
Citation: Salmon, L.; Hanlon, L.;

Martin-Carrillo, A. Two Dimensional

Clustering of Swift/BAT and

Fermi/GBM Gamma-ray Bursts.

Galaxies 2022, 10, 77. https://

doi.org/10.3390/galaxies10040077

Academic Editors: Elena Moretti and

Francesco Longo

Received: 27 April 2022

Accepted: 22 June 2022

Published: 25 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

galaxies

Article

Two Dimensional Clustering of Swift/BAT and Fermi/GBM
Gamma-ray Bursts
Lána Salmon 1,2,* , Lorraine Hanlon 1,2 and Antonio Martin-Carrillo 1,2

1 School of Physics, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland;
lorraine.hanlon@ucd.ie (L.H.); antonio.martin-carrillo@ucd.ie (A.M.-C.)

2 Centre for Space Research, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
* Correspondence: lana.salmon@ucdconnect.ie

Abstract: Studies of Gamma-ray Burst (GRB) properties, such as duration and spectral hardness,
have found evidence for additional classes beyond the short-hard (merger) and long-soft (collapsar)
prototypes. Several clustering analyses of the duration-hardness plane identified a third, intermediate
duration, class. In this work, Gaussian Mixture Model-based (GMM) clustering is applied to the
Swift/BAT and Fermi/GBM samples of GRBs. The results obtained by the hierarchical combination
of Gaussian components (or clusters) based on an entropy criterion are presented. This method
counteracts possible overfitting arising from the application of Gaussian models to non-Gaussian
underlying data. While the initial GMM clustering of the hardness-duration plane identifies three
components (short/intermediate/long) for the Swift/BAT and Fermi/GBM samples, only two compo-
nents (short/long) remain once the entropy criterion is applied. The analysis presented here suggests
that the intermediate duration class may be the result of overfitting, rather than evidence of a distinct
underlying population.

Keywords: gamma-ray burst; clustering; statistical analysis

1. Introduction

The bimodal duration distribution of Gamma-ray Bursts (GRBs) suggests the separa-
tion of GRBs at T90 ≈ 2 s into short/hard and long/soft classes [1]. The association of long
GRBs with star forming galaxies [2] and Type Ic supernovae (Galama et al. [3], Woosley
and Bloom [4]; for a review, see Cano et al. [5]) provides an observational link between
long GRBs and the deaths of massive stars, supporting the collapsar scenario [6]. There
is substantial evidence to support compact object mergers (neutron star–neutron star or
neutron star–black hole) as the progenitors of short GRBs [7,8]. The location offsets of
short GRBs from their host galaxies [9,10], their proximity to elliptical galaxies [11], and the
association of GRB 170817A, an unusual short GRB, with the neutron star merger event
GW 170817 detected by aLIGO [12–14], all support the merger hypothesis for the origin of
short GRBs.

Other formation scenarios for short GRBs include the accretion-induced collapse of
a white dwarf, double white dwarf mergers, or neutron star–white dwarf mergers [15–17],
possibly leading to an unstable magnetar remnant. There are notable exceptions to the short-
merger/long-collapsar paradigm, such as the short-collapsar event GRB 200826A [18–20],
and GRB 060614, a long GRB without a supernova [21]. It has been suggested that many
of the short duration GRBs of high redshift arise from collapsars [22]. Consideration
of additional GRB characteristics, such as late X-ray flares in some short GRBs, and the
non-detection of a supernova associated with some long GRBs [23], led to the suggestion
of a new classification scheme [21], with Type I (massive star origin) and Type II (com-
pact object merger origin) GRBs defined by many multiple observational criteria beyond
the traditional duration and hardness [22,24]. Lü et al. [25] suggested a new parameter ε,

Galaxies 2022, 10, 77. https://doi.org/10.3390/galaxies10040077 https://www.mdpi.com/journal/galaxies

https://doi.org/10.3390/galaxies10040077
https://doi.org/10.3390/galaxies10040077
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/galaxies
https://www.mdpi.com
https://orcid.org/0000-0002-9172-7066
https://orcid.org/0000-0003-2931-3732
https://orcid.org/0000-0001-5108-0627
https://doi.org/10.3390/galaxies10040077
https://www.mdpi.com/journal/galaxies
https://www.mdpi.com/article/10.3390/galaxies10040077?type=check_update&version=3


Galaxies 2022, 10, 77 2 of 17

based on the isotropic equivalent energy and peak energy, to classify bursts. Additionally,
Donaghy et al. [26] considered 10 observational criteria for HETE-2 bursts, concluding that
the best criteria to classify GRBs as ‘short population’ or ‘long population’ bursts are host
galaxy properties, spectral lag, and the presence of a long-soft bump or gravitational waves.

