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Abstract: We present a pedagogical introduction to the electroweak baryogenesis. The review focuses
principally on the sphaleron and baryon number (non)-conservation or chiral anomaly. All results
are derived with details for a self-contained reading.

Keywords: baryogenesis; sphaleron; anomaly; cosmology

1. Introduction

One of the very important aspects of the history of our universe is the missing antipar-
ticles. The universe is composed essentially of matter and the rare particles of antimatter
observed are not from the early time of our universe but are produced in some interactions,
such as collisions in the atmosphere, with cosmic rays. The field that is trying to discover
the history of these disappeared primordial antiparticles is known as baryogenesis. Many
models have been constructed but while a large number are not falsifiable, at least with
the current experiments, some have attracted more attention because they could produce
a testable signature with gravitational waves. In particular, LISA (Laser Interferometer
Space Antenna) could observe [1] a stochastic gravitational wave signal produced by an
electroweak phase transition in the early universe, which is a central mechanism in the
electroweak baryogenesis (EWBG). Therefore, EWBG and some other falsifiable models
will be central in future research topics. For that reason, we believe that this review could be
an introduction for students and young researchers who are not familiar with the field. This
review is not a summary of the state-of-the-art in the area but more as lecture notes with
great detail provided in the calculations. We should mention a few of the very interesting
reviews covering many of the aspects mentioned in this review and more [2–6]. We hope
that this review could be complementary for a non-expert audience.

In the first section of this review, we will introduce a brief history of the baryogenesis
up to the Sakharov conditions, which are necessary but not sufficient conditions for any
model of baryogenesis. In a second section, we will summarise our current knowledge
of the baryon/antibaryon asymmetry from CMB (cosmic microwave background) and
BBN (Big Bang nucleosynthesis) observations. In the third section, we will introduce the
sphaleron process—which is central in the EWBG—via a toy model in 1 + 1 dimensions
and its relation to baryon number conservation. Finally, we will summarize the EWBG
mechanism.

2. Sakharov Conditions

Before mentioning the three necessary conditions for any viable model of baryogenesis,
it is important to summarise the current knowledge at the time of Andrei Sakharov.

The story starts with Paul Dirac, who proposed, with the help of the equation bearing
his name, the existence of a sea of negative energy states. After some debates, in particular
with Robert Oppenheimer and Hermann Weyl, Dirac interpreted this solution as describing
a new particle with the same characteristics as the electron but with positive charge, an anti-
electron which has been discovered and renamed by Carl Anderson in 1932 as a positron.
The antiparticles were born. Since then, physicists have tried to observe their abundance,
because according to the Dirac equation, there is no reason for an excess of matter over
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anti-matter. But if antimatter was equally present in the universe, we would see it. Indeed,
if the Universe was half filled with anti-nucleons, we would have anti-galaxies, anti-stars
which should produce via anti-star nucleosynthesis the heavy elements of anti-matter, but
nothing has been observed, such as, e.g., an important component of antiprotons in the
cosmic rays produced by anti-supernovas.

We could therefore easily imagine that matter and antimatter form large domains
which are separated by voids. If that hypothesis was totally legitimate in the early studies,
it has been totally ruled out by CMB observations 1. Indeed, any structures of antimat-
ter would deform the CMB spectrum. Clearly, primary antimatter does not exist, only
secondary antimatter particles exist, which are created from the collision of cosmic rays
(protons) with the atmosphere or radioactive decay such as β or γ decays.

A first step towards an understanding of the difference between matter and antimatter
was discovered in 1950. Indeed, P-symmetry is violated in weak interactions, the symmetry
between left and right-handed particles. In this context, CP symmetry was postulated
by Lev Landau in 1957 to restore order. For that, C-symmetry should also be violated,
which was confirmed in various experiments. This new symmetry (CP) would not make
any difference between matter and antimatter. Any left (right)-handed particle can be
exchanged with a right (left)-handed antiparticle. To differentiate them, (CP) symmetry
should be violated, which was discovered in 1964 by observing kaon decay, in particular
K0, which is composed of a down quark and a strange antiquark, and K̄0 , its antiparticle.
It was discovered that K0 transforms into K̄0 which again transforms into K0. This is the
phenomenon of oscillation, first studied in 1954 by Murray Gell-Mann and Abraham Pais
(see Figure 1).

Figure 1. Because weak interactions do not conserve strangeness, we can have these types of box
diagrams representing the transformation of a neutral kaon into its antiparticle.

The mixing could be described by a state,

|ψ〉 = eiHt
(

a
b

)
with H =

(
A B
C A,

)
(1)

where H11 = H22 because of CPT symmetry. We are working on the basis of

|K0〉 =
(

1
0

)
, |K̄0〉 =

(
0
1.

)
(2)

The operation of CP transforms particles into antiparticles and therefore CP|K0〉 =
eiφ|K̄0〉 ,where φ is an irrelevant phase. Using theses relations, we can conclude that CP
symmetry would imply B = C, indeed,

〈K0|H|K̄0〉 = 〈K0|(CP)−1(CP)H(CP)−1(CP)|K̄0〉 (3)

= 〈K̄0|(CP)H(CP)−1|K0〉 = 〈K̄0|H|K0〉, (4)
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where, in the last expression, we have used our assumption of CP invariance, (CP)H(CP)−1 =
H. Under this assumption, the eigenstates of our Hamiltonian (1) become

|K1〉 =
|K0〉+ |K̄0〉√

2
and |K2〉 =

|K0〉 − |K̄0〉√
2

. (5)

However, in nature, two neutral kaons are known, which are distinguished by their
lifetimes. A long-lived kaon which decays into three pions and a short lived one which
decays into two pions. They should naturally be identified as the two eigenstates |K1〉
and |K2〉. However, analysing a beam of kaons at a distance at which all short-lived
ones should have decayed, and therefore only long-lived ones should exist, i.e., particles
decaying into three pions, it was shown in 1964 that some particles were decaying into two
pions. Concluding that both eigenstates could decay into two pions implies a CP-violation
via states

|KS〉 =
(1 + ε) ·

∣∣K0〉+ (1− ε) ·
∣∣K̄0〉√

2(1 + |ε|2)
, |KL〉 =

(1 + ε) ·
∣∣K0〉− (1− ε) ·

∣∣K̄0〉√
2(1 + |ε|2)

, (6)

where ε measures the deviation to exact CP-symmetry with |ε| ' 2 · 10−3 [7]. Violation of
CP-symmetry is a key element for baryogenesis.

In this context, Sakharov reached the conclusion that the problem of baryon asymmetry
needed a dynamical solution with three conditions:

1. Baryon number violating process;
2. C-symmetry and CP-symmetry violations;
3. Departure from thermal equilibrium.

2.1. Baryon Number Violating Process

Let us first remember that the baryon number is defined as B =
nq−nq̄

3 ,while nq and
nq̄ are the number of quarks and antiquarks. It seems obvious that, if B = 0 after inflation
and all processes conserve B, we would never create the baryon asymmetry. So, we need
processes such as X → Y + b, where Bx = By = 0 and Bb = 1, which implies that in this
process, we have ∆B = 1. We will see that such a mechanism exists, and it is caused by the
sphaleron.

