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Abstract: An accurate computational method is presented for determining the mass
distribution in a mature spiral galaxy from a given rotation curve by applying Newtonian
dynamics for an axisymmetrically rotating thin disk of finite size with or without a central
spherical bulge. The governing integral equation for mass distribution is transformed
via a boundary-element method into a linear algebra matrix equation that can be solved
numerically for rotation curves with a wide range of shapes. To illustrate the effectiveness
of this computational method, mass distributions in several mature spiral galaxies are
determined from their measured rotation curves. All the surface mass density profiles
predicted by our model exhibit approximately a common exponential law of decay,
quantitatively consistent with the observed surface brightness distributions. When a central
spherical bulge is present, the mass distribution in the galaxy is altered in such a way that the
periphery mass density is reduced, while more mass appears toward the galactic center. By
extending the computational domain beyond the galactic edge, we can determine the rotation
velocity outside the cut-off radius, which appears to continuously decrease and to gradually
approach the Keplerian rotation velocity out over twice the cut-off radius. An examination
of circular orbit stability suggests that galaxies with flat or rising rotation velocities are
more stable than those with declining rotation velocities especially in the region near the
galactic edge. Our results demonstrate the fact that Newtonian dynamics can be adequate for
describing the observed rotation behavior of mature spiral galaxies.
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1. Introduction

Without direct means for accurate measurement, mass distribution in galaxies—gravitationally bound
assemblies of (105–1012) stars—can only be inferred from the observable information according to the
known physical laws. In astronomy, the observable information is usually carried by electromagnetic
radiation—the light—emitted from the visible objects. The light can be analyzed to provide information
about the emitting objects, such as their material constituents, surface temperature, distance, moving
velocity, etc. Observations have shown that many (mature spiral) galaxies share a common structure,
with the visible matter distributed in a flat thin disk, rotating about their center of mass in nearly circular
orbits (cf. the book of Binney and Tremaine [1]). The speed of the circular motion of objects in galaxies
can be determined from the Doppler shift of light, and its plot against the galactocentric distance is called
the rotation curve or circular speed curve. The measured rotation curve has been considered to provide
the most reliable information for deriving the mass distribution in thin-disk galaxies [2,3].

Another independent means for estimating mass distribution is based on the luminosity measurements
of the galactic surface-brightness profile by assuming a given (usually constant) mass-to-light ratio,
the validity of which seems to be rather debatable, especially when it comes to the quantitative
calculation of mass distribution. The darker edge against a brighter bulge background often seen from
the edge-on view of disk galaxies suggests a varying mass-to-light ratio, inconsistent with the constant
mass-to-light ratio assumption. The findings of Herrmann and Ciardullo [4] show that the value of the
mass-to-light ratio of the M33 galactic disk can indeed increase by more than a factor of five over a radial
distance of six times the disk scale length. Thus, discrepancies often arise between the observed rotation
curves and that predicted from the mass distributions following the surface-brightness profile based on
Newtonian dynamics, leading to the so-called “galaxy rotation problem” still haunting the astrophysical
community to the present day (cf. the book of Freeman and McNamara [5]). Such discrepancies have
often been considered as evidence of the luminous disk embedded in a more extensive halo of dark
matter [6,7]. With the concept of dark matter, a constant mass-to-light ratio is usually assigned to the
luminous disk, and various parameters are determined for an assumed dark matter halo to best fit the
observed rotation curve. However, the values of the mass-to-light ratio for the luminous matter are
uncertain, and the fitted functional form for the dark matter halo is often chosen arbitrarily [8,9]. On the
other hand, Palunas and Williams [10] demonstrated that for many galaxies, the rotation curves observed
in the optical disk can be successfully described with the luminous matter having distinct (constant)
values of the mass-to-light ratio without including the dark matter halo. Thus, whether a dark matter halo
exists or whether it is needed for describing rotating galaxies becomes questionable. The mathematical
models involving the dark matter halo have at best been still poorly constrained. Actually, if not being
relied on for quantitatively calculating the mass distribution, the typically exponential decaying profile
of observed surface brightness in many galaxies [1,11] suggests a likely general structure of decreasing
(surface) mass density with the galactocentric distance, which appears qualitatively consistent with that
predicted from the measured rotation curves according to Newtonian dynamics for rotating thin-disk
galaxies [12].

Given a measured rotation curve, to derive the mass distribution in a thin-disk galaxy requires physical
laws that can make the connection between the kinematic behavior and the locations of matter. For
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galactic dynamics, the best-known, well-established physical laws are Newton’s laws of motion and
Newton’s law of gravity [1]. Thus, we focus on the mass distribution in rotating thin-disk galaxies
determined from measured rotation curves according to Newtonian dynamics. Although theoretically
well-established, the actual computational efforts in applying Newtonian dynamics to thin-disk galaxies
appeared to be much more involved than that for a gravitational system with spherical symmetry, such
as the solar system. Serious efforts were made for integrating the Poisson equation with mass sources
distributed on a disk, as summarized by Binney and Tremaine [1], Bratek, Jalocha and Kutschera [13]
and Feng and Gallo [12], among others. The solution directly obtained from such efforts is usually the
(Newtonian) gravitational potential, which can yield the gravitational force by taking its gradient. In an
axisymmetric disk rotating at steady state, the gravitational force (as the radial gradient of gravitational
potential) is expected to equate to the centrifugal force, due to the rotation at every point.

Unlike the spherically symmetric mass distribution that generates the local gravitational force at a
given radial position only depending upon the amount of mass within that radius, the gravitational force
due to a thin-disk mass distribution can be influenced by matter, both inside and outside that radius.
Thus, the mass distribution in a thin-disk galaxy cannot be determined simply by applying Keplerian
dynamics, which relates the mass within a radial position to the local rotation speed. In principle, the
rotation speed at a radial position is mathematically related to the mass distribution in the entire galactic
disk. The fact that the brightness in disk galaxies typically decreases exponentially with radial distance
indicates a practical limitation of rotation curve measurements: the detectable signal must terminate at
a finite radial position: the so-called “cut-off radius”. All measured rotation curves terminate at their
cut-off radii, although sometimes, the cut-off radii may move further out with new signal detection and
processing technology development.

Among several possible approaches, using Bessel functions has been the method of choice for many
authors [2,11,13–17], probably due to the convenience in theoretical derivations. The mathematical
formulations with Bessel functions typically contain integrals extending to infinity, which has become
the major practical difficulty when working with rotation curves that always terminate at finite cut-off
radii. The part of rotation velocity outside the cut-off radius, although not observable, must be
constructed based on various assumptions, to complete the mathematical formulation (as discussed by
Nordsieck [14], Bosma [18], Jalocha, Bratek and Kutschera [17], Bratek, Jalocha and Kutschera [13]).