In view of the diversity in GRB phenomenology, a definitive classification of GRBs
based on duration alone is challenging. Several studies have found evidence for an ad-
ditional ‘intermediate’ duration class of GRBs, first identified through Gaussian fits to
the duration distribution of GRBs in the Third BATSE catalogue [27] and, subsequently,
in fits to the GRB duration distributions of BeppoSAX [28], RHESSI [29], and Swift [30–35].
This class appears as an additional Gaussian ‘component’ required for the best-fit solution.
However, the observed duration distribution can be recovered by modelling it as two
skewed distributions [31,36,37], without requiring a third component.

GRB catalogues provide a set of standard parameters measured for each GRB, includ-
ing duration (T90), hardness ratio (HR), fluence (S), peak flux (PF), peak energy (Epeak),
and spectral fit parameters, including the low and high energy spectral indices of the Band
function [38], which fits the keV-MeV GRB spectrum, typically denoted in the literature as α
and β, respectively. In the case of Fermi/GBM, the catalogue contains over 300 parameters
for each GRB [39,40]. The availability of such large GRB catalogues allows the application
of bivariate and multidimensional analyses to the data.

Table 1 summarises the previous studies, along with the resulting number of compo-
nents identified for different GRB datasets. Between two and five classes of GRBs are found,
depending on the sample, parameters, and methods used. Clustering of the duration-
hardness plane of the final BATSE GRB catalogue identified three [41–43] or five [44–46]
classes of GRBs separated by their duration, fluence, and hardness. Unsupervised neural
network analysis also revealed an intermediate class [47] or two classes [48,49]. However,
only two classes were found in the BATSE sample using self-organising maps [50] and fits
to the duration-hardness plane with skewed bivariate distributions [51,52].

The clustering of the duration and hardness of Swift/BAT GRBs [53,54] and the clustering
of light curve shape indicators [55] identified three classes of bursts. Gaussian Mixture Model-
based (GMM) clustering applied to the Fermi/GBM sample revealed that GRB 170817A fit
within the intermediate class in the duration-hardness plane [56], and that five classes could be
identified by clustering spectral fit parameters, fluences, and durations [57]. Principal Component
Analysis (PCA) also identified three classes in Fermi/GBM [58] and BATSE [59] samples.

Table 1. Methods and resulting components identified in clustering, fitting, and dimensionality
reduction techniques applied to GRB populations. HR denotes Hardness Ratio, PF denotes Peak
Flux, and S represents fluence. Studies which consider intrinsic properties such as redshift-corrected
duration and hardness are marked with a *.

Study Method Parameters Components

BATSE

Horváth [27] Fit (Gaussian) T90 3
Mukherjee et al. [41] Clustering (Hierarchical) T90, HR, PF, S 3
Hakkila et al. [48] Supervised pattern recognition T90, HR, PF, S, Epeak, α, β 2
Balastegui et al. [47] Clustering (Hierarchical), PCA, Neural Network T90, PF, S 3
Horváth [60] Fit (log-normal) T90 3
Rajaniemi and Mähönen [50] Self-Organising Maps T90, HR, S 2
Hakkila et al. [49] Clustering (k-means), Neural Network T90, HR, S 2
Chattopadhyay et al. [42] Clustering (k-means, Dirichlet mixture) T90, HR, PF, S 3
Zitouni et al. [32] Fit (Gaussian) T90 2
Zhang et al. [61] Fit (Gaussian) T90 2
Bhave et al. [54] Clustering (Gaussian Mixture-Model) T90, HR 2
Chattopadhyay and Maitra [44] Clustering (k-means, Gaussian Mixture-Model) T90, HR, PF, S 5
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Table 1. Cont.