2.2. C-Symmetry and CP-Symmetry Violations

As we have seen in the previous section, we need processes that discriminate between
baryons and antibaryons otherwise the process X̄ → Ȳ + b̄ (for which ∆B = −1 ) would
be as likely as X → Y + b, which implies that no net baryon number would be generated.
More formally, we need to violate processes in which the baryon number is changed into its
negative. We have CB̂C−1 = −B̂ and (CP)B̂(CP)−1 = −B̂, while B̂ is here to be understood
as an operator for which we have 〈B̂〉 = Tr(ρ̂B̂), with ρ̂ the density operator solution of the
Liouville equation

ih̄
∂ρ̂

∂t
+ [ρ̂, H] = 0. (7)

If C and CP are exact symmetries, they commute with the Hamiltonian, [H, C] =
[H, CP] = 0 and therefore with ρ̂,

Tr(B̂ρ̂) = −Tr
(

CB̂C−1ρ̂
)
= −Tr

(
B̂C−1ρ̂C

)
= −Tr(B̂ρ̂) = 0, (8)

which implies 〈B〉 = 0, and similarly with CP symmetry.
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2.3. Departure from Thermal Equilibrium

If we have thermal equilibrium, the process X → Y + b is compensated by Y + b→ X
and therefore the total baryon number remains zero. This third condition can also be
proved more formally. Because we do not have time evolution, we will not use the Liouville
equation but instead the CPT theorem which states that CPT is an exact symmetry. We have
(CPT)H(CPT)−1 = −H because in equilibrium time inversion does not change the sign of
B. If the system is in equilibrium, the density matrix is thermal ρ = 1

Z e−βH which implies
[CPT, ρ] = 0 and therefore 〈B〉 = 0. We need a process out of equilibrium.

We conclude this section with the Sakharov conditions which are a guiding rail for
viable models of baryogenesis. We need to be sure that all three conditions are met and
also that the asymmetry is sufficient to explain our universe.

3. Baryon Asymmetry from Observations

If in the early universe for 1010 antibaryons we had 1010 + 1 baryons, our problem
would be solved. This very precise statistics comes from observations such as BBN and
CMB. In order to quantify the problem, we need to know the difference between baryons
and antibaryons. For that, it is customary to define Y∆B =

nB−nB̄
s kB, where nB and nB̄ are

the number of baryons and antibaryons, respectively, and s is the total entropy density. This
expression is convenient because sa3 is conserved. Indeed, if dU = TdS− PdV + µdN, we
have 2 TdS = Vdρ + (ρ + P)dV − µdN but, using the equation of conservation, ρ̇ + 3H(ρ +
P) = 0, we obtain dS = − µ

T dN which implies that, for non-degenerate matter (µ/T � 1)
or when it is neither created nor destroyed (dN = 0 ), the entropy is conserved 3. We
conclude that because nB and nB̄ scale as a−3, Y∆B is conserved. Another variable is often
defined in the literature, η =

nB−nB̄
nγ

, which is, during most of the history of the universe,
conserved, except at the early times because the particles which were in equilibrium were
annihilated to produce photons but no baryons and therefore η decreased. However, we
can consider η as a constant parameter after this epoch and therefore during BBN and CMB
until today.

We know from observations that today antibaryons are very negligible, so η ≡
nB−nB̄

nγ
' nB

nγ
. Additionally, baryons are, at our epoch, non-relativistic, so we can ap-

proximate ρb,0 ' mBnB,0 where mB is the mass of the baryons. Considering that most of
them are protons, we have ρb,0 ' mpnB,0. Therefore, we have

ωb,0 ≡ Ωb,0h2 =
8πGρb,0h2

3H2
0

=
8πG

3(H0/h)2 mpnB,0, (9)

and therefore nB,0 ' 11.2298 · 10−6ωB,0/cm3 or η0 =
nB,0
nγ,0
' 273 · 10−10ωb,0 where we used

nγ,0 ' 411/cm3 (see Appendix A). If we take a better estimate of the baryon mass [8], we
obtain η0 ' 274 · 10−10ωB,0, which can be easily converted into Y∆B,

Y∆B ≡
nB − nB̄

s
kB =

nB − nB̄
nγ

nγ

s
kB = η

nγ

s
kB '

η

7.04
' 3.89 · 10−9wB, (10)

where the last expression is derived in more detail in the Appendix B.
The BBN and the CMB are very sensitive to the amount of baryons in the universe.

They constrain ωb ' 0.02242± 0.00014 [9] or ωb ' 0.02168± 0.055 [8], which imply

CMB: Y∆B ' 8.7 10−11, η ' 6.1 10−10 (11)

BBN: Y∆B ' 8.4 10−11, η ' 5.9 10−10 (12)

Both BBN and CMB produce very similar results which indicates a very strong confi-
dence in our knowledge of the baryon asymmetry of the universe (BAU). This asymmetry
should be produced before the annihilation epoch. In the very early universe, processes
B + B̄ � 2γ are in thermal equilibrium but once the energy of the photons decreases
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enough, we cannot maintain the reverse process, which implies an annihilation between
matter and antimatter. Therefore, we need an excess of matter such that η ∼ 10−10 to
produce our current universe. It would be simple to imagine that it is part of the initial
conditions of our Uuniverse and invoke some string landscape argument; we happen to
live in a universe with η ' 10−10. Unfortunately, inflation and sphaleron would washout
any initial asymmetry; for these reasons, we need a dynamical process of baryogenesis.

4. Sphaleron Process

In the Standard Model (SM) of particle physics and in particular in electroweak theory,
we have four global symmetries related to the conservation of leptonic numbers and
baryonic numbers; Le for electron and electron neutrino, Lµ for muon and muon neutrino,
Lτ for tau and tau neutrino and finally B for baryons. In the SM, B and L = Le + Lµ + Lτ are
not conserved but B− L is conserved. That means that we could have processes involving
three leptons and three baryons or equivalently nine quarks, in which B− L is conserved
but B and L change. For example,

ū + d̄ + c̄ −→ d + 2s + 2b + t + νe + νµ + ντ . (13)

In this process, we have ∆B = 3 (Bi = −1 and B f = +2
)

and ∆L = 3 (Li = 0 and

L f = 3
)

. We have antimatter producing matter by violating the conservation of B and L
but keeping B− L constant. We will see that this process exists in the SM and fortunately
is active only at high energies, such as in the early universe; otherwise, the proton (the
lightest particle with non-zero baryon number) would be unstable via the antisphaleron
process.

4.1. Complex Field Toy Model

As a starting point, let us consider a simple model in 1 + 1 dimensions:

L = −∂µφ∂µφ∗ −V
(
|φ|2

)
with V =

λ

4

(
|φ|2 − v2

)2
, (14)

which gives

−φ̈ + φ′′ − λ

2
φ
(
|φ|2 − v2

)
= 0. (15)

A static solution is

φs(x) = ±v th

(
v
√

λ

2
(x− x0)

)
eiα, (16)

which is similar to the kink/antikink solution but with a factor eiα, because the field is
complex which makes it unstable, contrary to the soliton. Indeed, from Figure 2 we see
that the additional dimension (complex solution) makes the solution unstable under small
perturbations. This is the simplest sphaleron configuration.
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Figure 2. Complex kink solution, which corresponds to the mapping from R to the scalar field space.

4.2. Abelian Toy Model

Let us extend the previous Lagrangian to an abelian Higgs model in 1 + 1 dimensions:

L = −1
4

FµνFµν −
∣∣Dµφ

∣∣2 −V
(
|φ|2

)
, (17)

with Dµ = ∂µ− ieAµ. The field strength Fµν and the gauge potential Aµ will be the analogue
of the SU(2) gauge field and φ is the analogue of the Higgs field.

We will assume that space is compactified as a circle of circumference L that we could
take as infinite if necessary. Therefore, our solution should be periodic. A trivial solution
is φ(x) = v and Aµ = 0, which we will define as |0〉 and from which we will try to build
another vacuum. It is important to remember that our problem is invariant under

φ(x) 7−→ eiU(x)φ(x) (18)

Aµ 7−→ Aµ +
1
e

∂µU. (19)

Because of the periodicity on φ(x), U(x) should be 2π periodic but we could also
consider that limε→0 U(L + ε)−U(L− ε) = 2πn, where n ∈ N∗. These transformations
will define the so-called large gauge transformations. One particularly interesting transfor-
mation is defined with U(x) = 2πn

L x. In that case, our vacuum |0〉 will be transformed into

φ(x) = vei 2πn
L x and A1 = 2πn

eL , which we will define as |n〉. Each of these solutions have
zero energy and therefore constitute a different vacuum.