To avoid the need of the fictitious part of the rotation curve outside the cut-off radius, an integral
equation for a rotating thin-disk galaxy with its edge coinciding with the cut-off radius of the rotation
curve can be formulated according to Newtonian dynamics, consisting of Green’s function in terms of
the complete elliptic integrals of the first kind and second kind [12]. With appropriate mathematical
treatments, the apparent numerical difficulties associated with singularities in elliptic integrals can be
completely removed when carefully evaluating the mathematical limit. To enable dealing with arbitrary
forms of rotation curves and mass density distributions, the boundary element method for solving integral
equations is adopted here using compactly supported basis functions instead of that extending to infinity,
like Bessel functions. Hence, the finite physical problem domain for a disk with the edge ending at
a finite radius can be conveniently considered by solving a linear algebra matrix problem. Here, in
our treatment, we take the cut-off radius as the galactic disk edge outside of which the mass density
becomes negligible. Philosophically, where there is matter, there must be a detectable signal; therefore,
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no detectable signal must indicate that there is no matter. Thus, by “cut-off radius”, we mean the
theoretical cut-off radius, which may not be the same as that currently measured in the rotation curve, due
to technological limitations, but it will be approached with the continuous improvement of technology.

Following Feng and Gallo [12], in the present work, we non-dimensionalize the governing equations,
such that a dimensionless parameter, which we call the “galactic rotation number”, appears in the force
balance (or centrifugal-equilibrium) equation, representing the ratio of centrifugal force and gravitational
force. Together with a constraint equation for mass conservation, the value of this galactic rotation
number can be determined as part of the numerical solution. The value of the galactic rotation number
can be used for calculating the total galactic mass in the disk from the measured galactic (cut-off)
radius and characteristic rotation velocity. While Feng and Gallo [12] focused mainly on illustrating
the computational method with a few idealized rotation curves, herewith, we apply this method to
the in-depth evaluation of the realistic rotation curves available in the open literature (e.g., the Sofue
website [19], de Blok et al. [20], etc.) We also extend our method to including the spherical central core
and bulge, to further applications, such as for determining rotation velocity beyond the cut-off radius,
and so on and so forth.

2. Mathematical Formulation and Solution Method

For the convenience of mathematical treatment, a rotating galaxy is represented by a self-gravitating
continuum of axisymmetrically distributed mass in a circular disk with an edge at finite radius Rg

(beyond which we expect mass density to diminish precipitously to the inter-galactic level, having
inconsequential gravitational effect on the galactic disk dynamics). Without loss of generality, we
consider the thin disk having a uniform thickness (h) with a variable mass density (ρ) as a function
of radial distance (r) in galactocentric cylindrical polar coordinates. In the situation of the thin disk, the
vertical distribution of mass (in the z-direction) is expected to contribute an inconsequential dynamical
effect, especially as the disk thickness becomes infinitesimal. In mathematical terms, the meaningful
variable here is actually the surface mass density σ(r) ≡ ρ(r)h. Here, we choose to use the bulk density,
ρ(r), for its consistency with the common physical perception of a thin disk with nonzero thickness h.

For steady rotation, there must be a balance between the gravitational force and centrifugal force
at every point in the galactic disk. If the force density on a test mass at (r, θ = 0) generated by the
gravitational attraction due to the summation (or integration) of a distributed mass density, ρ(r̂), at a
position described by the variables of integration (r̂, θ̂) is expressed as an integral over the entire disk,
with the distance between (r, θ = 0) and (r̂, θ̂) given by (r̂2+r2−2r̂ r cos θ̂)1/2 and the vector projection
given by (r̂ cos θ̂ − r), the equation of force balance in a rotating thin disk can be written as (according
to Newton’s laws):∫ 1

0

[∫ 2π

0

(r̂ cos θ̂ − r)dθ̂
(r̂2 + r2 − 2r̂r cos θ̂)3/2

]
ρ(r̂)hr̂dr̂ + A

V (r)2

r
= 0 (1)

where all the variables are made dimensionless by measuring lengths (e.g., r, r̂, h) in units of the
outermost galactic radius, Rg, the disk mass density (ρ) in units of Md/R

3
g, with Md denoting the

total mass in the galactic disk, and rotation velocities [V (r)] in units of the a characteristic galactic
rotational velocity, V0 (usually defined according to the rotation curve of interest). The disk thickness,
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h, is assumed to be constant and small in comparison with Rg. The numerical results for surface mass
density, ρ(r)h, are expected to be insensitive to the exact value of h/Rg, as long as it remains small.
There is no difference in terms of the physical meaning between the notations (r, θ) and (r̂, θ̂); but
mathematically, the former denotes the independent variables in the integral Equation (1), whereas the
latter, the variables of integration. The gravitational force represented as the summation of a series of
concentric rings is described by the first (double integral) term, while the centrifugal force by the second
term in Equation (1).

Non-dimensionalizing the force-balance equation yields a dimensionless parameter, which we call
the “galactic rotation number”, A, expressed as:

A ≡ V 2
0 Rg

MdG
(2)

where G (= 6.67 × 10−11 [m3/(kg·s2)]) is the gravitational constant. This galactic rotation number, A,
simply indicates the relative importance of centrifugal force versus gravitational force.

Equation (1) can either be used to determine the surface mass density, ρ(r)h, from a given rotation
curve, V (r), or vice versa. However, when both ρ(r) and A are unknown, another independent equation
is needed to keep the mathematical problem well-posed. According to the conservation of mass, the total
mass of the galaxy disk, Md, should stay as a constant satisfying the constraint:

2π

∫ 1

0

ρ(r̂)hr̂dr̂ = 1 (3)

This constraint offers an addition equation for determining the value of galactic rotation number A. With
Equations (1)–(3), the mass density distribution, ρ(r), in the disk, the galactic rotation number, A, and
the disk galactic mass, Md, can all be determined from the measured values of V (r), Rg, V0 and h. On
the other hand, if ρ(r) and h (or ρ(r)h), as well as A are given, V (r) can, of course, be determined from
Equation (1).

The integral with respect to θ̂ in Equation (1) is known to be equivalent to:∫ 2π

0

(r̂ cos θ̂ − r)dθ̂
(r̂2 + r2 − 2r̂r cos θ̂)3/2

= 2

[
E(m)

r(r̂ − r)
− K(m)

r(r̂ + r)

]
(4)

where K(m) and E(m) denote the complete elliptic integrals of the first kind and second kind, with:

m ≡ 4r̂r

(r̂ + r)2
(5)

Thus, Equation (1) can be written in a single-integral form:∫ 1

0

[
E(m)

r̂ − r
− K(m)

r̂ + r

]
ρ(r̂)hr̂dr̂ +

1

2
AV (r)2 = 0 (6)

which is more suitable for the boundary element type of numerical implementation.
Following a standard boundary element approach [21,22], the governing Equations (3) and (6) can be

discretized by dividing the one-dimensional problem domain [0, 1] into a finite number of line segments
called (linear) elements. Each element covers a subdomain confined by two end nodes, e.g., element i
corresponds to the subdomain [ri, ri+1], where ri and rr+1 are nodal values of r at nodes i and i + 1,
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respectively. On each element, which is mapped onto a unit line segment [0, 1] in the ξ-domain (i.e., the
computational domain), ρ is expressed in terms of the linear basis functions as:

