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Abstract: The Sloan Digital Sky Survey (SDSS) provides data on several hundred thousand
galaxies. The precise location of these galaxies in the sky, along with information
about their luminosities and line-of-sight (Doppler) velocities, allows one to construct a
three-dimensional map of their location and estimate their line-of-sight velocity dispersion.
This information, in principle, allows one to test dynamical gravity models, specifically
models of satellite galaxy velocity dispersions near massive hosts. A key difficulty is the
separation of true satellites from interlopers. We sidestep this problem by not attempting
to derive satellite galaxy velocity dispersions from the data, but instead incorporate an
interloper background into the mathematical models and compare the result to the actual
data. We find that due to the presence of interlopers, it is not possible to exclude several
gravitational theories on the basis of the SDSS data.
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1. Introduction

Recently, Klypin and Prada [1] presented an analysis of galaxy observations of the Sloan Digital
Sky Survey (SDSS [2]) to test gravity and dark matter in the peripheral parts of galaxies at distances
50–400 kpc from the centers of galaxies. This field of extragalactic astronomy provides one of the main
arguments for the presence of dark matter [3,4].

The analysis of Klypin and Prada [1] begins with identifying candidate host galaxies and candidate
satellite galaxies based on their relative positions in the sky, relative velocities, and relative luminosities.
After a candidate population of hosts and satellites has been identified, an ad-hoc mathematical model
is used to separate the (presumed constant) background of interlopers from actual satellites. This
mathematical model yields a velocity dispersion profile for the presumed satellites that is then checked
against theory.

In the present work we propose an alternative approach that altogether avoids the difficult issue of
identifying satellites versus interlopers. Rather than attempting to subtract the interloper population from
the data in order to construct a dataset that is then hoped to represent the satellite population correctly, we
endeavor to model the actual data instead, by adding an interloper population to the velocity dispersions
predicted by various gravity theories. Crudely put, we extend the theory to model the data correctly,
rather than massaging the data to fit within the constraints of a limited model.

In the first section of our paper, we offer a detailed description of our data analysis. In the
second part, we model the data using three gravity theories. In addition to Newtonian gravity without
exotic dark matter and Modified Newtonian Dynamics (MOND, [5]), of particular interest to us is our
Modified Gravity Theory (MOG, [6,7]), which has been used successfully in the past to explain galaxy
rotation curves [8], galaxy cluster mass profiles [9], cosmological observations [10], and gravitational
lensing in the Bullet Cluster [11] without assuming the presence of nonbaryonic dark matter. In the
third section, we combine our satellite velocity dispersion predictions with the observed interloper
background, and contrast the resulting predictions as well as the cold dark matter (CDM) prediction
of Klypin and Prada [1] with the SDSS data. Our conclusion is that the SDSS galaxy data cannot be
used to exclude any of these gravitational theories, not unless an independent, nonstatistical method is
found that can be used reliably to identify individual interlopers.

2. Data Analysis

The SDSS [2] Data Release 6 (DR6) provides imaging data over 9500 deg2 in five photometric bands.
Galaxy spectra are determined by charge-coupled device (CCD) imaging and the SDSS 2.5 m telescope
on Apache Point, New Mexico [12]. Over half a million galaxies brighter than Petrosian r-magnitude
17.77 over 7400 deg2 are included in the SDSS data with a redshift accuracy better than 30 km/s.

Due to the complications of calculating modified gravity for non-spherical objects,
Klypin and Prada [1] restricted their analysis only to red galaxies, the vast majority of which are

either elliptical galaxies or are dominated by bulges. We followed a similar strategy, restricting our
selection of candidate host galaxies to isolated red galaxies. We also restricted our selection to galaxies
with a recession velocity between 3000 km/s and 25,000 km/s, which yielded approximately 234,000
galaxies in total.
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We began our analysis by obtaining a dataset from the SDSS. We obtained sky positions, spectra,
and extinction-corrected magnitudes for 687,423 galaxies. We adjusted the dataset by accounting for the
motion of the solar system. We then processed the result using a C-language program that selected, as
candidate hosts, isolated red galaxies with no other galaxy within a projected distance of 1 Mpc and a
luminosity more than 25% that of the candidate host. We then identified as candidate satellites galaxies
that were within 1 Mpc of projected distance from the candidate host, and had a line-of-sight redshift
velocity of less than 1500 km/s relative to the candidate host. These candidate satellites were binned
by distance. The computation yielded 3589 hosts with 8156 satellites. Of these, 121 satellites (or about
1.5% of the total) were assigned to multiple hosts; no attempt was made to eliminate these duplicates.