Study Method Parameters Components

Swift

Kulkarni and Desai [35] Fit (log-normal) T90 2
Chattopadhyay and Maitra [45] Clustering (Ellipsoidal Gaussian, t-mixture) T90, PF, S 5
Tarnopolski [51] Fit (Skewed bi-variate) T90, HR 2
Tarnopolski [52] Fit (Skewed bi-variate) T90, HR 2
Tóth et al. [46] Clustering (Gaussian Mixture-Model) T90, HR, PF, S 5
Modak [43] Clustering (Fuzzy) T90, HR, PF, S 3
Horváth et al. [62] Fit (log-normal) T90 3
Zhang and Choi [63] Fit (log-normal) T90 2
Zhang and Choi [63] * Fit (log-normal) T90,rest 2
Huja et al. [30] Fit (Gaussian) T90 3
Huja et al. [30] * Fit (Gaussian) T90,rest 1
Horváth et al. [64] Fit (Gaussian) T90, HR 3
Veres et al. [53] Clustering (Hierarchical, k-means) T90, HR 3
Koen and Bere [31] Clustering (Gaussian) T90, HR 3
Tsutsui and Shigeyama [55] Clustering (Gaussian) Light curve shape indicators 3
Zitouni et al. [32] Fit (Gaussian) T90 3
Zitouni et al. [32] * Fit (Gaussian) T90,rest 3
Horváth and Tóth [33] Fit (log-normal) T90 3
Tarnopolski [34] Fit (Skew-normal) T90 3
Tarnopolski [34] * Fit (Skew-normal) T90,rest 1
Yang et al. [65] * Clustering (Gaussian Mixture-Model) T90,rest, HR 2
Zhang et al. [61] Fit (Gaussian) T90 3
Zhang et al. [61] * Fit (Gaussian) T90,rest 2
Bhave et al. [54] Clustering (Gaussian Mixture-Model) T90, HR 3
Bhave et al. [54] * Clustering (Gaussian Mixture-Model) T90,rest, HR 3
Kulkarni and Desai [35] Fit (log-normal) T90 3
Kulkarni and Desai [35] * Fit (log-normal) T90,rest 2

Fermi

Zhang et al. [61] Fit (Gaussian) T90 2
Bhave et al. [54] Clustering (Gaussian Mixture-Model) T90, HR 2
Kulkarni and Desai [35] Fit (log-normal) T90 2
Acuner and Ryde [57] Clustering (Gaussian Mixture-Model) T90, S, Epeak, α, β 5
Horváth et al. [56] Clustering (Gaussian Mixture-Model) T90, HR 3
Zitouni et al. [66] Fit (Gaussian) T90 2
Zitouni et al. [66] * Fit (Gaussian) T90,rest 2
Horváth et al. [58] Principal Component Analysis T90, PF, S, Epeak, α, β 3
Tarnopolski [51] Fit (skewed bivariate) T90, HR 2

BeppoSAX

Horváth [28] Fit (log-normal) T90 3
Kulkarni and Desai [35] Fit (log-normal) T90 2

RHESSI

Řípa et al. [29] Fit (log-normal) T90 2
Řípa et al. [29] Fit (log-normal) T90, HR 3
Řípa et al. [67] Clustering (Gaussian Mixture-Model, k-means) T90, HR 3

INTEGRAL

Minaev et al. [68] Fit (log-normal) T90 2

Konus-Wind

Svinkin et al. [69] Fit (log-normal) T50 2
Svinkin et al. [69] Clustering (Gaussian Mixture Model) T50, HR 3

Multiple samples

Minaev and Pozanenko [70] * Fit (Skew-normal) T90,rest, Eiso, Epeak,rest 2
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Observational bias has been suggested as a possible origin of the putative intermediate
class. Bias caused by short temporal trigger windows favours short low-fluence bursts
(fluence-duration bias; Hakkila et al. [49]), while the low signal-to-noise ratios of long
faint bursts can cause them to be mistaken for short bursts (‘tip-of-the-iceberg’ effect;
Lü et al. [71]). However, neither of these effects have been able to reproduce the third class
in simulations. It has been shown that the third class can arise as a consequence of fitting
symmetrical models to the GRB duration distribution, which may be skewed rather than
symmetrical [31,36,37,51], possibly as a result of the GRB pulse shapes [72].