ρ(ξ) = ρi(1− ξ) + ρi+1ξ , 0 ≤ ξ ≤ 1 (7)

where ρi and ρi+1 are nodal values of ρ at nodes i and i + 1, respectively. Similarly, the radial
coordinate, r̂, on each element is also expressed in terms of the linear basis functions by so-called
isoparametric mapping:

r̂(ξ) = r̂i(1− ξ) + r̂i+1ξ , 0 ≤ ξ ≤ 1 (8)

If the rotation curve, V (r), is given (as from measurements), the N nodal values of ρi = ρ(ri) are
determined by solving N independent residual equations over the N − 1 element obtained from the
collocation procedure, i.e.,

N−1∑
n=1

∫ 1

0

[
E(mi)

r̂(ξ)− ri
− K(mi)

r̂(ξ) + ri

]
ρ(ξ)hr̂(ξ)

dr̂

dξ
dξ +

1

2
AV (ri)

2 = 0 , i = 1, 2, ..., N (9)

with:
mi(ξ) ≡

4r̂(ξ)ri
[r̂(ξ) + ri]2

(10)

where ρ(ξ) = ρn(1−ξ)+ρn+1ξ. The value ofA can be solved by the addition of the constraint equation:

2π
N−1∑
n=1

∫ 1

0

ρ(ξ)hr̂(ξ)
dr̂

dξ
dξ − 1 = 0 (11)

Thus, we haveN+1 independent equations for determiningN+1 unknowns; the mathematical problem
is well-posed. With appropriate mathematical treatments of the singularities arising from the elliptic
integrals and boundary conditions at r = 0 and r = 1, the set of linear Equations (9) and (11) for N + 1

unknowns (i.e., N nodal values of ρi and A) can be put in a matrix form and then solved with a standard
matrix solver, such as by Gauss elimination [23].

As in Feng and Gallo [12], the complete elliptic integrals of the first kind and second kind in
Equation (9) can be numerically computed with the formulas [24]:

K(m) =
4∑
l=0

alm
l
1 − log(m1)

4∑
l=0

blm
l
1 (12)

and:

E(m) = 1 +
4∑
l=1

clm
l
1 − log(m1)

4∑
l=1

dlm
l
1 (13)

where:

m1 ≡ 1−m =

(
r̂ − r
r̂ + r

)2

(14)

Clearly, the terms associated with K(mi) and E(mi) in Equation (9) become singular when r̂ → ri on
the elements with ri as one of their end points.
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The logarithmic singularity can be treated by converting the singular one-dimensional integrals into
non-singular two-dimensional integrals by virtue of the identities:{ ∫ 1

0
f(ξ) log ξdξ = −

∫ 1

0

∫ 1

0
f(ξη)dηdξ∫ 1

0
f(ξ) log(1− ξ)dξ = −

∫ 1

0

∫ 1

0
f(1− ξη)dηdξ

(15)

where f(ξ) denotes a well-behaving (non-singular) function of ξ on 0 ≤ ξ ≤ 1.
However, a more serious non-integrable singularity, 1/(r̂ − ri), exists, due to the term,

E(mi)/(r̂ − ri), in Equation (9) as r̂ → ri. The 1/(r̂ − ri) type of singularity is treated by taking
the Cauchy principle value to obtain meaningful evaluation [25], as commonly done with the boundary
element method [21,22]. In view of the fact that each ri is considered to be shared by two adjacent
elements covering the intervals [ri−1, ri] and [ri, ri+1], the Cauchy principle value of the integral over
these two elements is given by:

lim
ε→0

[∫ ri−ε

ri−1

ρ(r̂)r̂dr̂

r̂ − ri
+

∫ ri+1

ri+ε

ρ(r̂)r̂dr̂

r̂ − ri

]
(16)

In terms of elemental ξ, Equation (16) is equivalent to:

− lim
ε→0

{∫ 1−ε/(ri−ri−1)

0

[ρi−1(1− ξ) + ρiξ][ri−1(1− ξ) + riξ]dξ

1− ξ

−
∫ 1

ε/(ri+1−ri)

[ρi(1− ξ) + ρi+1ξ][ri(1− ξ) + ri+1ξ]dξ

ξ

}
(17)

Performing integration by parts on Equation (17) yields:

ρi ri log

(
ri+1 − ri
ri − ri−1

)
−
(∫ 1

0

d{[ρi−1(1− ξ) + ρiξ][ri−1(1− ξ) + riξ]}
dξ

log(1− ξ)dξ

+

∫ 1

0

d{[ρi(1− ξ) + ρi+1ξ][ri(1− ξ) + ri+1ξ]}
dξ

log ξdξ

)
where the two terms associated with log ε cancel out each other; the terms with ε log ε become zero at
the limit of ε → 0, and the first term becomes nonzero when the nodes are not uniformly distributed
(namely, the adjacent elements are not of the same segment size).

At the galaxy center ri = 0, ∫ ri+1

ri

ρ(r̂)r̂dr̂

r̂ − ri
=

∫ ri+1

0

ρ(r̂)dr̂ (18)

Thus, the 1/(r̂− ri) type of singularity disappears naturally. However, numerical difficulty can still arise
if ρ itself becomes singular as r → 0, e.g., ρ ∝ 1/r as for the Mestel disk [26]. The singular mass density
at r = 0 corresponds to a mathematical cusp, which usually indicates the need for a finer resolution in
the physical space. To avoid the cusp in mass density at the galactic center, we can impose a requirement
of continuity of the derivative of ρ at the galaxy center r = 0. This can be easily implemented at the first
node i = 1 to demand dρ/dr = 0 at r = 0. In discretized form for r1 = 0, we simply have:

ρ(r1) = ρ(r2) (19)



Galaxies 2014, 2 206

When ri = 1 (i.e., i = N ), we are at the end node of the problem domain. Here, we use a numerically
relaxing boundary condition by considering an additional element beyond the domain boundary covering
the interval [ri, ri+1], because it is needed to obtain a meaningful Cauchy principle value. In doing so, we
can also assume ri+1− ri = ri− ri−1, such that log[(ri+1− ri)/(ri− ri−1)] becomes zero, to simplify the
numerical implementation. Moreover, it is reasonable to assume ρi+1 = 0, because it is located outside
the disk edge. With sufficiently fine local discretization, this extra element covers a diminishing physical
space, such that its existence becomes numerically inconsequential. Thus, at ri = 1, we have:∫ 1

0

d{[ρi(1− ξ) + ρi+1ξ][ri(1− ξ) + ri+1ξ]}
dξ

log ξdξ

= (ρi+1 − ρi)
∫ 1

0

r(ξ) log ξdξ + (ri+1 − ri)
∫ 1

0

ρ(ξ) log ξdξ = ρi[ri −
3

2
(ri − ri−1)]

Now that only the logarithmic singularities are left, Equation (15) can be used for eliminating all
singularities in computing the integrals in Equation (9).

3. Results

To obtain numerical solutions, the value of (constant) disk thickness, h, must be provided; we assume
h = 0.01 out of many possible choices. For computational efficiency, we distribute more nodes in the
regions (e.g., near the galactic center and disk edge) where ρ varies more rapidly. Unless the rotation
curve has very steep velocity changes that need finer discretization with more elements, the typical
number of non-uniformly distributed nodes, N , used in computating most cases is 1001 (corresponding
to 1000 linear elements), which we found for most cases to be sufficient for obtaining a smooth curve of
ρ versus r and discretization-insensitive values of galactic rotation number A.