As can be seen from Figure 3, these solutions cannot be deformed one into the other if
we remain at zero energy; they are not continuous path deforming of |0〉 into |1〉. However,
they can be connected by a solution which is not the vacuum and therefore have non-zero
energy and pass by the maximum of the potential [10]. This corresponds to the sphaleron
configuration with energy Esph. This solution permits us to go from |0〉 to |1〉 or more
generically from |n− 1〉 to |n〉 (and inversely).
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Figure 3. Representation in the scalar field space of the two vacua solutions |0〉, |1〉 and also the
solution connecting them, known as the sphaleron, which has an unstable direction. The sphaleron
and the vacua appear as a mapping between the real space and a circle in the field space. The
homotopy class associated will be non trivial π1(S1) = Z, where this number is often known as the
winding number.

Considering x ∈
[
− L

2 , L
2

]
, we have:

{
φS(x) = v th

(
v
√

λ
2 x
)

e
iπx

L eiα

Aµ(x) = π
eL δ1

µ,
(20)

which is our kink solution found for the ungauged case
(

Aµ = 0) under the large gauge
transformation U(x) = 2πn

L x with n = 1
2 (see Figure 4 to build a simple intuition of the

value n = 1
2 ).

Figure 4. Visualization of the sphaleron configuration between two degenerate vacua. It corresponds
to an unstable structure of the half integer Chern–Simons number. If the temperature is large enough,
the sphaleron can be created and its instability can make it decay into one of the two vacua with
n = 0 or n = 1 in our particular case.

This solution has an energy,

Esph =
∫ L

0
dx
[∣∣φ′S − ieA1φS

∣∣2 + V(φS)
]
−→
L→∞

2
3

v3
√

λ ≡ 2
3

λ · v4

mH
, (21)

with mH = v
√

λ the mass of the “Higgs” field (scalar field φ). Notice that, at the quantum
level, we can have quantum tunnelling between two vacua, known as instanton, but which
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are irrelevant for our topic. At high temperatures, the system can have enough energy(
E > Esph

)
to trigger this transition which is known as sphaleron.

4.3. Violation of the Baryon Number

As we have seen previously, the vacuum can have a rich structure and we could have
transitions from one into the other if enough energy is provided. This transition represents
a violation of the baryon (lepton) number. In order to demonstrate it, let us continue with
our toy model [11] by introducing fermions,

L = −1
4

FµνFµν −
∣∣Dµφ

∣∣2 −V
(
|φ|2

)
− iΨ /DΨ, (22)

where Ψ = Ψ†γ0, /D = γµDµ and γµ are 2 × 2 matrices satisfying {γµ, γν} = 2ηµν,
µ, ν = 0, 1 with ηµν = diag(−1,+1). We can take

γ0 =

(
0 1
−1 0

)
, γ1 =

(
0 1
1 0

)
(23)

and define

γ5 = γ0γ1 =

(
1 0
0 −1

)
. (24)

We have two global symmetries corresponding to Ψ→ eiαΨ and Ψ→ eiθγ5
Ψ, leading

to conservation (via the Noether theorem) to vector and axial currents J µ
V = −ΨγµΨ and

J µ
A = −Ψγµγ5Ψ, to which we can associate the charges QV =

∫
dxJ 0

V and QA =
∫

dxJ 0
A.

It can be shown using different methods that J µ
A is not conserved at the quantum

level. We will see later Fujikawa’s approach [12,13], which is the most powerful method,
but in this section, the problem being two dimensional, we can prove the non-conservation
of QA in a simpler way.

We label the components of Ψ as
(

ΨL
ΨR,

)
which gives:

−iΨ /DΨ = −iΨL /DΨL + iΨR /DΨR = i[Ψ∗L(∂0 − ∂1 + ieA)ΨL + Ψ∗R(∂0 + ∂1 − ieA)ΨR]. (25)

Considering for the moment, the problem with Aµ = 0, we have:

(−∂0 + ∂1)ΨL = 0 and (∂0 + ∂1)ΨR = 0, (26)

which implies ΨL = ΨL(t + x) and ΨR = ΨR(t− x), so ΨL is left moving (towards decreas-

ing x) and ΨR is right moving. Notice that (1+γ5)
2 Ψ = ΨL so ΨL is a left-handed spinor

while ΨR is right-handed. We define the normalised wave functions uL = 1√
L

e−iE(t+x) and

uR = 1√
L

e−iE(t−x) but because the generic form of a wave is eipµxµ = e−i(Et−px) we deduce

that E = −p for uL and E = +p for uR. Notice also that p = 2πn
L with n ∈ Z because of the

periodicity condition. We can write:

ΨL = ∑
E>0

[
aLuL + b†

Lu∗L
]

, ΨR = ∑
E>0

[
aRuR + b†

Ru∗R
]
, (27)

where aL annihilates a particle with positive energy and momentum p = −E and aR does
the same but with a particle p = +E. Similarly, b† creates an antiparticle with positive
energy and p = ±E for left- and right-handed antiparticles (the destruction of particles
with negative energy is written into antiparticles of positive energy). We also have the
standard relation

{
aL(E), a†

L(E′)
}
= δEE′ and this is similar for the other operators. The

vacuum corresponds to all negative energies filled as shown in Figure 5.
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Figure 5. Spectrum for the left-handed and right-handed fermions with all negative energies filled
corresponding to the Dirac sea and therefore to our vacuum.

As we have mentioned, because of the two global symmetries, we have two conserved
charges,

QV =
∫ L

0
dxJ 0

V =
∫ L

0
dx
(

Ψ†
LΨL + Ψ†

RΨR

)
(28)

= ∑
i={R,L}

∑
E,E′

∫ L

0
dx
[

a†
i (E′)u∗i (E′) + bi(E′)ui(E′)

][
ai(E)ui(E) + b†

i (E)u∗i (E)
]

(29)

= ∑
E,E′

[
a†

LaL + bLb†
L + a†

RaR + bRb†
R

]
δEE′ , (30)

where we have used the relation of orthogonality
∫ L

0 dxu∗(E)u(E′) = δEE′ , which implies

QV = ∑
E>0

(
a†

LaL − b†
LbL

)
+ ∑

E>0

(
a†

RaR − b†
RbR

)
. (31)

Notice that we have eliminated the divergent term, ∑E>0 1, which comes from the
relation

{
b(E), b†(E)

}
= 1. In conclusion, we have:

QV = Nparticles − Nantiparticles , (32)

while

QA =
∫ L

0
dxJ 0

A =
∫ L

0
dx
(

Ψ†
LΨL −Ψ†

RΨR

)
= ∑

E>0

(
a†

LaL − b†
LbL

)
− ∑

E>0

(
a†

RaR − b†
RbR

)
= ∑

E>0

(
a†

LaL + b†
RbR

)
− ∑

E>0

(
a†

RaR + b†
LbL

)
= Nleft handed − Nright handed. (33)

These two charges should be conserved, but in the presence of the potential Aµ, QA

changes, so Jµ
A is not conserved. To prove it, let us consider the presence of a gauge field

Aµ as an external and not a dynamical field; Aµ is fixed. We know that it corresponds to
the substitution p 7−→ p− eA1. Therefore, when A1 increases, p decreases. Let us consider
the transition from A1 = 0 (from our vacuum |0〉) to the vacuum |1〉 corresponding to
A1 = 2π

eL , which means a shift p 7−→ p− 2π
L that corresponds to one quanta of energy. For

right-handed particles the energy changes as E→ E− 2π
L , while for left-handed particles

we have E→ E + 2π
L (because E = −p).