The significant number of GRBs with measured redshift in the Swift and Fermi samples
has allowed studies of intrinsic properties, which have pointed to the existence of two
classes in the Fermi/GBM sample [32]. For the Swift/BAT sample of bursts, one [30,34],
two [35,61,63,65], or three [32,54] classes have been identified. However, cosmological
time dilation applied to GRB durations has not been found to transform a rest-frame two-
component Gaussian duration distribution to the observed skewed one [73]. While there
are now more than 400 Swift GRBs with measured redshift, there are only 25 short duration
bursts with T90,obs < 2 s. The rest-frame studies outlined in Table 1 note that the short
duration sample is not statistically significant, and a larger sample is required [54,65].

This paper reports on an updated two-dimensional clustering analysis in the duration-
hardness plane of the large Fermi/GBM and Swift/BAT GRB samples. Advancing previous
studies, the analysis presented here makes use of an entropy criterion to identify ‘excess’
components that may be identified in the standard GMM clustering of data but which
arise from the application of Gaussian models to non-Gaussian underlying data [74].
This method has been applied in other astrophysical contexts, for example in the clustering
of stars [75]. As the number of short GRBs with redshift has not grown significantly
since previous studies, this paper focuses on GMM clustering using observed, rather than
intrinsic, properties.

Section 2 outlines the sample construction, while Section 3 provides details of the methods
applied to perform clustering. The results and discussion are presented in Sections 4 and 5
respectively, while the conclusions are outlined in Section 6.

2. Datasets and Data Preparation
2.1. Swift/BAT

The Third Swift/BAT Catalogue [76] contains 1388 bursts detected between
17 December 2004 and 28 August 2020 and provides the durations, spectral fit parameters,
fluxes, and fluences calculated in the simple Power-Law (PL) and Cut-off Power-Law (CPL)
models. The hardness ratio HR32 for each GRB was calculated as the ratio of the fluence
in energy range 3 (50–100 keV) to energy range 2 (25–50 keV), given by

HR32 =

∫ 100 keV
50 keV E f (E)dE∫ 50 keV
25 keV E f (E)dE

, (1)

where f (E) is the photon flux at energy E. For the PL model, this is given by

f (E) = KPL
50

(
E

50 keV

)αPL

, (2)

where αPL is the PL index, and KPL
50 is the normalisation factor at 50 keV, with units of

photons cm−2 s−1 keV−1. The CPL model is described as

f (E) = KCPL
50

(
E

50 keV

)αCPL

exp
(−E(2 + αCPL)

Epeak

)
, (3)

where αCPL is the CPL index, KCPL
50 is the normalisation factor at 50 keV, with units of

photons cm−2 s−1 keV−1, and Epeak is the peak energy in keV of the νFν or E2 f (E) spectrum.
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This is the flux density integrated over the energy range, also known as the spectral
flux density.

The sample of 1388 bursts was filtered to remove 52 GRBs for which no duration
or best-fit model was documented. A further 20 GRBs with duration or hardness errors
in excess of 50% of their magnitude were removed, resulting in a final sample of 1316 GRBs
for clustering.

2.2. Fermi/GBM

The Fermi/GBM catalogue was accessed using the Fermi/GBM Data Tools [40] and
limited to the period between 10 August 2008 and 17 March 2021, which yielded a sample
of 3001 bursts. The hardness ratio was calculated by comparing the counts detected in the
8–50 keV band to the 50–300 keV band. Counts within the T90 interval were summed from
the 64 ms light curves, generated using Time-Tagged Event (TTE) data in the Fermi/GBM
Data Tools. Only triggered detectors were used, and the background subtraction was
performed using the background intervals defined in the Fermi/GBM catalogue. Bursts
with no documented duration or incorrect background subtraction were removed, resulting
in a sample of 2669 bursts. Prior to clustering, 36 outliers were identified by the R package
HDOutliers [77] and removed from the sample, leaving a final sample of 2633 bursts
for clustering.