The radial number density of the candidate satellites (Figure 1c) suggests that many of these galaxies
are not, in fact, satellites. Indeed, if dim galaxies were distributed completely randomly, with no relation
to the candidate host, we would expect a number density that increases linearly with projected radius.
The actual number density plot appears to be a distribution with a peak at ∼100 kpc, superimposed on
just such a linear density profile. Subtracting the linear density profile yields the plot in Figure 1d, which
is a power law profile with exponent −1.5, as shown in Figure 1b. (This corresponds to a parameter of
γ ' −3.5 in the Jeans equation, discussed below).

Figure 1. Line-of-sight velocities (a) and radial number densities (b) of candidate satellite
galaxies (full sample) as a function of projected distance from the candidate host. After
removal of candidate interlopers, the radial number density (c) follows a power law profile
with an exponent of −1.5 (d).
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3. Satellite Galaxy Velocity Dispersion

Predictions for modified gravity can be made by solving the Jeans equation, which gives the radial
velocity dispersion σ2

r(r) as a function of radial distance. Klypin and Prada [1] find that neither the
Newtonian gravity without nonbaryonic dark matter nor the Modified Newtonian Dynamics (MOND)
is compatible with observations. Angus et al. [13], however, demonstrated that a suitably chosen
anisotropic model and appropriately chosen galaxy masses can be used to achieve a good fit for MOND.

Radial velocity dispersions in a spherically symmetric gravitational field can be computed using the
Jeans equation [14]:

d(νσ2
r)

dr
+

2ν

r
βσ2

r = −ν dΦ

dr
(1)

where ν is the spatial number density of particles, vr is the radial velocity, β(r) = 1 − [σ2
θ(r) +

σ2
φ(r)]/2σ2

r(r) is the velocity anisotropy, Φ(r) is the gravitational potential, and we are using spherical
coordinates r, θ, φ. We can write Equation (1) in the form:

dσ2
r

dr
+
Aσ2

r

r
= −g(r) (2)

where g(r) is the gravitational acceleration. Here, we have:

A = 2β(r) + γ(r) (3)

where γ(r) = d ln ν(r)/d ln r.
If we assume that the velocity distribution of satellite galaxies is isotropic, β = 0. In general, β needs

to be neither zero nor constant. The number density of candidate satellites favors a value of γ ' −3.5,
corresponding to the observed power law radial density with exponent −1.5.

The observed velocity dispersion is along the observer’s line-of-sight, seen as a function of the
projected distance from the host galaxy. Therefore, it is necessary to integrate velocities along the
line-of-sight:

σ2
LOS(R) =

∞∫
0

[y2 + (1− β)R2] r−2σ2
r(y)ν(y) dy

∞∫
0

ν(y) dy

(4)

where ν is the spatial number density of satellite galaxies as a function of distance from the host galaxy,
and y is related to the projected distance R and 3-dimensional distance r by:

r2 = R2 + y2 (5)

Changing integration variables to eliminate y, we can express the observed line-of-sight velocity
dispersion as a function of projected distance as:

σ2
LOS(R) =

∞∫
R

(r2 − βR2)σ2
r(r)ν(r)/r

√
r2 −R2 dr

∞∫
R

rν(r)/
√
r2 −R2 dr

(6)

From the field equations derived from the MOG action, we obtain the modified Newtonian
acceleration law for weak gravitational fields [6,7] of a point source with mass M :
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gMOG(r) =
GNM

r2
{

1 + α
[
1− e−µr (1 + µr)

]}
(7)

where GN is the Newtonian gravitational constant, while the MOG parameters α and µ determine the
coupling strength of the “fifth force” vector φµ to baryon matter and the range of the force, respectively.

