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Abstract: For disk galaxies (spirals and irregulars), the inner circular-velocity gradient
dRV0 (inner steepness of the rotation curve) correlates with the central surface brightness
Σ∗,0 with a slope of ∼0.5. This implies that the central dynamical mass density scales
almost linearly with the central baryonic density. Here I show that this empirical relation
is consistent with a simple model where the central baryonic fraction fbar, 0 is fixed to 1
(no dark matter) and the observed scatter is due to differences in the baryonic mass-to-light
ratio Mbar/LR (ranging from 1 to 3 in the R-band) and in the characteristic thickness of the
central stellar component ∆z (ranging from 100 to 500 pc). Models with lower baryonic
fractions are possible, although they require some fine-tuning in the values of Mbar/LR and
∆z. Regardless of the actual value of fbar,0, the fact that different types of galaxies do not
show strong variations in fbar,0 is surprising, and may represent a challenge for models of
galaxy formation in a Λ Cold Dark Matter (ΛCDM) cosmology.
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1. Introduction

Galaxies are known to follow tight scaling relations linking their observed baryonic content to their
dynamical properties. Pressure-supported systems (ellipticals, bulges, and dwarf spheroidals) follow the
Faber–Jackson relation [1,2], which links the total luminosity of the system (proxy for the baryonic mass)
to its mean velocity dispersion (proxy for the dynamical mass). Rotation-supported systems (lenticulars,
spirals, and dwarf irregulars) follow the baryonic Tully–Fisher relation (BTFR) [3], which links the total
baryonic mass Mbar (gas plus stars) to the asymptotic velocity along the flat part of the rotation curve
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Vflat (e.g., [4–6]). While Vflat is related to the total dynamical mass of the galaxy, the inner steepness of
the rotation curve provides information on the central dynamical mass density, including both baryons
and dark matter (DM). Early studies [7–10] pointed out that, in disk galaxies, the shape of the luminosity
profile and the shape of the rotation curve are related, suggesting a close link between the distribution
of baryons and the distribution of the dynamical mass (luminous and/or dark). This has been confirmed
by several subsequent studies [11–16], which have substantially increased the number of galaxies with
high-quality rotation curves, spanning the Hubble sequence from lenticulars to irregulars (Irrs). The
observational evidence is concisely summarized by the so-called “Renzo’s rule” [17]: for any feature in
the luminosity profile of a galaxy there is a corresponding feature in the rotation curve, and vice versa.

In [18] we measured the inner circular-velocity gradient dRV0 for a sample of 52 galaxies with
high-quality rotation curves, ranging from bulge-dominated galaxies (S0 to Sb) to disk-dominated ones
(Sc to Irrs). dRV0 is defined as dV/dR for R → 0, thus measuring the inner steepness of the galaxy
rotation curve. We found that dRV0 correlates with the central surface brightness Σ∗,0 over more than
two orders of magnitude in dRV0 and four orders of magnitude in Σ∗,0 (see Figure 1). This is a scaling
relation for rotation-supported systems, which is analogous to the BTFR for the innermost regions of
disk galaxies. These two empirical laws imply that, to a first approximation, the baryonic properties of
a galaxy can predict the shape of the rotation curve, and vice versa. For example, the rotation curves
of late-type galaxies can be roughly described by a nearly solid-body rise in the inner regions (given by
dRV0) and the flattening in the outer parts (Vflat) (e.g., [15,19]). Thus, if the central surface brightness and
the total baryonic mass of a galaxy are known, one can approximately predict the shape of its rotation
curve using the dRV0−Σ∗,0 and the Vflat−Mbar relations. The predictive power of baryons is an empirical
fact, independent of any underlying theory. This is quite surprising in a DM-dominated Universe.

In this paper I build a toy model that naturally reproduces the slope, normalization, and scatter of
the dRV0 − Σ∗,0 relation. I also discuss the general implications that this relation poses to the baryonic
fraction in the innermost regions of disk galaxies.