The rotation curves available in the open literature (e.g., the Sofue website [19]) are typically provided
in a tabular form with data points at radial positions often not coinciding with our nodal positions. We
use the cubic spline interpolation method [23] to evaluate our nodal values of V (r) from the rotation
curve data, such that the rotation curve used in our computations is guaranteed to smoothly pass through
all the original data points.

3.1. NGC 4736

The NGC 4736 galaxy has recently been studied by Jalocha, Bratek and Kutschera [17], for illustrating
that the baryonic matter distribution can account for the observed rotation curve. Thus, we believe it
deserves our attention to study using our computational method.

There are several different versions of rotation curve data for NGC 4736 in the literature. Here, we
consider two of them, one is from the website of Sofue [19] and the other from the H I Nearby Galaxy
Survey (THINGS) measurements [20]. Figure 1 shows the two versions of the rotation curves with r
measured in units of Rg = 10.35 (kpc) (where 1 kpc = 3.086 × 1019 m), and rotation velocity V (r) in
units of V0 = 150 (km/s).

As shown by Feng and Gallo [12], the value of total galactic mass in the disk can be determined
according to Equation (2) with the computed value of A as:
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Md =
V 2
0 Rg

AG
(20)

Because the computed value of the galactic rotation number, A, is 1.9656 for the THINGS rotation
curve and 1.5908 for that of Sofue, we obtain Md = 2.756 × 1010 M� (where one solar-mass
M� = 1.98892× 1030 kg) when the THINGS rotation curve is used and Md = 3.405 × 1010 M� when
the Sofue rotation curve is used. The value of Md = 3.405 × 1010 M� agrees well with that computed
by Jalocha, Bratek and Kutschera [17] (i.e., 3.43× 1010 M�) using the same rotation curve of Sofue.

Figure 1. Profiles of NGC 4736 rotation velocity V (r) and mass density ρ(r), with the
thick line for that of the H I Nearby Galaxy Survey (THINGS) and the thin line for that from
Sofue. The computed values of the galactic rotation number, A, are 1.9656 and 1.5908 for
the cases of THINGS and Sofue, respectively.
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However, Jalocha, Bratek and Kutschera [17] used an iterative spectral method with Bessel functions,
which requires the inclusion of a rotation curve beyond the “cut-off” radius extending to infinity.
They also considered the mass density due to the neutral atomic hydrogen (H I) outside the cut-off
radius. With our method, only the available data for rotation curve within the cut-off radius is needed.
Meanwhile, we assume the mass density in the galactic disk diminishes at the same cut-off radius
to enable a self-consistent consideration of the mathematical problem on a finite disk domain. The
solution of the axisymmetric mass distribution in the galactic disk for a given rotation curve can be
computed by one-step Gauss elimination of the linear algebra matrix equation without further successive
iterations [12].

If desired, the effect of H I and the “not-yet” measurable rotation curve outside the cut-off radius
can be conveniently examined in an a posteriori manner. For example, the surface mass density of H I
considered by Jalocha, Bratek and Kutschera [17] at the cut-off radius is ∼ 1M�/pc2, which translates
to our non-dimensional ρ = R2

g/(Md h) = 0.3887 (or 0.3146, with Rg in units of pc and Md in units
of M�) for the THINGS (or Sofue) rotation curve, decreasing one order of magnitude in about 3 (kpc)
beyond the cut-off radius at 10.35 (kpc).
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To examine the effect of H I outside the cut-off radius, we modify the mass distribution starting from
a radius r1 < 1, such that the mass density for r ≥ r1 is described by:

ρ(r) = ρ1e
−[0.2+(r−r1)/0.3]2 , r1 ≤ r <∞ (21)

where r1 = 0.965 and ρ1 = ρ(r1) = 0.388. The profile of mass density distribution extending to
r > 1 as described by (21) approximates well to that considered by Jalocha, Bratek and Kutschera [17]
while simplifying the analysis. With the given mass distribution extending beyond r = 1, we can
correspondingly extend the integration to r > 1 in Equations (3) and (6), to calculate rotation velocity
beyond the cut-off radius. Figure 2 shows the mass density distribution with (thin line) and without
(thick line) the H I outside the (non-dimensional) cut-off radius r = 1, and the corresponding rotation
curves. The integration result of Equation (3) shows that including H I beyond r = 1 increases the total
galactic mass only by ∼ 0.5%. Therefore, it is not surprising to notice that the original rotation curve in
Figure 2 is barely altered by this mass density modification. In fact, the rotation curves beyond r = 1

calculated with and without the mass density modification (21) differs so little that they are visually
indistinguishable when plotted together in Figure 2.

Figure 2. The distributions of mass density ρ(r) with (thin line) or without (thick line) H
I extending beyond the cut-off radius, and the corresponding rotation curves. Only the case
based on the THINGS rotation curve is shown here.
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In view of typical uncertainties in rotation curve measurements (as illustrated in Figure 1 for two
different versions of the same galaxy), we expect that any matters (such as H I) outside the “cut-off”
radius cannot have substantial influence on the disk rotation characteristics, because the amount of
mass in comparison to the value of Md is usually insignificant. Thus, whether including the H I
mass outside the “cut-off” radius of NGC 4736 should have inconsequential effect on the Newtonian
dynamics relating the measured rotation curve to mass distribution in the galactic disk. As illustrated
here, however, the consideration of H I mass beyond r = 1 can be conveniently implemented as an
a posteriori process (without iteratively computing solutions) to evaluate (or, in other words, predict)
the rotation velocity beyond the cut-off radius, which could not be obtained from measurements. Then,
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the needed part of rotation curve beyond the cut-off radius, for using a formulation that requires it
(e.g., [13,14,17,18]) to determine the mass distribution from measured rotation curve, can be provided
using our method with concrete certainty (namely, without fictitious assumptions).

3.2. Milky Way, NGC 4945

The Milky Way, also called the Galaxy, is the galaxy that contains the Sun and the Earth, which is why
it is of particular interest to astronomy and astrophysics. NGC 4945 is a spiral galaxy that appears quite
similar to the Milky Way. Therefore, we present results for both of them together here. The rotation curve
data provided by Sofue [19] suggest nonzero rotation velocity at r = 0. According to our continuum
treatment of a rotating disk galaxy with a Newtonian dynamics description of force balance (6), nonzero
rotation velocity at r = 0 requires a strongly singular mass density to ensure that:∫ 1

0

ρ(r̂)dr̂ →∞ (22)

This is because the kernel of integral in Equation (6) for any nonzero r̂ has a limit value of zero at
r = 0, i.e.,

lim
r→0

[
E(m)

r̂ − r
− K(m)

r̂ + r

]
=

1

r̂
[E(0)−K(0)] (23)

and E(0) = K(0) = π/2 [24]. Thus, V (0) must be zero according to Equation (6), unless Equation (22)
is true as in Mestel’s disk [26] where ρ→ 1/r as r → 0.