In recent work [7], we have been able to develop formulae that predict the values of the α and µ
parameters from the source mass, in the form:

µ ' D√
M

(8)

α ' M

(
√
M + E)2

(
G∞
GN

− 1

)
(9)

where the universal parameters:

G∞ ' 20GN (10)

D ' 6250 M
1/2
� kpc−1 (11)

E ' 25000 M
1/2
� (12)

are determined from galaxy rotation curves and cosmological observations [7].
The MOND acceleration gMOND is given by the solution of the non-linear equation:

gMONDµ

(
|gMOND|
a0

)
=
GNM(r)

r2
(13)

whereM is the mass of only baryons and a0 = 1.2×10−10m/s2. The form of the function µ(x) originally
proposed by Milgrom [5] is given by µ(x) = x/

√
1 + x2; however, better fits and better asymptotic

behavior are achieved using µ(x) = x/(1 + x) [1].
Following in the footsteps of Klypin and Prada [1], we grouped satellite galaxy velocities for host

galaxies into two luminosity ranges: −20.5 > M
(1)
g > −21.1, and −21.1 > M

(2)
g > −21.6. The

corresponding masses for the host galaxies, calculated by Klypin and Prada [1] on the basis of the work
of Bell and de Jong [15], are:

M (1)
∗ = 7.2× 1010 M� (−20.5 > M (1)

g > −21.1)

M (2)
∗ = 1.5× 1011 M� (−21.1 > M (2)

g > −21.6) (14)

We used these values to obtain two sets of predictions for each theory, using β = 0, γ = −2.5.

4. The Interloper Background

Having obtained the velocity dispersion for satellite galaxies around a host galaxy, we now turn our
attention to the interloper population.

The actual data consist of host galaxies, satellites, and an effectively random interloper background.
When satellites and interlopers are binned by projected distance from host galaxies, the result can be
modeled symbolically as:

N(R)± δN(R) = Nsat(R) +Nint(R) (15)
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where N(R) is the number of galaxies in the bin at projected radius R, Nsat(R) and Nint(R) are
the number of satellites and interlopers, respectively, in that same bin, and δ is used to represent the
sampling error.

This is not the approach taken by Klypin and Prada [1], however. Instead, they elected to subtract a
modeled interloper background from the observed number density of satellites, and then compare that to
a model representing only satellite galaxies. In effect, they used:

[N(R)−Nint(R)]± δNsat(R) = Nsat(R) (16)

Assuming that the sampling error of satellites and interlopers are independent, we have:

δN(R) =
√
δN2

sat(R) + δN2
int(R) > δNsat(R) (17)

leading to potentially misleading conclusions about the extent to which the galaxy sample can be used
to constrain alternate gravity models. It was this realization that led us to repeat some of the analysis
performed by Klypin and Prada [1].

For this reason, in our analysis we endeavor to model the actual observation, by estimating both
satellite galaxy velocity dispersions in accordance with the previous section and the velocity dispersion
of the interloper background. We assume a constant (i.e., independent of distance or sky position)
interloper background.

In terms of the polar coordinate R in the sky plane and the line-of-sight velocity v, we find that the
likelihood of finding a satellite between R and R+dR, with line-of-sight velocity between v and v+dv,
will be proportional to:

pS = αSR
γ+2 exp

(
−v2

2σ2
LOS(R)

)
(18)

subject to the normalization given by α−1S =
∫ 1 Mpc

0

∫ 1500 km/s

0
Rγ+2 exp(−v2/2σ2

LOS(R))dvdR, to
ensure that the probability of finding a particular satellite somewhere within the observational range
(0 ≤ R ≤ 1 Mpc, 0 ≤ v ≤ 1500 km/s) is unity. On the other hand, the likelihood of finding an interloper
from a uniformly distributed background, between R and R + dR, is:

pI = αIR (19)

again subject to normalization in the form α−1I =
∫ 1 Mpc

0

∫ 1500 km/s

0
RdvdR. If we assume that the

proportion of interlopers is κ (0 ≤ κ ≤ 1), the combined probability of finding a galaxy (satellite or
interloper) at R, v, is:

p = κpI + (1− κ)pS (20)

We can use this value of p to develop the likelihood function,

L(κ) =
∏

p(κ) (21)

for the two candidate satellite populations given by Equation (14), choosing the value of κ to obtain the
maximum likelihood.

