2
P

)
+ 4 ξϕ

mP

= − 1√
ξκ2 − 4ξ2

arctan

√ξ
(

2 + κ
ϕ

mP

)
√

κ2 − 4ξ

. (32)

5. Kination

At some point the inflationary plateau ends and the potential becomes steep and
curved. Inflation ends and the inflaton field falls over a potential cliff. As a result, the kinetic
energy density of the field dominates the Universe. The Palatini Ricci tensor in Equation (18)
becomes R = −ϕ̇2/(m2

P + ξϕ2). In principle, the quartic kinetic term in Equation (7) might
affect the dynamics of kination, but we find otherwise (see Figure 2). In addition, as we have
seen, the coupling of the inflaton to the background matter disappears if the background is
radiation. Thus, kination proceeds as usual, with ρ ∝ a−6 and a ∝ t1/3 [31].

Log10
ϕ2


2

Log10 V

Log10 ∂ϕ)
4

-40 -20 20
Log[a]

-250

-200

-150

-100

-50

Figure 2. Log-log plot in Planck units of the contributions to the inflaton energy density as a function
of the scale factor normalised to unity at present, starting at the end of inflation. The upper curve
(blue) corresponds to the canonical kinetic energy density of the scalar field, which dominates the
potential until the time of equal-matter-radiation densities (equality). At this time the field briefly
freezes only to unfreeze in matter domination (because of the interaction with matter in Equation (21))
and again becomes dominated by its kinetic energy density until the present time when the potential
energy density, depicted by the middle curve (orange), takes over. The quartic kinetic term in
Equation (7), depicted by the lower curve (green), always remains negligible.

We assume that subdominant radiation is generated at the end of inflation (denoted
by the super/subscript ‘end’), with density parameter Ωend

r = (ρr/ρtot)end, which is also
called the reheating efficiency. The density of the background radiation scales as ρr ∝ a−4.
This means that there is a moment when ρr becomes dominant over the rolling scalar field
and the Universe becomes radiation-dominated. This is the moment of reheating. After
reheating, the field continues to roll kinetically dominated for a while until its potential
density becomes important. If the slope of the latter is small enough, the field freezes.

Things change after matter–radiation equality, when the interaction of the field (which
is now quintessence) with matter affects its dynamics. We find that quintessence unfreezes
and rolls further, until it dominates the Universe again. The evolution of the energy density
of the scalar field and of the background density is shown in Figure 3.
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The early, stiff kination era increases the number of e-folds between the end of inflation
and the horizon exit of the CMB scale from the standard 50–60 to 60–75. We have taken the
full expansion history into account when fixing the CMB scale in our results.

Log10ρbackground

Log10ρϕ

-40 -20 20
Log[a]

-150

-100

-50

Figure 3. Log-log plot of the energy density of the scalar field in Planck units (orange) and that of the
background (blue) after the end of inflation. Originally, the scalar field kinetic density dominates
(kination) until the moment of reheating when the background density takes over. The scalar
field momentarily freezes at equality, but then unfreezes in the matter era, due to the background
backreaction. Eventually, it comes to dominate at present.

6. Quintessence

Soon after matter–radiation equality, quintessence refreezes at some value φ0 (or ϕ0 in
terms of the non-canonical field). Then there are certain requirements it must satisfy if it is
to be the observed dark energy, akin to the CMB observational constraints for inflation. The
first such constraint is coincidence. This means that the density parameter of the frozen
quintessence at present must be [32]

Ωφ = ΩDE = 0.6847± 0.0073 . (33)

In general, the barotropic parameter of quintessence is variable. By Taylor expand-
ing it near the present, this varying barotropic parameter can be approximated as (CPL
parametrisation [33,34])

wDE = w0
DE + wa

(
1− a

a0

)
, (34)

where w0
DE is the value of wDE at present and

wa = − dwDE

da

∣∣∣∣
a0

= − dwDE

dt
1
ȧ

∣∣∣∣
t0

, (35)

where ‘0’ denotes the present time. Observations require [32]

− 1 ≤ w0
DE < −0.95 and wa ∈ [−0.55, 0.03] . (36)

Demanding that quintessence is successful dark energy implies that wφ = wDE, which
must satisfy the above constraints.

Starting with the coincidence requirement, the quintessence density at present is

ρ0
φ = 3H2

0 m2
PΩφ = 3H2

0 m2
PΩDE ≈ 8× 10−121m4

P , (37)
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where we approximated H0 ≈ 67.8 km/s/Mpc and we used Equation (33). Equation (26)
suggests

ρ0
φ ' V̄(ϕ0) =

M4 e−κϕ0/mP(
1 + ξϕ2

0
m2

P

)2 = M4 e−
κ√
ξ

sinh(
√

ξφ0/mP)

cosh4(
√

ξφ0/mP)
, (38)

where we considered Equation (13) because α is negligible at late times. In the above, ξ is
not the same as in inflation, but it is given by Equation (14) as ξ = ξ∗[1 + β ln(ϕ2

0/µ2)]. We
have also taken into account that the field is thawing so that its kinetic energy density is
subdominant to its potential energy density and so ρφ ' V. Because ξ is logarithmically
dependent on ϕ and the latter varies mildly as quintessence thaws, we expect ξ ' constant.