3. Clustering Methods
3.1. GMM Clustering

GMM clustering was carried out in R using the MCLUST [78]. GMM clustering assumes
that the observed data are generated from a mixture of K components, where the density
of each component is described by a multivariate Gaussian distribution. MCLUST fit
14 different models to the data, parameterised by the shape (spherical or ellipsoidal) and
volume. In the case of ellipsoidal models, the alignment of the axes and the difference
in shape of the fitted ellipsoidals was specified. This is known as Volume-Shape-Orientation
(VSO) decomposition. For a given model, the volume, shape, and orientation can be
constrained to equal variance, denoted by ‘E’. If the variance is free to change, the model
is denoted ‘V’. Additionally, the orientation of the clusters relative to each other can be
constrained to Equal or Varying, or a model can have alignment limited to the coordinate
axis, and is labelled ‘I’. For example, ‘EVI’ denotes equal volume components, with variable
shapes (i.e., not spherical) and orientation aligned with the axes.

MCLUST makes use of the Bayesian Information Criterion (BIC; Schwarz et al. [79]) to
compare mixture models fitted on the data. The best-fit model and number of components
are chosen based on the largest BIC value. A difference in BIC value between models
of 6–10 is considered significant, while a difference of greater than 2 provides positive
evidence for a better fit [80]. This standard GMM fit method is the same as that employed
in some previous studies, for example Horváth et al. [56] and Bhave et al. [54].

3.2. Combination of Gaussian Components

In the case where Gaussian components were overlapping or components were sus-
pected to be non-Gaussian, as has been shown for the BATSE and Fermi/GBM GRB duration
distributions [51,52], the MCLUST function clustCombi was used to hierarchically com-
bine components using an entropy criterion [74]. Entropy is a measure of the uncertainty
of the observations belonging to a certain cluster or component. Thus, a large decrease
in entropy signifies a better fit with smaller uncertainty. For MCLUST, the final number
of components was chosen based on the observed ‘elbow’ in the entropy plot. The num-
ber of components at which the elbow occurred pointed to a large decrease in entropy
and, therefore, a model with smaller uncertainty.

There are several methods for joining Gaussian Mixture components. In comparison
to the entropy criterion, these methods have limitations, for example, requiring spherical
components [81] or one-dimensional data [82]. Other suggested methods assume the num-
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ber of clusters [83] or make use of hard clustering methods, which assigns points to one
cluster rather than applying a probabilistic method (e.g., Tantrum et al. [84]). The method
employed in this study was a soft-clustering probabilistic method, which is computation-
ally efficient and applicable to multiple dimensions. Hence, it was the chosen method to
achieve a robust clustering result for the complex GRB datasets.

4. Results

The results of the initial MCLUST fit and subsequent clustCombi method applied to
the Swift/BAT and Fermi/GBM samples are summarised in Table 2.

Table 2. Number of components (K), Bayesian Information Criterion (BIC) values, models, and
number of bursts (#) identified in the MCLUST and subsequent clustCombi fits to the Swift/BAT and
Fermi/GBM samples.

Initial MCLUST Fit clustCombi Fit

Model K BIC K # Short # Long

Swift/BAT VEI 3 −720 2 85 1231
Fermi/GBM VEI 3 −3970 2 295 2338

4.1. Swift/BAT

The BIC values for the top three models versus the number of components, resulting
from the application of MCLUST to the full Swift/BAT sample, are shown in Figure 1a.
The ‘VEI’ model with three components had the largest BIC value. The three compo-
nents were labelled ‘long’, ‘intermediate’, and ‘short’ according to their durations and
are projected onto the hardness-duration plane in Figure 1b. The clear round edge be-
tween the intermediate and long components suggests that a Gaussian was being fit to
a non-Gaussian component.

1 2 3 4 5 6 7 8 9
Number of components

−1200

−1100

−1000

−900

−800

−700

B
IC

Model
Varying volume, Equal shape, Equal orientation (VEE)

Varying volume, Equal shape, Aligned orientation (VEI)

Varying volume, Varying shape, Equal orientation (VVE)

(a)
Figure 1. Cont.
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(b)
Figure 1. (a) BIC values of the top three MCLUST models fit to the Swift/BAT sample and (b) the re-
sulting duration-hardness plane for the best-fit three-component model (VEI).

After clustCombi was applied, the ‘intermediate’ and ‘long’ components were com-
bined, producing a large decrease in entropy as shown in Figure 2. The two remaining
components or classes were labelled ‘long’ and ‘short’, as shown in Figure 3. Table 2
presents the sample size of the classes.