Using this likelihood function, we find that ΛCDM is the best performing model, marginally
outperforming MOND and MOG, with maximum likelihood obtained at κ = 0.313+0.300

−0.194 and
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κ = 0.295+0.295
−0.183, respectively, for the two candidate satellite populations. The ΛCDM and MOND

models are effectively indistinguishable (see Figure 2). They both outperform MOG, but the difference
is not statistically significant: comparison with a t-statistic yields a probability of 24.2% (for
−20.5 > Mg > −21.1) and 23.0% (for −21.1 > Mg > −21.6) that the difference between MOG
and ΛCDM is due to chance. Only the Newtonian prediction without nonbaryonic dark matter can be
excluded with a 2σ significance.

For this reason, it seems futile to use this type of statistical analysis of satellite galaxies to distinguish
between CDM models on the one hand, and various gravitational theories on the other, due to the
presence of the interloper population.

Figure 2. Likelihood of ΛCDM, Modified Newtonian Dynamics (MOND), Modified Gravity
Theory (MOG), and the Newtonian model without exotic dark matter, as a function of the
κ parameter as defined in Equation (20) (top: −20.5 > M

(1)
g > −21.1, bottom: −21.1 >

M
(2)
g > −21.6). Horizontal lines indicate the 1σ and 2σ levels relative to the maximum

likelihood of the best performing model (ΛCDM).

5. Conclusions

Observational data presented by Adelman-McCarthy et al. [12] and studied by Klypin and Prada [1]
are viewed as evidence of the success of the ΛCDM model. The usual approach relies on the critical step
of interloper removal, before the data is compared against predictions. We argue that this approach
is fundamentally flawed: rather than attempting to remove interlopers from the data, we must add
the interloper background theoretical predictions, in order to predict observational values. When we
carry out this approach, we find that the ΛCDM and modified gravity theory predictions cannot be
distinguished and that although the SDSS dataset weakly favors ΛCDM over the alternatives, it cannot
be used to falsify any of the theories we examined.
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Appendix

In this Appendix, we provide additional details about the dataset being used and our calculations.

Data Analysis

Our sample of galaxies was obtained from the SDSS (DR6) using the publicly available Structured
Query Language (SQL) interface [16] . We ran the following query to list all galaxies for which spectra
were obtained:

SELECT G.ra,G.dec,u,g,r,i,dered_z, petroMag_r,

psfMag_r,extinction_r,petror50_r,S.z,S.zErr,

S.zConf,G.flags,S.zStatus

FROM Galaxy as G, SpecObj as S

WHERE G.ObjID = S.BestObjID

The columns of this query are:
1. right ascension (α),
2. declination (δ),
3. u-band extinction-corrected model magnitude (mu),
4. g-band extinction-corrected model magnitude (mg),
5. r-band extinction-corrected model magnitude (mr),
6. i-band extinction-corrected model magnitude (mi),
7. z-band extinction-corrected model magnitude (mz),
8. Petrosian r-band magnitude mP (needed for LRG selection),
9. PSF r-band magnitude mPSF (needed for LRG selection),

10. r-band extinction er,
11. Petrosian r-band 50% light radius r50,
12. redshift (z),
13. redshift error (∆z),
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14. redshift correlation coefficient,
15. photometric flags (as defined by the SDSS),
16. redshift status (as defined by the SDSS).