The value of M is determined by the normalisation of the scalar perturbations during
inflation:

As =
2V(ϕ∗)

3π2m4
Pr

. (39)

We further consider |ξ| = |ξ(ϕ0)| � 1. In this limit, Equations (38) and (39) suggest

κϕ0

mP
= −

[
ln

(
ρ0

φ

m4
P

)
− ln

(
3π2

2 Asr
)]

+
κϕ∗
mP
≈ 252 + ln

( r
10−3

)
+

κϕ∗
mP

. (40)

Because we find that κϕ∗ ∼ −(a few)×mP, we expect κϕ0/mP ' 250 or so. Using
Equation (11), we find

√
ξ φ0

mP
' sinh−1

{√
ξ

κ

[
252 + ln

( r
10−3

)]
+ sinh

(√
ξ φ∗

mP

)}
. (41)

7. Results

The parameter space for successful inflation is shown in Figure 4. From this figure it is
evident that inflation requires (see Table 1, for exact values used in the figures)

κ ≈ 0.3 and ξ∗ ≈ 0.01 (42)

where, without loss of generality, we choose that µ2 ≈ ϕ2
∗ in Equation (14) such that,

when the cosmological scales leave the horizon, we have ξ ≈ ξ∗. We find that µ ' −6 mP
(for µ = −6.00 mP we find ϕ∗ = −5.91 mP). For the α parameter, we obtain a lower
bound α & 107. We choose α ' 1011. The energy scale at the end of inflation is found
to be V̄1/4

end ' 3× 10−5 mP ∼ 1014 GeV, which is somewhat smaller than the estimate of
the inflationary plateau V̄1/4 = (4α)−1/4mP ∼ 10−3 mP. Similarly, the density scale in the
scalar potential is M4 ' 2× 10−9m4

P, which implies M = 2× 1016 GeV, i.e., the scale of
grand unification.

For successful quintessence we consider the reheating efficiency Ωend
r ∼ 10−15. This

value belongs comfortably in the allowed range,

10−2
(

H̄end
mP

)2

∼ 10−20 < Ωend
r < 1 , (43)

where the upper bound corresponds to prompt reheating, while the lower bound corre-
sponds to gravitational reheating, for which ρend

r ∼ 10−2H̄4
end [35,36]. In Equation (43)

we used H̄end '
√
(V̄end/3)/mP ∼ 10−9 mP. There are many possibilities for reheating

the Universe without the decay of the inflaton field, which are typically considered in
non-oscillatory inflationary models. Examples are instant preheating [16], curvaton reheat-
ing [17,18] and Ricci reheating [19–21].
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Figure 4. The parameter space κ(ξ∗) for successful inflation. The blue (dark) band depicts the region
which reproduces the observed values of the spectral index and the amplitude of the cosmological
perturbations (the central values of ns and As in Equation (29)). The allowed region is depicted in
orange (light band), which satisfies the bound on the tensor-to-scalar ratio r in Equation (29) and
corresponds to the range of reheating efficiency in Equation (43), which in turn implies the number of
efolds of remaining inflation when the cosmological scales leave the horizon ranges as N∗ = 60–75.
(We have taken αM4 = 143.08.).

Table 1. Exact values of model parameters assumed in all the figures.

α = 9.16× 1010 κ = 0.2956 M4 = 2.11× 10−9 m4
P

ξ∗ = 0.0093282 β = −0.10075 µ = −6 mP

Let us estimate the reheating temperature. Assuming proper kination begins right
away after the end of inflation we find the following. During kination, the total energy
density of the Universe decreases as ρtot ' ρφ ∝ a−6, while for radiation we have ρr ∝ a−4,
which means that ρr/ρtot ∝ a2. Therefore,

Ωend
r =

ρr

ρtot

∣∣∣∣
end

=

(
aend
areh

)2 ρr

ρtot

∣∣∣∣
reh
'
(

aend
areh

)2
, (44)

where ‘reh’ denotes reheating, which is the moment that radiation takes over and we have
ρr ' ρtot. The density of the Universe at reheating is straightforward to find, by considering
that ρtot ∝ a−6. Indeed, we obtain

ρreh =

(
aend
areh

)6
ρend ' (Ωend

r )3 V̄end , (45)

where we used Equation (44) and that ρend ' V̄end. Therefore, using that at reheating
ρ ' ρr =

π2

30 g∗T4, the reheating temperature is

Treh ' 1√
π

(
30
g∗

)1/4
(Ωend

r )3/4 V̄1/4
end , (46)

where g∗ is the number of effective relativistic degrees of freedom at reheating. Putting in
the numbers, we find Treh ∼ 1 TeV. However, Figures 2 and 3 suggest that, immediately
after inflation, the energy density of the field does not fall as rapidly as a−6. This means
that the radiation density takes over after the above estimate, corresponding to a somewhat
lower reheating temperature.
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The appropriate ξ so that we can have successful coincidence is ξ ∼ 10−5. In order for
the running in Equation (14) to result in this value we find that we need β ≈ −0.101, which
is rather reasonable. From Equation (40) we can estimate ϕ0/mP ≈ e−1/2β|µ| ' 840. Then,
Equation (11) suggests φ0/mP ' 80, as can also be seen in Figure 5.