0 250 500

1

2

3

N
u

m
b

er
of

co
m

p
on

en
ts

Swift/BAT

0 500 1000

Fermi/GBM

Entropy

Figure 2. Entropy plots returned by clustCombi depicting the entropy of the initial MCLUST

fits (three components) and the entropy after combination of the initial MCLUST components for
Swift/BAT (left) and Fermi/GBM (right). An inflection, or elbow, in the entropy plot signifies a model
with the optimal number of components.
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Figure 3. The results of clustCombi applied to the components identified by MCLUST in the duration-
hardness plane for Swift/BAT.

The distributions of the duration (T90) and hardness ratio (HR32) are depicted in the vi-
olin plot in Figure 4. The mean, standard deviation, and median values of these parameters
for the long and the short classes are presented in Table 3.

−2 0 2
log10(T90)

(s)

Short

Long

0.0 0.5
log10(HR32)

Figure 4. Violin plots showing the distribution of the duration (T90) and hardness ratio (HR32) for
the Swift/BAT ‘short’ (red) and ‘long’ (blue) classes identified by clustCombi. The median of each
parameter is marked as a black line within the box, which represents the 1 σ interval (i.e., the 16th to
84th percentile).

Table 3. Mean (µ), standard deviation (σ), and median of the properties of the Swift/BAT ‘long’ and
‘short’ classes identified by clustCombi.

Short Long

µ σ Median µ σ Median

T90 (s) 0.39 0.29 0.30 79.8 101.0 47.7
HR32 2.02 0.46 1.96 1.31 0.32 1.28
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4.2. Fermi/GBM

For Fermi/GBM, the initial MCLUST fit indicated that a three-component fit to the data
was preferred. The BIC values of the top three models are shown in Figure 5a. The three
best-fit components are depicted in Figure 5b. The three-component ‘VEI’ model exhibited
a BIC value difference of ∼6 compared to the next best model; thus, it was considered
a significant result. The classification components were labelled ‘short’, ‘intermediate’,
and ‘long’, according to their duration. The boundary between the ‘intermediate’ and
‘long’ components exhibited a similar round-edge feature as identified in the results for
Swift/BAT.

1 2 3 4 5 6 7 8 9
Number of components

−5400

−5200

−5000

−4800

−4600
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−4200

−4000

B
IC

Model
Varying volume, Equal shape, Aligned orientation (VEI)

Varying volume, Varying shape, Aligned orientation (VVI)

Varying volume, Equal shape, Equal orientation (VEE)

(a)

−1 0 1 2
log10(T90)

−0.8

−0.4

0.0

0.4

0.8

lo
g 1

0
(H

R
32

)

Component
Short

Intermediate

Long

0

50

100

N

0 100
N

(b)
Figure 5. (a) BIC values of the top three MCLUST models fit to the Fermi/GBM sample and (b) the re-
sulting duration-hardness plane for the best-fit three-component model (VEI).
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The results obtained from applying clustCombi to this sample are shown in Figure 6,
indicating that a model consisting of two components or classes, rather than three, provided
a better fit to the data, based on a decrease in entropy depicted in the entropy plot in Figure 2.
The number of bursts in the ‘long’ and ‘short’ classes identified by clustCombi is presented
in Table 2.

−1 0 1 2
log10(T90)

−0.8

−0.4

0.0

0.4

0.8

lo
g 1

0
(H

R
32

)

Component
Short

Long

0

100

200
N

0 200
N

Figure 6. The results of clustCombi applied to the components identified by MCLUST in the duration-
hardness plane for Fermi/GBM.

The violin plot in Figure 7 for the Fermi/GBM sample demonstrates the distributions
of the duration and hardness ratio, while the summary statistics of these populations are
presented in Table 4.

0 2
log10(T90)

(s)

Short

LongLong

Short

−0.5 0.0 0.5 1.0
log10(HR32)

Figure 7. Violin plots showing the distribution of the duration (T90) and hardness ratio (HR32) for
the Fermi/GBM ‘short’ (red) and ‘long’ (blue) classes identified by clustCombi. The median of each
parameter is marked as a black line within the box, which represents the 1 σ interval (i.e., the 16th to
84th percentile).
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Table 4. Mean (µ), standard deviation (σ), and median of the properties of the Fermi/GBM ‘long’ and
‘short’ classes identified by clustCombi.