The query yielded 687,423 rows. We verified the dataset by specifically searching for known galaxies
in the setand comparing their positions, redshifts, and magnitudes with the data records. We then
processed this dataset using a C-language program that selected luminous red galaxies (LRGs) using
the appropriate SDSS photometric parameters. For an object to be considered an LRG, the following
conditions had to be satisfied:

mP − er < 13.3 + c‖/0.3,

mP − er < 19.2,

|c⊥| < 0.2,

mP − er + 2.5 log10(2πr
2
50) < 24.2,

mPSF − er −mr > 0.3,

where:

c⊥ = (mr −mi)− 0.25(mg −mr)− 0.18,

c‖ = 0.7(mg −mr) + 1.2[(mr −mi)− 0.18].

For the second cut, the conditions were:

mP − er < 19.5,

c⊥ > 0.45− (mg −mr)/6,

mg −mr > 1.3 + 0.25(mr −mi),

mP − er + 2.5 log10(2πr
2
50) < 24.2,

mPSF − er −mr > 0.5.

The recession velocity and Hubble distance were calculated from the redshift:

v = c
(z2 + 2z)

z2 + 2z + 2
,

r =
v

H
.

In the usual units, c = 300, 000 km/s, v is calculated in km/s, H ' 71 km/s/Mpc, and r is calculated
in Mpc. The solar system’s velocity relative to the cosmic microwave background is v� ' 369.5 km/s,
in the direction α� = 11 h 10 m 24.3 s, δ� = −6◦41′29.9”, was appropriately accounted for. The
C-language program also filtered galaxies by the condition 3000 km/s < v < 25,000 km/s.

Model magnitudes m were converted into absolute magnitudes M using the formula:

M = m− 5(log10 r + 5)− 2.5 log10(1 + z)

This formula assumes that r is measured in Mpc. It also corrects for redshift.
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The C-language program then iterated through the filtered galaxy set to find candidate hosts and
candidate satellites. A candidate host was an LRG with no other object within a projected distance of
1 Mpc and a brightness at least 25% that of the candidate host. For all candidate hosts, galaxies within
1 Mpc projected distance and with a line-of-sight velocity less than 1500 km/s relative to the candidate
host were considered as candidate satellites. The computation yielded 3589 hosts with 8156 satellites.
Of these, 121 satellites (or about 1.5% of the total) were assigned to multiple hosts; no attempt was made
to eliminate these duplicates.

Additional Details

The line-of-sight velocity dispersion given by Equation (6) was numerically integrated using Maple.
The result was fitted using a sixth order polynomial in the range 1 kpc < R < 1 Mpc:

σLOS(R) '
6∑
i=0

Ki(logR)i

with σ in km/s, R in kpc, and the coefficients Ki given by Table A1:

Table A1. Polynomial coefficients used to approximate Equation (6).

Coefficient
Model

Newton MOND MOG
K0 = 393.52310553 395.60771396 393.4432094
K1 = –196.07406603 –187.36318494 –190.04917944
K2 = 47.967357449 37.987866538 42.953121084
K3 = –7.3231807355 4.3763761092 –7.0993964426
K4 = 0.71224266678 –2.9928852121 2.4451179234
K5 = –0.040268679822 0.44301946689 –0.49198754985
K6 = 0.0010225183241 –0.021854265856 0.031686326614

For the ΛCDM dark matter scenario, the results of Klypin and Prada [1] were used (see
Figure 2 therein).

Summing over all considered values ofR and σ, we obtain the normalization factors for Equation (18)
(Table A2):

Table A2. Normalization factors for Equation (18).

Model αS

Newton 0.810
MOND 0.880

MOG 0.849
ΛCDM 0.572
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Finally, the likelihood function given by Equation (21) was calculated for different values of κ and
interpolated, as shown in Figure 2. The 1σ and 2σ deviations from the ΛCDM maximum likelihood,
shown in this figure, were calculated relative to the best ΛCDM likelihood using a t-statistic. This part
of the analysis was carried out using Microsoft Excel (spreadsheets available upon request.)

The dataset downloaded from the SDSS and processed using the C-language code is available upon
request, as well as the C-language program itself, Maple, and Excel scripts that were used in this analysis.
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