As discussed by Feng and Gallo [12], the computational method used here can reproduce the result
of Mestel’s disk [26] for the entire problem domain (0, 1] when the rotation velocity in an infinitesimal
neighborhood around r = 0 is modified, such that V (0) becomes zero, which corresponds to replacing
ρ(0) = ∞ with a finite (large) value of ρ(0). Such a slight modification of rotation curve results in no
practical difference in the computed mass density distribution and the value of total galactic mass, Md,
while providing great convenience for numerical computation.

Therefore, we take the same approach here to slightly modify the rotation-curve data files of
Sofue, such that the first point at r = 0 has V (0) = 0, while leaving all the rest of the
data points unchanged; the resulting rotation curves are shown in Figure 3 with r measured
in units of Rg = 20.55 and 20.00 (kpc), rotation velocity V (r) in units of V0 = 220 and
180 (km/s), respectively for the Milky Way and NGC 4945. Also shown in Figure 3 are the
computed mass density distributions. With the computed value of A = 1.6365, we have
1.4138 × 1011 M� for the Milky Way according to Equation (20). For the Galaxy, one unit of
non-dimensional ρ corresponds to the surface mass density of Md h/R

2
g = 3.35 M�/pc2. In the

solar neighborhood around 8 kpc from the Galactic center, which corresponds to r = 0.3893,
we have ρ ∼ 43 (from Figure 3), and therefore, the surface mass density around the Sun should be
∼ 144M�/pc2.

Due to the large central peaks in rotation curves near r = 0, the computed mass density profiles
show a sharp increase of ρ toward the galactic center, as is consistent with the previous findings of
Feng and Gallo [12] based on a series of idealized rotation curves. Because the rotation curves of the
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Milky Way and NGC 4945 are generally flat, the mass density profiles show only about a one order
of magnitude decrease in the large interval (0.1, 0.9), unlike that for NGC 4736, with more than a two
orders of magnitude decrease, corresponding to a rotation curve of velocity generally decreasing with
galactocentric distance.

Figure 3. Profiles of the Milky Way and NGC 4945 rotation velocity V (r) and mass density
ρ(r), with the thick line for that of the Milky Way and the thin line for NGC 4945. The
computed values of the galactic rotation number, A, are 1.6365 and 1.6873 for the Milky
Way and NGC 4945, respectively.
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3.3. NGC 224, NGC 5055

The NGC 224 and NGC 5055 galaxies were classified as those with rotation curves having “no central
peak” [27], in contrast to that of the Milky Way. Their rotation curves (from the Sofue website [19]) and
our computed mass density profiles are presented in Figure 4, with r measured in units of Rg = 31.25

and 39.35 (kpc), rotation velocity V (r) in units of V0 = 250 and 190 (km/s), respectively for NGC 224
and NGC 5055. Corresponding to the rotation curves without the central peak, the mass density profiles
vary less dramatically as r → 0 than those in Figure 3 with large central peaks.

3.4. NGC 2403, NGC 3198

With their rotation curves being classified as “rigid-body type” [27], NGC 2403 and NGC 3198 have
rotation velocities increasing gradually from the galactic center almost like rigid-body rotation for a
considerable radial distance before leveling off. Figure 5 shows the rotation curves (from the Sofue
website [19]) and the corresponding mass density profiles of NGC 2403 (thick line, which also has the
nonzero velocity at r = 0 replaced with V (0) = 0) and NGC 3198 (thin line), with r measured in units
of Rg = 19.70 and 31.05 (kpc) and rotation velocity V (r) in units of V0 = 130 and 160 (km/s) for NGC
2403 and NGC 3198, respectively. The peak density at r = 0 in Figure 5 is further reduced from that in
Figure 4, due to the less steep change in the rotation velocity around the galactic center.
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It is noteworthy that the NGC 3198 rotation curve has a small spike near r = 0, which results in a sharp
turn in the mass density around the same location. Another obvious wiggling spike in the rotation curve
is at r ∼ 0.2, causing a corresponding corner formed in the mass density profile in that neighborhood.
Apparently, the effects of some of the fine features in the rotation curve are confined locally in a small
nearby neighborhood.

Figure 4. Profiles of NGC 224 and NGC 5055 rotation velocity V (r) and mass density
ρ(r), with the thick line for that of NGC 224 and the thin line for NGC 5055. The
computed values of the galactic rotation number, A, are 1.6450 and 1.6888 for NGC 224
and NGC 5055, respectively.
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Figure 5. Profiles of NGC 2403 and NGC 3198 rotation velocity V (r) and mass density
ρ(r), with the thick line for that of NGC 2403 and the thin line for NGC 3198. The
computed values of the galactic rotation number, A, are 1.4918 and 1.6022 for NGC 2403
and NGC 3198, respectively.
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3.5. Tabulated Summary

The values of Rg and V0, and the corresponding A and Md, for various types of galaxies computed in
this section are summarized in Table 1 for convenient reference. Here, the value of Rg is well-defined as
the cut-off radius from the rotation curve data, such that our non-dimensionalized computational domain
is always [0, 1], whereas that of the characteristic velocity V0 can be somewhat arbitrary and is chosen
to approximately reflect the average rotation velocity outside the region around galactic center, which is
often fairly flat. Thus, the value of computed A can vary depending on the chosen value of V0, but the
dimensional value of Md does not change, independent of how V0 is defined.

Table 1. Values of Rg and V0, and the corresponding A and Md, for galaxies computed in
this section.

Galaxy Type Rg (kpc) V0 (km/s) A Md (M�)

NGC 4736 (THINGS) Sab 10.35 150 1.9656 2.756 × 1010

NGC 4736 (Sofue) Sab 10.35 150 1.5908 3.405 × 1010

Milky Way Sb 20.55 220 1.6365 1.4138 × 1011

NGC 4945 Sb 20.00 180 1.6873 8.9337 × 1010

NGC 224 Sb 31.25 250 1.6450 2.7619 × 1011

NGC 5055 Sb 39.35 190 1.6888 1.9567 × 1011

NGC 2403 Sc 19.70 130 1.4918 5.1915 × 1010

NGC 3198 Sc 31.05 160 1.6022 1.1541 × 1011

4. Discussion

It should be noted that the axisymmetric thin-disk continuum model considered here is at best a
simplified approximation of mature spiral galaxies. By “mature”, we mean that the basic galactic
structures do not change (or evolve) with time drastically any more, and thus, their dynamic behavior
almost approaches the so-called steady state. Realistically, however, even those mature spiral galaxies
are not in a perfect axisymmetric steady state, because they typically exhibit spiral arms, tidal streams,
bars, etc. [1,28]. Therefore, a hierarchy of models of increasing sophistication exists [29]. However,
more sophisticated models usually involve more assumptions, many of which cannot easily be
validated by reliable observational measurements (such as the dark matter, dark halo, etc.) and thus
become debatable.