200 400 600 800
φ

20

40

60

80

ϕ

Figure 5. The relation of the canonical φ with the non-minimal ϕ when κ ' 0.3 and ξ ∼ 10−5.

With these values we see that
√

ξ φ0/mP ' 0.25 < 1. According to the discussion
after Equation (13), the potential approximates a decaying exponential of strength κ.
Since κ <

√
2, quintessence will approach the dominant attractor solution, for which the

barotropic parameter is wφ = −1 + κ2/3 [2]. With κ = 0.3 we obtain wφ = −0.97.
However, the approximation is not very good because

√
ξ φ0/mP is not very small.

Indeed, using the parameter values in Table 1, for the dark energy barotropic parameter
today we find

w0
φ = w0

DE = −0.956 and wa = −0.1596 , (47)

which satisfy the requirements in Equation (36) and will be observable in the near future.
The above is an existence proof that our model works. We will attempt an exploration
of the parameter space (which is a subset of the one shown in Figure 4) in Ref. [28]. The
evolution of the barotropic parameters of the scalar field and the Universe after inflation is
shown in Figure 6.

We see that the barotropic parameter of the Universe after equality is not exactly zero.
In fact, we find that it peaks to almost w ' 0.04 at z ' 200. However, it reduces substan-
tially for smaller redshifts and is very close to zero near z ' 3–5, which is when galaxy
formation occurs, as shown in Figure 7. It would be interesting to investigate characteristic
observational signatures of our scenario with respect to the growth of structures, but this is
beyond the scope of this paper.
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wUniverse

wϕ

-40 -20 20
Log[a]

-1.0

-0.5

0.5

1.0

Figure 6. The evolution of the barotropic parameters of the scalar field (orange) and of the Universe
(blue) after the end of inflation. We see that during kination both barotropic parameters are the same
and equal to unity, because the scalar field dominates. After reheating, the barotropic parameter of the
Universe reduces to 1/3, while the scalar field continues to be kinetically dominated with barotropic
parameter wφ = 1. The field freezes briefly at radiation–matter equality, when its barotropic parameter
is drastically reduced, while the Universe’s barotropic parameter approximates zero. The backreaction
due to matter does not allow the scalar field to stay frozen. Instead, it free-falls again with wφ = 1
until the present time, when it reduces drastically towards −1. The barotropic parameter of the
Universe at present is found to be −0.669.

wUniverse

wϕ

2 4 6 8 10
z

-1.0

-0.5

0.5

1.0

Figure 7. The evolution of the barotropic parameters of the scalar field (orange) and of the Universe
(blue) as a function of redshift near the present. It is evident that w ≈ 0 near z ' 4, when galaxy
formation occurs.

8. Conclusions

We have investigated a model of quintessential inflation in the context of Palatini-
modified gravity. We considered a non-minimally coupled scalar field and an R2 contribu-
tion to the Lagrangian, both of which are rather modest modifications of gravity, frequently
considered in the literature. The scalar potential of our non-minimal field is simply an
exponential, which is well motivated in fundamental theory. The non-minimal coupling
follows a mild logarithmic running, expected by renormalisation considerations, such that
it is not the same during inflation and the present.

We find that our model can indeed successfully account for the observations of inflation
and dark energy without any unphysical fine-tuning. The strength of the exponential
potential is κ ' 0.3 and the non-minimal coupling runs from ξ ∼ 10−2 during inflation
to ξ ∼ 10−5 during quintessence. The non-perturbative coupling of quadratic gravity is
α & 107 (we consider α ∼ 1011). The energy scale in our exponential potential turns out
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to be M ' 2× 1016 GeV, i.e., the scale of grand unification. The barotropic parameter of
quintessence and its running are to be probed in the near future, e.g., by the EUCLID [37]
and Nancy Grace Roman (former WFIRST) [38,39] satellites.

Our model leads to a long period of kination (with reheating temperature Treh . 1 TeV).
After kination the field freezes but soon it unfreezes again after equality (between matter
and radiation), when the backreaction from coupling to matter kicks in. We find that the
barotropic parameter of the matter era is affected in a diminishing way, such that it is
approximately zero at the time of galaxy formation, as required. It is an open question
whether its early values (almost 4% at redshift 200 or so) affect structure formation, in ways
which could be an observational signature for our scenario.
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Notes
1 See Ref. [24,25] for recent reviews on F(R) gravity and Ref. [26] for a recent study of F(ϕ, R) phenomenology.
2 This is because of the global scale invariance of the R2 term, which is true in both the metric and the Palatini formalisms. We are

thankful to the referee for pointing this out.
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