Short Long

µ σ Median µ σ Median

T90 (s) 0.64 0.65 0.45 38.6 23.4 45.4
HR32 1.99 1.53 1.96 0.78 1.49 0.77

5. Discussion
5.1. Swift/BAT

For Swift/BAT, the three components identified in Figure 1b had a similar size and
structure to those identified in the GMM clustering by Bhave et al. [54]. In this analy-
sis, the hardness ratio was computed using the best-fit model for Swift, consistent with
the method undertaken by Bhave et al. [54], enabling comparison of results. The clear-cut
round boundary between the intermediate and long components in Figure 1b was also
found by Bhave et al. [54] and is a signature of the application of a Gaussian model to
a non-Gaussian underlying distribution.

The result of applying clustCombi after the GMM clustering indicated that the in-
termediate duration component, combined with the long duration component, provided
a better fit to the sample of Swift/BAT bursts (Figure 3). Thus, the intermediate class was
likely identified by the overfitting resulting from GMM clustering applied to the complex
distribution of Swift/BAT bursts in duration-hardness space.

Figure 4 and Table 3 show that the mean duration of the short class identified by
clustCombi was T90 ≈ 0.3 s (1 σ standard deviation of 0.29 s), while the long class had
a mean T90 ≈ 70 s (1 σ standard deviation of 101 s). This is consistent with the peaks of
the Swift short (T90 < 2 s) and long (T90 > 2 s) duration distributions [85]. The shorter
duration class had a larger hardness ratio than the longer duration class, as expected from
the traditional short/long paradigm. The separation between the short and long classes
occurred at T90 ≈ 0.5–2 s. This is in agreement with the findings of Bromberg et al. [86],
whose modelling of the duration distribution of Swift/BAT bursts using the Collapsar
model suggested a separation at T90 ≈ 0.8 s.

5.2. Fermi/GBM

Prior to the removal of the 36 outlier bursts, MCLUST initially suggested a fit with four
components in the Fermi/GBM sample. The fit included one group of bursts with very
high or very low hardness ratios situated in a halo around the three groups in Figure 5b.
These outlier bursts were effectively removed using HDOutliers (Section 2), following
previous studies including Tóth et al. [46], Horváth et al. [56,58] and were likely the result of
unsuitable background subtraction. Upon removal of the outliers, MCLUST identified three
components, which were similar to the components obtained for Swift/BAT (Figure 5b).
The intermediate duration component contained more bursts than the class identified
by Horváth et al. [56], whose intermediate class only contained bursts with low spectral
hardness. This difference can be attributed to their smaller sample size of 1298 bursts.

A signature of a Gaussian component is visible at the sharp boundary between the in-
termediate and long duration components in Figure 5b, indicating an arbitrary Gaussian
component was identified. Consistent with the results obtained for Swift/BAT, the interme-
diate component was disregarded when clustCombi was applied, indicating that it was
likely an overfitting component identified by the GMM clustering procedure. Thus, a short
and long duration class remained.

In this analysis, the hardness ratio was computed using the background-subtracted
counts to be consistent with previous Fermi/GBM studies and to enable direct comparison
with those results. The short and long duration classes in Figure 6 were comparable to
the classes found in previous GMM clustering analyses by Bhave et al. [54], Bhat et al. [87],
and in skewed bi-variate fits carried out by Tarnopolski [51]. Table 4 and Figure 7 show
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that the short duration class was spectrally harder than the long duration class, as expected.
The mean duration of the classes were 0.64 s (1 σ standard deviation of 0.65 s) and 38.6 s
(1 σ standard deviation of 23.4 s) for the short and long classes, respectively. This result is
consistent with the mean durations of the short (0.82 s) and long (28.3 s) classes identified
in the GMM clustering of the third Fermi/GBM catalogue [87].

5.3. Comparison to GRB Subclasses

Groups 1 and 2 of the Swift/BAT and Fermi/GBM samples resemble the traditional
short/hard and long/soft prototypes. The groups can be compared to several subclasses
of GRBs, including those with associated supernovae, extended emission episodes, and
plateaus. The longer duration Group 2 contained all 49 bursts with an X-ray plateau from
the platinum sample identified by Dainotti et al. [88]. Similarly, all bursts in the sample
with an optical plateau [89] and those with an associated supernova and a plateau [90] lay
in Group 2. The Swift sample analysed also contained four ultra-long GRBs from the Gold
sample and five possible ultra-long GRBs from the Silver sample of Gendre et al. [91]. All of
these bursts resided in Group 2 as expected, given their duration.