On the other hand, we do not think the detailed galactic structures, such as spiral arms, etc., should
alter the averaged gross galactic properties in any significant manner. For example, all the mass density
profiles predicted by our model in Section 3 exhibit a nearly linear decline (in semi-log plots) if the two
abruptly varying ends (around r = 0 and r = 1) are trimmed out, indicating that the mass density of
most mature galaxies follows approximately a common exponential law of decay as typically observed
with luminosity measurements. However, the radial scale length for the surface mass density of many
galaxies may not closely match that of the measured brightness distribution [12]. Yet, for some galaxies,
such as NGC 4736, our predicted mass distribution (which is basically the same as that by Jalocha,
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Bratek and Kutschera [17]) has been shown to be quite consistent with the I-band luminosity profile,
having a mean mass-to-light ratio M/LI = 1.2 [17]. Because there are no well-established theoretical
constraints for the mass-to-light ratio, quantitative discussion on the discrepancy between our predicted
mass distribution and the measured brightness distribution can hardly avoid lack of the desired scientific
rigor and, therefore, is not pursued further in the present work. Here, we choose to focus on the
axisymmetric thin-disk model with minimum physical assumptions, and apply only the well-established
Newtonian dynamics to determine the mass distribution in rotating spiral galaxies based on observed
rotation curves. Along with appropriate mathematical treatments, we believe our results provide logically
rigorous references for more sophisticated model development. Hence, in this section, we first discuss a
few extensions from the strict thin-disk model results presented in the previous section. Other relevant
topics, such as the applicability of Keplerian dynamics and circular orbit stability, are also examined.

4.1. Nonzero Rotation Velocity at r = 0

In Section 3.2, we have treated the rotation curves having nonzero velocity at r = 0 by replacing the
value of V (0) with a zero value in the rotation curve data file. Such a simplistic approach may be a little
distasteful to some people with a rigorous mind. Therefore, a more elaborated treatment is provided here.

With the thin-disk model, we have demonstrated with galaxies of various types of realistic rotation
curves that the mass density is always highest at the galactic center, and a nonzero rotation velocity at
r = 0 corresponds to an infinite mass density at the galactic center. To enable the numerical treatment of
the infinite local mass density, it may not be unreasonable to consider the galaxies with nonzero rotation
velocity at r = 0 to consist of a dense spherical core at the galactic center in addition to a self-gravitating
thin disk. In that case, we should modify (6) to include a term due to the dense core with a spherically
symmetric gravitational field. Among many choices, we can simply assume a spherical core confined
within a small volume, e.g., in r < Rc = 0.0001, having a mass M(r) = AV (0)2 r, where V (0) is
nonzero according to the measured rotation curve. This corresponds to a spherically symmetric mass
density ρ(r) = [dM(r)/dr]/(2πr2) = AV (0)2/(2πr2) in r < Rc, becoming infinite as r → 0. As a
consequence, the second term in Equation (6), namely 1

2
AV (r)2, can be replaced by 1

2
A [V (r)2−V (0)2]

for r < Rc and by 1
2
A [V (r)2 − V (0)2Rc/r] for r ≥ Rc. Such a modification is actually equivalent to

replacing the original rotation curve, V (r), with a modified one that becomes zero at r = 0 as:{ √
V (r)2 − V (0)2 , r < Rc√

V (r)2 − V (0)2Rc/r , r ≥ Rc

(24)

If we apply this approach to the Milky Way, which has V (0) = 0.9282, with Rc = 10−4, we
obtain A = 1.6368 (instead of 1.6365 in Section 3.2). Thus, the total mass in the Galactic disk is
Md = 1.4135× 1011 M� (instead of 1.4138× 1011 M� in Section 3.2). The mass in the spherical core
is AV (0)2RcMd = 1.6368× 0.92822 × 1.4135× 107 = 1.9933× 107 M�. The combined mass of the
core and disk is then 1.4137×1011 M�, which is of no practical difference from the value in Section 3.2.
With such a small core of Rc = 10−4, the modified rotation curve Equation (24) is also of no practical
difference from that (thick line) in Figure 3, having <2% change at r = 0.0024 (the second data point in
measured rotation curve),<1% change at r = 0.0049 (the third data point),∼0.5% change at r = 0.0073

(the forth data point), and so on and so forth.
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However, if we assume Rc = 0.01 for a bigger core, the computed value of A for the Milky Way
becomes 1.6599 and the corresponding mass in the galactic disk then is Md = 1.3939 × 1011 M�.
Combining with the mass of the core (AV (0)2RcMd = 1.9934×109 M�), we have a total galactic mass
of 1.4138 × 1011 M�, which is basically the same as that in Section 3.2. Hence, the total galactic mass
remains unchanged for a substantial range of the spherical core size, Rc. However with Rc = 0.01, the
modified Milky Way disk rotation curve according to Equation (24) differs noticeably from the original
one provided by Sofue (as shown in Figure 6), especially around the galactic core, where the influence
of the gravitational field of the spherical core is more significant. Yet, the computed ρ(r) in the thin disk
still appears indistinguishable from that in Figure 3, except that the peak value at r = 0 is reduced to
3650 from 25, 262 (in Figure 3). This is because in a small core at the galactic center the details of mass
distribution, whether axisymmetrically or spherical symmetrically, cannot make much of a difference in
the gravitational field some distance away.

Figure 6. Profiles of the Milky Way rotation curves when decomposed into that
corresponding to a spherical core of Rc = 0.01 and a thin disk. The original rotation curve
from Sofue is also shown here as a reference.
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It seems though that the effort of decomposing the galaxy into a small spherical core and a thin disk
only helps treat rotation curves with nonzero velocity at r = 0 in a mathematically elegant manner,
such that the need of explicitly considering the infinite mass density is eliminated. Physically, a nonzero
rotation velocity at r = 0 has unclear meanings and should remain as a debatable subject; so should the
implication of the corresponding infinite mass density, because the common wisdom usually indicates
that “nature abhors infinities”. Thus, we prefer the straightforward treatment in Section 3.2 to simply
bring the rotation velocity to zero at r = 0, especially when it does not seems to be, at the expense of
compromising the general result’s accuracy. The insensitivity of mass distribution in the galactic disk and
total galactic mass to detailed descriptions of the structure in a small spherical central core illustrated
here is consistent with the findings of previous authors (cf. the discussion of Nordsieck [14] and the
citations therein).
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4.2. Central Bulge in Disk Galaxy

Yet, our methodology for treating a central spherical core can be easily extended for analyzing
galaxies with a considerably larger central bulge with a priori given spherical mass distributions. As
an example, assuming the Milky Way rotation curve in Figure 3 to be a result of the combination of a
central bulge with a spherically symmetric mass density:

ρb(r) = ρb0e
−(r/Rb)

3

(25)

and an axisymmetrically distributed mass in a thin-disk, Equation (6), with V (r) in Figure 3 being
replaced by: √

V (r)2 − 4π ρb0R3
b

3A
[1− e−(r/Rb)3 ] (26)

For Rb = 0.2 and ρb0/A = 7, the disk rotation curve as determined from Equation (26) is shown
in Figure 7 together with the computed disk mass density distribution. In the presence of this bulge,
the value of A becomes 2.4793, and the disk mass density exhibits a dip around r = 0.12. Thus,
ρb0 = 7 × 2.4793 = 17.3551, and the corresponding bulge density profile is also shown in Figure 7.
The mass in the disk portion (calculated from Equation (20)) is Md = 9.3320× 1010 M� and that in the
bulge portion Mb = 4π ρb0R

3
bMd/3 = 5.4273 × 1010 M�. The total galactic mass Mg = Md +Mb =

1.4759×1011 M� (instead of 1.4138×1011 M� predicted by a pure disk model in Section 3.2). Because
a substantial amount of the mass is concentrated in the central bulge with its portion of spherically
symmetric mass density practically diminishing for r > 0.3, the disk surface mass density in the solar
neighborhood around r = 0.3893 (corresponding to 8 kpc) becomes ρ(0.3893)Md h/R

2
g = 108M�/pc2)

where ρ(0.3893) ∼ 49 from the “disk” mass density curve in Figure 7. Even though the presence of our
example bulge causes only a few percent of increase in the total galactic mass from that predicted by a
pure disk model, the disk surface mass density in the solar neighborhood can decrease by 25%.