We see from Figure 6 that we have the creation of a left-handed particle and the
destruction of a right handed particle. So, we have QV = (1− 0) + (0− 1) = 0; therefore it
is conserved while QA = (1 + 1)− (0 + 0) = 2 is not conserved.



Galaxies 2022, 10, 116 10 of 21

Figure 6. Effect on the energy spectrum because of the presence of a non-zero gauge potential. We
see that a left-handed particle (red) is created while a right-handed particle (green) is destroyed.

Indeed, as we will see in the next subsection,

∂µJ µ
A = − e

2π
εµνFµν =

e
π

∂µKµ with Kµ = −εµν Aν , ε01 = 1, (34)

which implies ∫ t2

t1

dt
∫ L

0
dx∂µJ µ

A =
e
π

∫ t2

t1

dt
∫ L

0
dx∂µKµ (35)

⇔
∫

dx
[
J 0

A(t2)−J 0
A(t1)

]
=

e
π

∫
dx
[
K0(t2)− K0(t1)] (36)

⇔ Q(t2)−Q(t1) =
e
π

∆A · L =
e
π

2π

eL
nL = 2n (37)

⇔ ∆Q = 2n. (38)

Using a toy model, we have seen that the number of left- and right-handed particles
are not conserved. The axial charge QA = NL − NR is not conserved in the presence of the
gauge field corresponding to another vacuum. In conclusion, the action of changing the
vacuum because of the sphaleron changes the baryon number.

4.4. Fujikawa’s Method

A conserved classical charge which is not conserved in the quantum realm is known as
an anomaly. Fujikawa has shown [12] that, using the path integral approach, the measure
of the functional integral is not invariant. Let us as a first approximation eliminate the
Higgs field and build our partition function,

Z =
∫
DAµDΨDΨei

∫
d4x[− 1

4 Fµν Fµν−iΨ /DΨ]. (39)

Let us consider the infinitesimal change of variable{
Ψ 7−→ Ψ′ ≡ eiθγ5

Ψ ' Ψ + iθγ5Ψ
Ψ 7−→ Ψ′ ' Ψ + iθΨγ5.

(40)

The action changes as

S =
∫

d4x
[
−1

4
FµνFµν − iΨ /DΨ

]
7→ S′ =

∫
d4x
[
−1

4
FµνFµν − iΨ′ /DΨ′

]
(41)

' S +
∫

d4x
(
∂µθ
)
Ψγµγ5Ψ, (42)
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where we used that γµγ5 = −γ5γµ. If the measure in the definition of the partition function
was invariant, we would get

Z 7→ Z′ '
∫
DAµDΨDΨeiS

[
1 + i

∫
d4x
(
∂µθ
)
Ψγµγ5Ψ

]
(43)

'
∫
DAµDΨDΨeiS

[
1 + i

∫
d4xθ∂µJ µ

A

]
. (44)

Since we performed a change of variables, the partition function should remain the
same and therefore we obtain the Ward identity ∂µ

〈
J µ

A

〉
= 0, which is the analogue of

the classical Noether conservation equation. However, the measure is not gauge-invariant
which implies an anomalous Ward identity. In order to see how the measure DΨDΨ
transforms, we need to better define it. For that, we define a complete set of eigenfunctions
of the operator

i /Dφn = λnφn, (45)

with the inner product

〈φm|φn〉 ≡
∫

d4xφ†
m(x)φn(x) = δmn and ∑

n
φn(x)φ†

n(y) = δ(x− y). (46)

We can expand Ψ, Ψ in these bases, Ψ = ∑n anφn and Ψ = ∑n bnφn, which im-
plies DΨDΨ = ∏n dandbn, where (an, bn) are Graßmann variables. Additionally, because
〈φn|Ψ〉 =

∫
d4xφ†

n ∑m amφm = an, we obtain for the transformation (40)

a′n =
〈
φn|Ψ′

〉
=
∫

d4xφ†
n

(
1 + iθγ5

)
Ψ = ∑

m

∫
d4xφ†

n

(
1 + iθγ5

)
φmam (47)

= an + i ∑
m

〈
φn

∣∣∣θγ5
∣∣∣φm

〉
am (48)

and

b′n =
〈

φ̄n, Ψ′
〉
= ∑

m

∫
d4xφ̄†

nbmφ̄m

(
1 + iθγ5

)
= bn + i ∑

m

〈
φn

∣∣∣θγ5
∣∣∣φm

〉
bm, (49)

which implies that the Jacobian of the transformation is

J = det
[
δmn + i

〈
φn

∣∣∣θγ5
∣∣∣φm

〉]−2
; (50)

using the identity det(I +M) = eTr ln(I+M) ' eTrM we obtain

J = e−2i Tr[〈φm|θγ5|φn〉] (51)

= e−2i Tr
∫

d4xθ(x)φ†
m(x)γ5φn(x) (52)

= e−2i Tr′ ∑n
∫

d4xθ(x)φ†
n(x)γ5φn(x), (53)

where Tr’ represents the trace over spinor indices. Such an infinite sum is divergent. To
regularize it, we redefine the summation as ∑n φ†

nγ5φn = limM→∞ ∑n φ†
nγ5φne−λ2

n/M2
. The

regulator e−λ2
n/M2

could be any function f
(

λ2
n

M2

)
such that f (0) = 1 and rapidly approaches

0 for large λ2

M2 .



Galaxies 2022, 10, 116 12 of 21

Therefore, ∑n φ†
nγ5φne−λ2

n/M2
= ∑n φ†

nγ5e /D2/M2
φn because i /Dφn = λnφn which im-

plies

ln J = −2i lim
M→∞

Tr′∑
n

∫
d4xθ(x) · φ†

nγ5e /D2/M2
φn (54)

= −2i lim
M→∞

Tr′∑
n

∫
d4xθ(x)〈φn|x〉γ5e /D2/M2〈x|φn〉 (55)

= −2i lim
M→∞

Tr′
∫

d4xθ(x)Tr
{
|x〉γ5e /D2/M2〈x|

}
. (56)

Because trace is invariant, we can express it in any basis and therefore in the momen-
tum basis. We get:

Tr
{
|x〉γ5e /D2/M2〈x|

}
=
∫ d4k

(2π)4 e−ikxγ5e /D2/M2
eikx. (57)

However, we know that DµDν = ∂µ∂ν− ie
(

Aµ∂ν + Aν∂µ

)
− e2 Aµ Aν− ie∂µ Aν, therefore

/D2 = γµγνDµDν =
{γµ, γν}

2
DµDν +

[γµ, γν]

2
DµDν (58)

= D2 − ie
2
[γµ, γν]∂µ Aν = D2 − ie

4
[γµ, γν]Fµν. (59)

Using that D2eikx = eikx(ikµ + Dµ

)2, we have:

Tr
{
|x〉γ5e /D2/M2〈x|

}
=
∫ d4k

(2π)4 γ5e
(

i
kµ
M +

Dµ
M

)2
− ie

4M2 [γ
µ ,γν ]Fµν (60)

= M4
∫ d4 p

(2π)4 γ5e
(

ipµ+
Dµ
M

)2
− ie

4M2 [γ
µ ,γν ]Fµν (61)

= M4
∫ d4 p

(2π)2 γ5e−p2
e2i pµ

M Dµ+
D2

M2−
ie

4M2 [γ
µ ,γν ]Fµν . (62)

where we defined pµ =
kµ

M on the second line. We can now perform a series expansion for
M→ ∞. All terms without any gamma matrix, γµ, will disappear after taking the trace over
Dirac indices. Indeed, these elements will be multiplied by γ5 and Tr′