Short GRBs with extended emission episodes have challenged the typical duration-
based classification scheme of GRBs. The population of Swift GRBs with extended emission
identified by Gibson et al. [92] contains bursts chosen from the sample in Kaneko et al. [93]
and Gompertz et al. [94,95]. The Gibson et al. [92] sample was found to only contain bursts
from Group 2 of our Swift/BAT results. This is understandable, given that the rebrightening
exhibited in their light curves can lead to an increase in the measured T90 [70], thus placing
them in Group 2. The extended emission episodes are typically softer than the initial spike,
dominating the overall detected fluence, thus resulting in a longer duration GRB.

Group 2 resembled the standard long-duration group for both the Swift and Fermi
samples. Thus, bursts with associated supernovae were expected to belong to this group.
The sample of supernova-associated GRBs from Cano et al. [5] was updated to include
more recent events GRB 161219B/SN 2016jca [96], GRB 171205A/SN 2017htp [97], GRB 180728A/
SN 2018fip [98,99], GRB 190114C/SN 2019jrj and GRB 190829A/AT2019oyw [100], and GRB
200826A [18–20]. There were 25 Swift and 15 Fermi GRB-SN cases within the sample
analysed, all of which resided in Group 2 as expected. The only confirmed GRB with
a kilonova, GRB 170817, was also in Group 1 of the Fermi sample.

5.4. Selection Effects

Svinkin et al. [69] suggested that T50, the time during which 50% of the counts above
background are recorded, is a more robust duration measure than T90, since it may be
less affected by detector energy ranges. To eliminate possible selection effects and to
verify the two-component solutions, the clustering analysis was repeated using T50 as
the duration parameter. For Swift/BAT, the initial MCLUST fit returned a three-component
solution similar to Figure 1b—the short duration group remained the same, while the two
long duration groups also exhibited the clear-cut spherical feature identified in the T90
analysis. When clustCombi was applied, a two group-solution was the best fit. Group 1
and Group 2 were identical to the groups found in the T90 analysis. Thus, for Swift/BAT,
this method did not favour T50 over T90 as a duration measure, and the results further
supported the two-group solution.

For Fermi/GBM, the initial MCLUST fit identified an extra long duration group in a four-
component solution. The long duration group in Figure 5b was split in two, with the
remaining structure matching the results of the T90 analysis. clustCombi resulted in a two-
component fit closely resembling the structure and makeup of Group 1 and Group 2 of
the T90 fit. However, Group 1 contained ≈ 100 more GRBs than the T90 fit. For Fermi/GBM,
the two-component fit was supported, and while the T50 parameter returned slightly
different proportions in each group, it did not demonstrate any clear advantage over T90
as a duration parameter.
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6. Conclusions

GMM clustering with MCLUST identified three Gaussian components of Swift/BAT
and Fermi/GBM bursts in the duration-hardness plane. The third component resembled
the intermediate duration group identified in previous studies. However, combining
components, based on an entropy criterion, identified a short and long duration class only
for both samples.

This study highlights the drawbacks of fitting GRB populations with model-based
methods. Similar model-based fitting methods, including the log-normal fit procedures
applied to GRB duration distributions, have exhibited components thought to be identified
incorrectly due to the inherently skewed distribution of long GRB durations [31,36]. Table 1
highlights the diversity of results from model-based studies.

The lack of consensus regarding a definitive number of GRB classes, both in the analy-
sis presented here and in previous studies of GRB catalogues, is a motivator for a model-
independent analysis of GRB light curves. The light curves may also contain more in-
formation than the summary data provided by the GRB catalogues. Fourier analysis of
the Swift/BAT GRB light curves by Jespersen et al. [101] identified two classes of bursts.
Following on from the analysis presented in this paper is a wavelet-based feature extraction
analysis of GRB light curves from Swift/BAT, BATSE and Fermi/GBM (Salmon et al. [102],
in preparation).
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