Figure 7. Profiles of the Milky Way rotation velocity and mass density for the disk portion
and bulge portion (with Rb = 0.2 and ρb0/A = 7) as noted along with that in Figure 3 (thick
line) as a reference.
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If Rb = 0.25 and ρb0/A = 5, the value of A will become 3.0223, and therefore, ρb0 = 15.1115. As
a consequence, Md = 7.6554 × 1010 M�, Mb = 7.5716 × 1010 M� and Mg = 1.5227 × 1011 M�.
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The value of ρ(0.3893) is ∼41 corresponding to the disk surface mass density in the solar neighborhood
of 74 M�/pc2. Thus, for a given rotation curve, the actual value of disk surface mass density in a
galaxy can vary significantly when considering a model with a combination of a spherical bulge and an
axisymmetric thin disk, depending upon the bulge mass structure. The bulge mass structure described by
Equation (25) is only for illustrative purpose with the convenience of mathematical manipulation. The
fact that adding a spherical bulge offers a another degree of freedom for adjusting mass distribution in the
galactic disk should not depend upon the details in the bulge mass structure. This extra degree of freedom
comes at the expense of uncertainty due to the difficulties in determining the bulge mass structure that
is governed by much more complicated physical processes than simply balancing the gravitational force
and centrifugal force. Hence, we choose to take the bulge mass structure as given a priori in analyzing
mass distribution in disk galaxies according to Newtonian dynamics, with our focus kept on the thin-disk
portion of galaxies.

Without considering the central bulge, the mass distribution in the galactic disk can be uniquely
determined from a given rotation curve. With the central bulge, its mass structure must be known a
priori in order to compute a unique disk mass distribution corresponding to the given rotation curve.
However, how to reliably determine the bulge mass structure besides using its luminosity information
and an assumed mass-to-light ratio seems to be an open question.

Nevertheless, our illustrative analysis presented here demonstrates the general effect of a central bulge
to basically shift mass from the periphery toward the center of a galaxy for a given rotation curve. The
more massive a central bulge becomes, the less mass is needed in the disk periphery region according to
Newtonian dynamics. Yet, the total mass in a galaxy seems to be much less sensitive to the presence or
absence of a central bulge.

4.3. Rotation Velocity beyond the Cut-off Radius

Furthermore, as shown in Section 3.1, our finite-disk galaxy model and the associated computational
method can further be used to determine the rotation velocity of matters outside the cut-off radius,
which we assume to be the edge of galaxy where the mass density diminishes. Again, taking the
Milky Way as an example, Figure 8 shows the computed rotation velocity beyond the galactic edge
r = 1, as a continuation from the measured rotation curve that ends at r = 1 and gradually approaching
the Keplerian rotation curve for r > 2. Here, the Keplerian rotation curve is generated by applying
Keplerian dynamics:

VK(r) =

√
2π

r A

∫ r

0

ρ(r̂)h r̂dr̂ (27)

with ρ(r̂) and A being obtained through computations in Section 3.2. Because Keplerian dynamics
cannot correctly describe the situation of disk galaxies with a non-spherically symmetric gravitational
field, the rotation curve predicted by Keplerian dynamics Equation (27) from the disk mass distribution,
ρ(r̂), differs noticeably from that of Newtonian dynamics (as depicted with the thick line and its
extension in Figure 8). Only at a large distance (e.g., r > 2) from the galactic disk does the
Keplerian rotation curve approach that computed based on Newtonian dynamics, for the effect of the
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disk structure diminishes at a large distance, where the gravitation field of a finite disk galaxy approaches
the spherically symmetric field of a point mass.

Figure 8. Profiles of the Milky Way rotation curves of the originally measured one (with
imposed V (0) = 0, thick line) and its extension outside the disk edge at r = 1 (the thin
line as labeled), as well as VK(r) according to Keplerian formula Equation (27) based on the
mass density, ρ(r), shown in Figure 3 (the thin line as labeled).
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4.4. Applicability of Keplerian Dynamics

If Keplerian dynamics were applied to estimate the amount of mass within the solar radius (8 kpc
corresponding to r = 0.3893) from the measured local rotation velocity (201.0658 km/s corresponding
to V (0.3893) = 0.9139), we would obtain MK(r) = Ar V (r)2 = 1.6365× 0.3893× 0.91392 = 0.5321,
which corresponds to 0.5321× 1.4138× 1011 = 0.7523× 1011 M�. The actual amount of mass within
the solar radius calculated using M(r) = 2π h

∫ r
0
ρ(r̂) r̂dr̂ at r = 0.3893 based on the computed ρ(r)

in Section 3.2, is 0.5078, which corresponds to 0.7179 × 1011 M�. Although the mass within the solar
radius (r = 0.3893) estimated with Keplerian dynamics (MK(0.3893) = 0.5321) does not seem too far
off the actual value (M(0.3893) = 0.5078), the value ofMK(r) deviates more and more fromM(r) with
increasing r, as can be seen in Figure 9. The value of MK(r) may even decrease with r, when calculated
according to the measured rotation curve (as clearly shown in Figure 8 for r > 0.85). Because MK(r)

is expected to monotonically increase with r, for there is no physical evidence of negative mass in the
universe, a negative slope of MK(r) versus r indicates a failure of Keplerian dynamics for correctly
predicting the mass distribution corresponding to the measured rotation curve for the Milky Way, even in
a qualitative sense; or, in other words, a rotation curve that does not satisfy d[r V (r)2]/dr ≥ 0, namely:

dV (r)

dr
≥ −V (r)

2r
(28)

is inconsistent with spherically symmetric gravitational potential, and thus, Keplerian dynamics becomes
inapplicable in a strict sense.
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Figure 9. Profiles of the Milky Way mass within radial distance r (thick line),
M(r) = 2π h

∫ r
0
ρ(r̂) r̂dr̂, and that estimated with Keplerian dynamics (thin line as labeled),

MK(r) = Ar V (r)2.
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The same condition of Equation (28) was referred to as the sphericity condition by Jalocha, Bratek
and Kutschera [17], Bratek, Jalocha and Kutschera [13] and Jalocha et al. [30] and the violation of
which was used as an indication of the disk model being more appropriate for determining the mass
distribution and the presence of a massive spherical halo of non-baryonic dark matter being unlikely.
Actually, (28) is only a necessary condition for the sphericity of gravitational potential to exist, but not
sufficient. A rotation curve satisfying (28) does not guarantee that it must correspond to a spherically
symmetric gravitational field. Feng and Gallo [12] showed that a flat rotation curve can be described by
both a spherically symmetric and an axisymmetric disk mass distribution. However, using a spherically
symmetric mass model, namely Keplerian dynamics, to describe a rotating disk galaxy can lead to
erroneous results and conclusions.