(
γ5) = 0. Similarly,

the terms γ5γµγν will vanish because Tr′
(
γ5γµγν

)
= 0 in four dimensions. Therefore, the

first non-zero term will be

−2i lim
M→∞

Tr′
∫

d4xθ(x)M4
∫ d4 p

(2π)4 γ5e−p2 1
2

(
− ie

4µ2

)2[
γµ, γν

][
γα, γβ

]
FµνFαβ; (63)

higher order terns will be suppressed in the limit M→ ∞

ln J =
ie2

16

∫
d4xθ(x)

∫ d4 p
(2π)4 e−p2

Tr′
(

γ5[γµ, γν][γρ, γσ]
)

FµνFρσ (64)

=
ie2

4

∫
d4xθ(x)

∫ d4 p
(2π)4 e−p2

Tr′
[
γ5γµγνγργσ

]
FµνFρσ. (65)

To calculate the trace, we notice that, if two indices are equal, we are back to Tr′
[
γ5γµγν

]
which is zero. Therefore all indices are different and, because in that case γµγν = −γνγµ,
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we conclude that Tr′
[
γ5γµγνγργσ

]
= Aεµνρσ. Taking µ = 0, ν = 1, ρ = 2, σ = 3, we obtain

A = −4 where we used that ε0123 = +1

ln J =
ie2

4

∫
d4xθ(x)

∫ d4 p
(2π)4 e−p2

(−4)εµνρσFµνFρσ (66)

= −2ie2
∫

d4xθ(x)Fµν F̃µν
∫ d4 p

(2π)4 e−p2
,wherewede f inedF̃µν =

1
2

εµνρσFρσ. (67)

Let us remember that p2 = −p2
0 + ~p2, therefore for the integral we perform a wick

rotation p0 → ip0 ∫ d4 p
(2π)4 e−p2

=
i

16π2 ⇒ ln J =
e2

8π2

∫
d4xθ(x)Fµν F̃µν. (68)

In order to obtain the Lorentzian version, we transform t→ −it (because p0 → ip0)
ln J = −i

e2

8π2

∫
d4xθ(x)Fµν F̃µν. (69)

In conclusion, we found that, under the transformation Ψ 7→ eiθγ5
Ψ, we have∫

DΨDΨ −→
∫
DΨDΨe−i e2

8π2
∫

d4xθ(x)Fµν F̃µν

. (70)

Finally, the partition function gives at first order:

Z 7−→ Z′ '
∫
DAµDΨDΨeiS

[
1 + i

∫
d4xθ(x)∂µJ µ

A −
ie2

8π2

∫
d4xθ(x)Fµν F̃µν

]
, (71)

which gives the Adler–Bell–Jackiw anomaly [14,15]:

∂µJ µ
A =

e2

8π2 Fµν F̃µν. (72)

Notice that, in two dimensions, the calculation would be similar:

Tr
{
|x〉γ5e /D2/M2〈x|

}
= M2

∫ d2 p
(2π)2 γ5e−p2

e2i pµ

M Dµ+
D2

M2−
ie

4M2 [γ
µ ,γµ ]Fµν . (73)

Therefore, the first non-zero contribution is:

M2
∫ d2 p

(2π)2 e−p2
(
−ie
4M2

)
γ5[γµ, γν]Fµν + O

(
1

M2

)
= − ie

8π
γ5γµγνFµν. (74)

Taking the trace and using that in two dimensions, Tr′
(
γ5γµγν

)
= −2εµν, we obtain

ie
4π εµνFµν or

ln J = i
e

2π

∫
d2xθ(x)εµνFµν for the Lorentzian version, (75)

giving

∂µJ µ
A = − e

2π
εµνFµν. (76)

The chiral anomaly is at the origin of the non-conservation of baryon and lepton
numbers.



Galaxies 2022, 10, 116 14 of 21

5. Baryon and Lepton Number Conservation

In the Standard Model of particle physics, we have global symmetries for quark
(q = u, c, t, d, s, b) and lepton fields:

(
` = e, µ, τ, νe, νµ, ντ

)
{

q −→ eiα/3q
`→ `

{
q→ q
` 7−→ eiβ`.

(77)

The factor 3 for quarks is included to have a unit baryon number for particles such as
protons. These symmetries imply, classically, two conserved currents,

J µ
B = −1

3
q̄γµq and J µ

L = − ¯̀γµ`, (78)

where implicitly we considered a summation over all quarks and all leptons. The associated
charge numbers are B =

∫
d3xJ 0

B and L =
∫

d3xJ 0
L . These currents are vectorial, therefore

we should not expect a violation of these numbers, contrary to axial currents. However, in
the Standard Model, only left-handed particles couple to weak gauge bosons. This violates
parity and therefore these numbers are not conserved, B and L are anomalous. Notice also
that an additional anomaly comes from the coupling to the weak hypercharged boson but
that will be almost irrelevant. Following the same previous strategy but defining the gauge
covariant derivative as Dµ = ∂µ − i gw

2 Aµ, we will have to replace e by gw/2 and sum over
the six types of quarks or six types of leptons, finally giving a factor 6(gw/2)2,

∂µJ µ
B = ∂µJ µ

L =
3g2

w
16π2 Tr

[
Fµν F̃µν

]
. (79)

We have an additional trace for internal group indices because now we have a non-
abelian gauge theory:

Fµν = ∂µ Au − ∂u Aµ − ig
[
Aµ, Aν

]
with Aµ = Aa

µTa, (80)

where Aa
µ are the gauge fields and Ta the generators of SU(2). Notice that ∂µ

(
J µ

B −J
µ
L

)
=

0, so B− L is conserved while B and L are not conserved, which is often summarised as
B + L is not conserved while B− L is conserved.

Similarly to the previous case, where we introduced a current Kµ, we have:

Fµν F̃µν =
1
2

εµνρσ
(
∂µ Aν − ∂ν Aµ − ig

[
Aµ, Aν

])(
∂ρ Aσ − ∂σ Aρ − ig

[
Aρ, Aσ

])
(81)

= 2εµνρσ∂µ Aν∂ρ Aσ − 2igεµνρσ∂µ Aν

[
Aρ, Aσ

]
− g2

2
εµνρσ

[
Aµ, Aν

][
Aρ, Aσ

]
(82)

= 2εµνρσ∂µ

(
Aν∂ρ Aσ

)
− 4igεµνρσ∂µ Aν Aρ Aσ − 2g2εµνρσ Aµ Aν Aρ Aσ. (83)

Taking the trace, we obtain for the last term εµνρσ Tr
(

Aµ Aν Aρ Aσ

)
= 0 because εµνρσ is

completely antisymmetric while the trace is cyclic. Finally, we also have: εµνρσ Tr
[
∂µ Aν Aρ Aσ

]
= 1

3 εµνρσ Tr ∂µ

[
Aν Aρ Aσ

]
, which gives:

∂µJ µ
B =

3g2
w

16π2 ∂µKµ with Kµ = 2εµνρσ Tr
(

Aν∂ρ Aσ −
2
3

igAν Aρ Aσ

)
(84)

= 2εµνρσ Tr

[
Aν

Fρσ + ig
[
Aρ, Aσ

]
2

− 2
3

igAν Aρ Aσ

]
(85)

= εµνρσ Tr
[

AνFρσ +
2
3

igAν Aρ Aσ

]
. (86)
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If we write this equation in components, we have Aµ = Aa
µTa, where Ta are the

generators of the Lie algebra su(2). We use the normalisation Tr
(

TaTb
)
= 1

2 δab, which

implies Tr
(

TaTbTc
)

= i
4 εabc+ symmetric part (obtained from

[
Ta, Tb

]
= iεabcTc and

multiplying by Td
)