4.5. Circular Orbit Stability

It is interesting to note that the mathematical form of the sphericity condition Equation (28) appears
quite similar to the necessary condition for circular orbit stability:

dV (r)

dr
≥ −V (r)

r
(29)

which can be derived from the consideration of angular momentum conservation for a rotating object
slightly deviating from its original (circular) orbit as follows. An object that is rotating with a velocity,
V (r), at radial coordinate r possesses an angular momentum, r V (r). If it deviates from its original orbit
at r to r+ δr (due to some sort of perturbations), its rotation velocity should change from V to V + δV ,
such that (r + δr) (V + δV ) = r V or δV/δr = −V/r (≤ 0, i.e., δV < 0 when δr > 0 and δV > 0

when δr < 0), according to the conservation of angular momentum. On the other hand, this object is
subjected to a gravitational force at r + δr equal to mV (r + δr)2/(r + δr), where m is its mass and
V (r + δr) is the rotating velocity of objects at r + δr according to the rotation curve. Thus, for this
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object to be pulled back by gravitational force to its original orbit, namely for its orbit to be centrifugally
stable, we must have V + δV < V (r+ δr) for δr > 0 and V + δV > V (r+ δr) for δr < 0. This leads to
δV < δr dV (r)/dr + o(δr2) for δr > 0 and δV > δr dV (r)/dr+ o(δr2) for δr < 0 as a result of Taylor
expansion around δr = 0, namely δV/δr = −V/r < dV/dr as δr → 0.

In the case of the solar system with a point mass at r = 0, the planets rotate following the Keplerian
rotation curve dV/dr = −V/(2r) (taking the equal sign in Equation (28) for the mass, MK(r), does not
change for r > 0). Because −1/2 > −1, the Keplerian rotation curve satisfies the circular orbit stability
condition Equation (29), as evidenced by the existence of the solar system with many planets circling
around the Sun year after year.

Many spiral galaxies exhibit nearly flat rotation curves (cf. the review of Sofue and Rubin [3]),
corresponding to dV/dr ∼ 0, which can easily satisfy Equation (29). Thus, the rotating matter
distributed in circular orbits of the galactic disk, as can be computed with the method illustrated in
the present work, for flat rotation curves are stable in the sense similar to that of the planets circling
around the Sun. However, Equation (29) is only a necessary condition for stability. There have been
many other (necessary) conditions proposed in the literature for rotating disk galaxy stability, which
often seem controversial, as critically discussed by Jalocha et al. [30]. The circular orbit stability
condition Equation (29) derived in the present work is established from a concrete physical principle and
can be used to examine the validity of measured rotation curves. Especially for those rotation curves
containing decreasing velocity at a large radius, the stability condition Equation (29) with its right side
∝ −1/r is likely violated. The portion of a rotation curve not satisfying Equation (29) may point
to the issues with too serious deviations from circular orbits and axisymmetry due to the spiral arms.
After all, the axisymmetric disk model with rotation velocity depending only on radius is a tremendous
simplification of a realistic rotating galaxy; such a simplified description of reality should be regularly
checked for consistency.

For the Milky Way rotation curve (cf. Figure 3), the portion of r > 0.8 has dV/dr ∼ −0.75,
while 0.9 < V/r < 1.32. Thus, we have −0.75 > −0.9, which satisfies the circular orbit stability
condition Equation (29), but not the sphericity condition (28), which is consistent with that shown in
Figure 9. Thus, the Milky Way appears to be appropriately described with the thin-disk model or with a
combination of a central bulge and a thin disk.

For the NGC 4736 rotation curve of Sofue (cf. Figure 1), the negative slope in the outer region r > 0.6

is dV/dr ∼ −0.875, while 0.85 < V/r < 2. Thus, circular orbit instability is likely to occur in the outer
region of NGC 4736 if the rotating matter indeed follows the rotation curve of Sofue. In a relative sense,
the THINGS version of the NGC 4736 rotation curve [20] has a less steep negative slope than that of
Sofue, indicating that the THINGS version describes a more stable circular motion of rotating matter.

5. Conclusions

With the computational method presented here, mass distributions in mature spiral galaxies
corresponding to various types of measured rotation curves can be accurately determined by solving
a linear algebra matrix equation, which clarifies the uniqueness of the solution when it exists. Our
formulation for the finite thin-disk model is based solely on Newtonian dynamics without the need of
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fictitious rotation velocity outside the cut-off radius, with a belief that the cut-off radius in the rotation
curve measurement is a consequence of the absence of matter beyond such a galactocentric distance. All
the mass density profiles predicted by our model for various galaxies exhibit approximately a common
exponential law of decay (if the two abruptly varying ends are trimmed out), qualitatively consistent
with typically observed luminosity measurements. Thus, we think Newtonian dynamics can be quite
adequate for self-consistently describing the rotation behavior of mature spiral galaxies.

Despite difficulties in clarifying the physical meaning, nonzero rotation velocities at the galactic
center (r = 0) were reported in rotation curve measurements for several galaxies [27]. The nonzero
value of rotation velocity at r = 0 mathematically corresponds to unbounded local mass density in the
pure disk model, which is intractable in numerical computations. Such a numerical challenge can be
avoided by placing a small spherical core at r = 0. Thus, the rotation velocity in the galactic disk is
modified accordingly by subtracting out the spherical core effect, and the disk mass distribution can be
consistently computed from the modified rotation curve. As long as the size of the spherical core is
sufficiently small, our computed results show that no noticeable change in the disk mass distribution that
can be observed while the nonzero velocity at r = 0 being elegantly dealt with.

To examine the basic effect of an observed central bulge, we assume a spherically symmetric mass
structure for the bulge, whose gravitational effect can be conveniently incorporated in our thin-disk
formulation. Our results indicate that the presence of a central bulge tends to shift mass from the
periphery toward the galactic center with little change in the total galactic mass.

Extending the computational domain beyond the galactic edge enables us to also compute rotation
velocity outside the cut-off radius. Beyond the galactic edge where the mass density should be negligible,
the computed rotation velocity does not follow the Keplerian profile until out over r > 2.

By applying the principle of angular momentum conservation, a necessary condition for circular orbit
stability can be derived. It appears that the galaxies with flat or rising rotation velocities are more
stable than those with declining rotation velocities. Especially in the region near the galactic edge, those
rotation curves having too steep of a negative slope are likely to violate the condition for circular orbit
stability, and therefore, their validity for realistically describing galactic rotational characteristics may
become questionable.
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