,

Kµ = 2εµνρσ

[
Aa

ν∂ρ Ab
σ Tr

(
TaTb

)
− 2

3
igAa

ν Ab
ρ Ac

σ Tr
(

TaTbTc
)]

(87)

= εµνρσ
[

Aa
ν∂ρ Aa

σ +
g
3

εabc Aa
ν Ab

ρ Ac
σ

]
(88)

or equivalently 4

Kµ =
1
2

εµνρσ
[

Aa
νFa

ρσ −
g
3

εabc Aa
ν Ab

ρ Ac
σ

]
. (89)

Integrating this relation over space and time, we obtain:∫
dtd3x∂µJ µ

B =
∫

d3x
[
J 0

B (t2)−J 0
B (t1)

]
= B(t2)− B(t1) (90)

=
3g2

w
16π2

∫
d3xdt∂µKµ =

3g2
w

16π2

∫
d3x
[
K0(t2)− K0(t1)

]
, (91)

with K0 = 2ε0νρσ Tr
(

Aν∂ρ Aσ − 2
3 igAν Aρ Aσ

)
= 2εijk Tr

(
Ai∂j Ak − 2

3 igAi Aj Ak
)
. Defining

the Chern–Simons number as:

NCS =
g2

w
8π2

∫
d3xεijk Tr

(
Ai∂j Ak −

2
3

igAi Aj Ak

)
, (92)

we obtain ∆B = ∆L = 3∆NCS. However, because 5 ∆Ncs = {±1,±2, . . .} we have in such
processes a group of three leptons and three baryons (or nine quarks) involved, such as
(13). Notice that, because the group involved is SU(2)L, only left-handed particles and
right-handed antiparticles are involved in such processes.

6. Limits of the Standard Model

In summary, to possibly solve the BAU we need to comply with the three Sakharov
conditions.

1. The non-equilibrium condition seems to be obviously reached because the universe is
expanding.

2. The baryon number violation exists in the SM because of the rich structure of the
vacuum and transitions between them. We have constructed the sphaleron in the
simple abelian theory; the SU(2) sphaleron [16,17] can be derived using the minimax
procedure [18]. Notice that we can also have a change of vacuum via quantum
tunnelling, which is known as instanton, but that would be highly suppressed [19].
The probability of tunnelling can be calculated with the help of the euclidean partition
function which is dominated by the saddle point configuration, giving a probability

of order e−16π2/g2
w ' 10−164, where we used αw = g2

w
4π '

1
30 .

3. Finally, to meet the three Sakharov conditions, we need C and CP violation. C and
CP are violated in the standard model because of terms such as:

− gw√
2

ŪLγµVCKMDLW+
µ + h.c., (93)

where UL = (uL, cL, tL)
T , DL = (dL, sL, bL)

T are the left handed quarks, W+
µ is the

W boson, gw the weak gauge coupling and, finally, VCKM the Cabibbo–Kobayashi–
Maskawa mixing matrix. The CP symmetry is violated if the phase angle in the CKM
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matrix is δ 6= 0,±π, which has been verified experimentally [7]. Therefore, we have
CP violation processes in the SM. Notice that from neutrino mixing, the PMNS matrix
(Pontecorvo–Maki–Nakagawa–Sakata) could also be complex and hence produce an
additional CP violation.

Unfortunately, even if all conditions are met, the asymmetry produced would not be
sufficient. Indeed, the sphaleron process plays against us at high temperatures. From lattice
simulations [20], the sphaleron rate is found to be at high temperatures,

Γ ' (18± 3)α5
w · T4, (94)

while this rate is exponentially suppressed at low temperatures,

Γ ' T4e−(147.7±1.9)+(0.83±0.001) T
GeV . (95)

These rates should be contrasted with the expansion rate, defined as the Hubble rate
H(T), during the radiation era. From the formulae defined in the Appendix A, we obtain
at high temperature,

ρ =
π2(kBT)4

30(h̄c)3 g? and therefore H2 =
8πG
3c2

π2(kBT)4

30(h̄c)3 g?, (96)

with g? = gbosons +
7
8 gfermions = 106.75, which gives the baryon freeze-out temperature 6

(by comparing both rates) as T? = (131.7 ± 2, 3)GeV. Consequently, for T < T?, the
sphaleron process is suppressed. Instead, at higher temperatures, the sphaleron rate can
be large and therefore we have processes creating baryons and leptons; for example, the
process (13), for which ∆(B− L) = 0 and ∆(B + L) = 6. Unfortunately, this picture is a bit
simplistic, because producing more and more fermions costs energy. In their presence, the
vacuum previously shown is modified [21,22] as shown in Figure 7. So, the system tends to
B + L = 0; this is the washout process. Therefore, any asymmetry will be suppressed.

Figure 7. In the left-hand side of the figure, the vacuum structure studied previously is shown, while
in the right-hand figure, we have the vacuum structure in the presence of fermions,. We see that a
particular vacuum will be preferred, which corresponds to B + L = 0. This is the washout process.

Another problem is related to CP violation in the Standard Model. It is too small [23]
to generate the observed baryon asymmetry. Finally, we need a much more violent process
than the expansion of the universe to go out of equilibrium. For that, and considering
the freeze-out temperature, we see that electroweak phase transition could be such an
out-of-equilibrium process. Unfortunately, this phase transition is not first order but a
crossover in the SM [24,25].

In summary, a viable electroweak baryogenesis model needs physics beyond the
Standard Model. We will not here detail the various possible extensions. We will assume
that we added into our Lagrangian CP violating terms and made the phase transition first
order 7.

7. Electroweak Baryogenesis

The Higgs field dynamics is guided by a potential which receives quantum and
thermal contributions. Therefore, the potential changes with time which in return changes
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the VEV of the Higgs field. If initially the potential has a minimum at 〈φ〉 ' 0, it will take a
different value of around T ' 100GeV. Of course this process cannot happen in the whole
universe at the same time, therefore bubbles will nucleate, grow if they are large enough
and collapse if they are too small, see e.g., [28] for more details of this process. Let us look
at one bubble in particular. In the symmetric phase (as we have said, it is an abuse of
language), particles are almost massless while they are massive in the broken phase (inside
the bubble) because the Higgs field takes a large VEV. Let us consider a top quark which
will be the most massive in the broken phase. If in the symmetric phase a top quark has an
energy E < mt, it will bounce over the bubble wall; because top quarks are massive inside
the bubble, it appears as a barrier. On the contrary, if the top quark has large energy, it will
penetrate the bubble. In general, we will have some transmission and refection of these
particles. These coefficients will depend on the extension of the SM that we built and in
particular the C and CP violation introduced in the Lagrangian. Let us suppose that we
tuned the parameters of our beyond Standard Model such that reflection and transmission
coefficients are different between particles and antiparticles and also their helicity. For
example, we could have an excess of right-handed antiparticles in the exterior because of
the CP violating bubble interactions. For the moment, we have not built any asymmetry
but only segregated particles, as we can see from Figure 8.

Figure 8. Sketch of electroweak baryogenesis based on nucleated bubbles and their growth. In this
sketch, an equal amount of left-handed particles and right-handed antiparticles are considered (the
right-handed particles and left-handed antiparticles are not participating in a sphaleron process).
After particles are segregated—this is the chiral asymmetry—they are converted into a baryon
asymmetry before being swallowed by the fast moving bubble.

In general, we could have a sphaleron process producing an excess of baryons (grow-
ing NCS) or antisphaleron (decreasing NCS). However, because we have an excess of
antibaryons, the sphaleron process will be more probable than the antisphaleron. Therefore,
we are ending with antibaryons converted into baryons 8. This net baryon asymmetry could
be easily washed out by an inverse process. This is why the speed of the growing bubble
will be very relevant and therefore only processes occurring near the bubble are important.
Sphalerons occurring far from the bubble wall will be washed out before the wall arrives in
that region. The freshly produced particles will interact with the moving bubble and some
will enter inside where the sphaleron process is suppressed and therefore the asymmetry
conserved. Of course this mechanism, known as electroweak baryogenesis (EWBG), relies
on various phenomena that we have not described. This short review tried to introduce
the basic knowledge for a viable EWBG. In order to calculate an exact amount of baryon
asymmetry, a specific model should be assumed, such as MSSM (Minimal Supersymmetric
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Standard Model) or 2HDM (Two Higgs Doublet Model). For a given model, the energy
of the sphaleron can be calculated along with thermal corrections to the Higgs potential,
which gives rise to the rate and the temperature of bubble nucleation. Of course, the model
will rely strongly on the transmission and reflection coefficients which are guided by the
quantum transport equations, see e.g., [29] for a nice review. Finally, the properties of
the moving wall are very important, such as the width and speed in a complex plasma
interacting with it [28].

8. Conclusions

The universe is mostly filled with matter while antimatter is missing. The observed
antimatter is secondary origin. This is the problem of baryon asymmetry, which has led
to a rich and complex field of research. One of the most popular models has been the
electroweak baryogenesis because all the ingredients for its realisation exist in the Standard
Model. Unfortunately, the asymmetry produced is not sufficient and therefore it calls
for an extension of the Standard Model of particle physics. This review introduced a
general overview of the mechanism focusing principally on aspects that are less detailed
in other documents. Of course, many other mechanisms exist in the market and a recent
state-of-the-art can be found in [30].
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Appendix A. Number of Photons

Particles can be described as a perfect Fermi or Bose gas with the help of the distribu-
tion function

f =
1

e
E−µ
kBT ± 1

(A1)

where the ± sign correspond to Fermi-Dirac or Bose-Einstein statistics. The energy of the
system is E, µ the chemical potential and T the temperature of the gas.

From the distribution function, we can define the different macroscopic variables such
as the number of particles

N = g
∫ d3xd3 p

(2πh̄)3 f (~x,~p, t)d3xd3 p (A2)

where g is the degeneracy of the element, or internal degrees of freedom. The average
energy is

〈E〉 = g
∫ d3xd3 p

(2πh̄)3 E f (~x,~p, t) (A3)

the (scalar) pressure

P =
g
V

∫ d3xd3 p
(2πh̄)3

p2c2

3E
f (~x,~p, t) (A4)
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and the entropy

S = ±kB

∫ d3xd3 p
(2πh̄)3 [(1± f ) ln(1± f )∓ f ln f ] (A5)

for bosons and fermions respectively. Assuming that the different particles form a gas
in equilibrium in a homogeneous and isotropic universe, we can simplify the expression
because f ≡ f (p). Therefore we obtain

n ≡ N
V

=
g

2π2h̄3

∫
p2 f (p)dp =

g
2π2h̄3

∫ ∞

0

p2

e
E−µ
kBT ± 1

dp (A6)

=
g

2π2

(
kBT
h̄c

)3 ∫ ∞

0

x2

e
√

x2+mT2−y ± 1
dx (A7)

where we have used E =
√

p2c2 + m2c4 and defined x = pc
kBT , y = µ

kBT and mT = mc
kBT .

Similarly, we have

ρ =
〈E〉
V

=
g

2π2 h̄c
(

kBT
h̄c

)4 ∫ ∞

0

x2
√

x2 + m2
T

e
√

x2+m2
T−y ± 1

dx (A8)

and

P =
g

6π2 h̄c3
(

kBT
h̄c

)4 ∫ ∞

0

x4(x2 + m2
T
)−1/2

e
√

x2+m2
T−y ± 1

dx (A9)

When mT � 1 and y� 1, we have

n ' g
2π2

(
kBT
h̄c

)3 ∫ ∞

0

x2

ex ± 1
dx (A10)

=
k3

B
2π2(h̄c)3

[
∑

i∈bosons
2giT3

i ζ(3) + ∑
i∈fermions

3
2

giT3
i ζ(3)

]
(A11)

which implies

nγ,0 ' 411/cm3 (A12)

where we have used T = 2.72548 K for all species [31] and the degeneracy factors are
summarized in the following tables

Fermions
Quarks u, d, s, c, b, t
Antiquarks ū, d̄, s̄, c̄, b̄, t̄

Leptons e−, µ−, τ−

Antileptons e+, µ+, τ+
Neutrinos νe, νµ, ντ

Antineutrinos ν̄e, ν̄µ, ν̄τ

g 72 = 2× 3× 12 12 = 2× 6 6 = 1× 6

Bosons Photon W+ W− Z Gluons Higgs boson
g 2 3 3 3 16 = 2× 8 1
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Appendix B. Entropy

Let us consider that our system is described by the grand canonical ensemble, J =
−kBT ln Z with J the grand potential and Z the partition function, which defines

E− µN = −∂ ln Z
∂β

(A13)

S = − ∂J
∂T

=
E− µN − J

T
(A14)

P = − ∂J
∂V

(A15)

where β = 1/kBT. If we consider that we have a fluid with short range interactions,
each subsystem of the total system can be described by a grand potential, while the total
grand potential is the sum of these potentials. Therefore J grows like the volume, i.e., it
is an extensive variable. In that case, if J ≡ J(T, V, µ ), we have J(T, αV, µ) = αJ(T, V, µ)

but because P(T, αV, µ) = P(T, V, µ)⇒ P ≡ P(T, µ) ≡ − ∂J
∂V which gives J = −PV and

therefore

S =
E + PV − µN

T
(A16)

which implies

s =
ρ + P− µn

T
' ρ + P

T
≡ ρ + P/c2

T
(A17)

where we reestablished the coefficient c in the last expression and neglected the chemical
potential. We have

s = kB
g

2π2

(
kBT
h̄c

)3[∫ ∞

0

x2
√

x2 + m2
T

e
√

x2+m2
T−y ± 1

dx +
1
3

∫ ∞

0

x4(x2 + m2
T
)−1/2

e
√

x2+m2
T−y ± 1

dx
]

(A18)

where it is implicitly assumed a summation over all species. The main contribution
comes from relativistic particles such as photons at temperature TCMB and neutrinos with
temperature T = (4/11)1/3TCMB, which gives s0 ' 2891.2 kB/cm3 and therefore

kB
nγ,0

s0
' 1

7.04
(A19)

Notes
1 CMB was discovered in 1965, 2 years before Sakharov’s conditions.
2 We defined ρ = U/V.
3 At high temperatures, the chemical potential is very small, while it increases when particles become non-relativistic. Fortunately,

the contribution to entropy of non-relativistic particles is exponentially suppressed.
4 The formulas are given with details because some confusion exists in the literature.
5 See e.g., [10] on why NCS is an integer.
6 Temperature at which a process goes back to equilibrium, with only a dilution produced by the expansion of the universe.
7 A Higgs field in the fundamental representation coupled to SU(N) has no gauge-invariant order parameter [26,27]. Therefore, it

makes it difficult to speak of broken and symmetric phases. The Higgs field could have a non-zero VEV in the early universe and
change to a larger value at later time instead of a phase transition as often abusively mentioned in the literature.

8 Of course, in each process, nine quarks/antiquarks and three leptons/antileptons are involved such that B− L is conserved.
Therefore, we have a production of baryons and leptons, as in the example (13).



Galaxies 2022, 10, 116 21 of 21

References
1. Caprini, C.; Hindmarsh, M.; Huber, S.; Konstandin, T.; Kozaczuk, J.; Nardini, G.; No, J.M.; Petiteau, A.; Schwaller, P.; Servant, G.;

et al. Science with the space-based interferometer eLISA. II: Gravitational waves from cosmological phase transitions. JCAP 2016,
4, 001. [CrossRef]

2. Rubakov, V.A.; Shaposhnikov, M.E. Electroweak baryon number nonconservation in the early universe and in high-energy
collisions. Usp. Fiz. Nauk 1996, 166, 493–537. [CrossRef]

3. Trodden, M. Electroweak baryogenesis. Rev. Mod. Phys. 1999, 71, 1463–1500. [CrossRef]
4. Riotto, A. Theories of baryogenesis. arXiv 1998, arXiv:hep-ph/9807454.
5. Cline, J.M. Baryogenesis. arXiv 2006, arXiv:hep-ph/0609145.
6. Morrissey, D.E.; Ramsey-Musolf, M.J. Electroweak baryogenesis. New J. Phys. 2012, 14, 125003. [CrossRef]
7. [Particle Data Group]; Workman, R.L.; Burkert, V.D.; Crede, V.; Klempt, E.; Thoma, U.; Tiator, L.; Agashe, K.; Aielli, G.; Allanach,

B.C.; et al. Review of Particle Physics. PTEP 2022, 2022, 083C01.
8. Pitrou, C.; Coc, A.; Uzan, J.P.; Vangioni, E. Precision big bang nucleosynthesis with improved Helium-4 predictions. Phys. Rept.

2018, 754, 1–66. [CrossRef]
9. Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak,

S.; et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6. Erratum in Astron. Astrophys. 2021,
652, C4.

10. Manton, N.S.; Sutcliffe, P. Topological Solitons; Cambridge University Press: Cambridge, UK, 2004.
11. Nielsen, H.B.; Ninomiya, M. Adler-bell-jackiw anomaly and weyl fermions in crystal. Phys. Lett. B 1983, 130, 389–396. [CrossRef]
12. Fujikawa, K. Path Integral Measure for Gauge Invariant Fermion Theories. Phys. Rev. Lett. 1979, 42, 1195–1198. [CrossRef]
13. Fujikawa, K.; Suzuki, H. Path Integrals and Quantum Anomalies; Oxford University Press: Oxford, UK, 2004.
14. Adler, S.L. Axial vector vertex in spinor electrodynamics. Phys. Rev. 1969, 177, 2426–2438. [CrossRef]
15. Bell, J.S.; Jackiw, R. A PCAC puzzle: π0 → γγ in the σ model. Nuovo Cim. A 1969, 60, 47–61. [CrossRef]
16. Klinkhamer, F.R.; Manton, N.S. A Saddle Point Solution in the Weinberg-Salam Theory. Phys. Rev. D 1984, 30, 2212. [CrossRef]
17. Manton, N.S. Topology in the Weinberg-Salam Theory. Phys. Rev. D 1983, 28, 2019. [CrossRef]
18. Klinkhamer, F.R.; Rupp, C. Sphalerons, spectral flow, and anomalies. J. Math. Phys. 2003, 44, 3619–3639. [CrossRef]
19. Hooft, G.T. Computation of the Quantum Effects Due to a Four-Dimensional Pseudoparticle. Phys. Rev. D 1976, 14, 3432–3450.

Erratum in Phys. Rev. D 1978, 18, 2199. [CrossRef]
20. D’Onofrio, M.; Rummukainen, K.; Tranberg, A. Sphaleron Rate in the Minimal Standard Model. Phys. Rev. Lett. 2014, 113, 141602.

[CrossRef]
21. Kuzmin, V.A.; Rubakov, V.A.; Shaposhnikov, M.E. On the Anomalous Electroweak Baryon Number Nonconservation in the Early

Universe. Phys. Lett. B 1985, 155, 36. [CrossRef]
22. Cohen, A.G.; Kaplan, D.B.; Nelson, A.E. Progress in electroweak baryogenesis. Ann. Rev. Nucl. Part. Sci. 1993, 43, 27–70.

[CrossRef]
23. Gavela, M.B.; Hernandez, P.; Orloff, J.; Pene, O. Standard model CP violation and baryon asymmetry. Mod. Phys. Lett. A 1994, 9,

795–810. [CrossRef]
24. Kajantie, K.; Laine, M.; Rummukainen, K.; Shaposhnikov, M.E. Is there a hot electroweak phase transition at mH & mW? Phys.

Rev. Lett. 1996, 77, 2887–2890. [CrossRef] [PubMed]
25. Rummukainen, K.; Tsypin, M.; Kajantie, K.; Laine, M.; Shaposhnikov, M.E. The Universality class of the electroweak theory. Nucl.

Phys. B 1998, 532, 283–314. [CrossRef]
26. Fradkin, E.H.; Shenker, S.H. Phase Diagrams of Lattice Gauge Theories with Higgs Fields. Phys. Rev. D 1979, 19, 3682–3697.

[CrossRef]
27. Fradkin, E.H. Field Theories of Condensed Matter Physics. Front. Phys. 2013, 82, 1–852.
28. Hindmarsh, M.B.; Lüben, M.; Lumma, J.; Pauly, M. Phase transitions in the early universe. SciPost Phys. Lect. Notes 2021, 24, 1.

[CrossRef]
29. Konstandin, T. Quantum Transport and Electroweak Baryogenesis. Phys. Usp. 2013, 56, 747–771. [CrossRef]
30. Elor, G.; Harz, J.; Ipek, S.; Shakya, B.; Blinov, N.; Co, R.T.; Cui, Y.; Dasgupta, A.; Davoudiasl, H.; Elahi, F.; et al. New Ideas in

Baryogenesis: A Snowmass White Paper. arXiv 2022, arXiv:2203.05010.
31. Fixsen, D.J. The Temperature of the Cosmic Microwave Background. Astrophys. J. 2009, 707, 916–920. [CrossRef]

http://doi.org/10.1088/1475-7516/2016/04/001
http://dx.doi.org/10.3367/UFNr.0166.199605d.0493
http://dx.doi.org/10.1103/RevModPhys.71.1463
http://dx.doi.org/10.1088/1367-2630/14/12/125003
http://dx.doi.org/10.1016/j.physrep.2018.04.005
http://dx.doi.org/10.1016/0370-2693(83)91529-0
http://dx.doi.org/10.1103/PhysRevLett.42.1195
http://dx.doi.org/10.1103/PhysRev.177.2426
http://dx.doi.org/10.1007/BF02823296
http://dx.doi.org/10.1103/PhysRevD.30.2212
http://dx.doi.org/10.1103/PhysRevD.28.2019
http://dx.doi.org/10.1063/1.1590420
http://dx.doi.org/10.1103/PhysRevD.14.3432
http://dx.doi.org/10.1103/PhysRevLett.113.141602
http://dx.doi.org/10.1016/0370-2693(85)91028-7
http://dx.doi.org/10.1146/annurev.ns.43.120193.000331
http://dx.doi.org/10.1142/S0217732394000629
http://dx.doi.org/10.1103/PhysRevLett.77.2887
http://www.ncbi.nlm.nih.gov/pubmed/10062077
http://dx.doi.org/10.1016/S0550-3213(98)00494-5
http://dx.doi.org/10.1103/PhysRevD.19.3682
http://dx.doi.org/10.21468/SciPostPhysLectNotes.24
http://dx.doi.org/10.3367/UFNe.0183.201308a.0785
http://dx.doi.org/10.1088/0004-637X/707/2/916

	Introduction
	Sakharov Conditions
	Baryon Number Violating Process
	C-Symmetry and CP-Symmetry Violations
	Departure from Thermal Equilibrium

	Baryon Asymmetry from Observations
	Sphaleron Process
	Complex Field Toy Model
	Abelian Toy Model
	Violation of the Baryon Number
	Fujikawa's Method

	Baryon and Lepton Number Conservation
	Limits of the Standard Model
	Electroweak Baryogenesis
	Conclusions
	Appendix A
	Appendix B
	References