2. A Toy Model for the dRV0 − Σ∗,0 Relation

For a general 3D distribution of mass, the circular velocity V of a test particle orbiting at radius R is
given, to a first approximation, by:

V 2

R
= α

GMdyn

R2
=

4

3
π αGρdynR (1)

where G is Newton’s constant, Mdyn is the dynamical mass within R, ρdyn = Mdyn/
4
3
πR3 is the

mean dynamical mass density within R, and α is a factor of the order of unity that depends on the
3D distribution of mass. For a spherical mass distribution, the Newton’s theorem gives α = 1 (e.g., [20]).
For a thin exponential disk with scale length Rd, α varies with radius (cf. [21]): α ' 1 at R = Rd

and monotonically decreases for R . Rd (α ' 0.75 at R = 0.5Rd; α ' 0.5 at R = 0.25Rd). The
surface brightness profiles of disk galaxies often deviate from a pure exponential in the inner regions:
if the luminosity profile shows an inner “flattening”, as it is often observed in dwarf galaxies (e.g., [22]),
the value of α near the center decreases with respect to an exponential disk. For these reasons, I consider
that α can vary between 0.5 and 1 in the inner parts of different galaxies (R . 0.5Rd).
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Figure 1. The dRV0−Σ∗,0 scaling relation. Galaxies are coded by the value of the maximum
velocity Vmax observed along the rotation curve. Galaxies with Σ∗,0 & 103 L� pc−2 are
typically dominated by a bulge component in the inner parts and have more uncertain values
of dRV0 (see [18], for details). The yellow band shows a model where the central baryonic
fraction is constant for each galaxy ((a): fbar,0 = 1; (b): fbar,0 = 0.17); the width of the
band considers that the value of Mbar/LR can vary from 1 to 3, ∆z from 100 to 500 pc,
and α from 0.5 to 1. The dashed line indicates an “intermediate” model with Mbar/LR = 2,
∆z = 300 pc, and α = 0.75.
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If we assume that the dynamical mass density converges to a finite value ρdyn,0 towards the center
(as is reasonable for actual galaxies), in the limit R→ 0 we have:

dV

dR
' V

R
=

√
4

3
π αGρdyn,0 =

√
4

3
π αG

ρbar,0

fbar,0

(2)

where ρbar,0 is the central baryonic mass density and fbar,0 = ρbar,0/ρdyn,0 is the central baryonic fraction.
Note that fbar,0 may strongly differ from the “cosmic” baryonic fraction (=0.17) given by the Cosmic
Microwave Background [23] and observed in galaxy clusters [24]. In a Λ Cold Dark Matter (ΛCDM)
cosmology, fbar,0 is determined by the complex formation and evolution history of the object, involving
galaxy mergers, gas inflows, star formation, stellar and Active Galactic Nuclei (AGN) feedback, etc.
Thus, we expect fbar,0 to vary from galaxy to galaxy, possibly from 0.17 (the cosmic value) up to 1
(baryon dominance). Moreover, in a given galaxy, the baryonic fraction fbar can vary with radius up to
a factor of 10 (see, e.g., [25]) due to the relative contributions of baryons and DM to each point of the
rotation curve. The baryonic fractions deduced from Equation (2) are formal extrapolations for R → 0,
but in practice they are representative of the innermost galaxy regions accessible by the available rotation
curves (typically for R . 0.5Rd, see [18] for details).
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Observationally, we measure either µ0 (in units of mag arcsec−2) or Σ∗,0 (in units of L� pc−2). The
latter is given by:

Σ∗,0 =

∫ ∞
−∞

ρbar,0

Mbar/L
dz ' ρbar,0

Mbar/L
2∆z (3)

where ∆z is the characteristic thickness of the stellar component in the central regions (either a disk,
a bulge, a bar/pseudo-bulge, or a nuclear star cluster) and Mbar/L is the baryonic mass-to-light ratio,
including molecules and other undetected baryons (the atomic gas density is generally <10 M� pc−2

in the inner regions and, thus, negligible to a first approximation). Therefore, we expect the
following relation:

dRV0 =

√
2

3
π αG

Mbar/L

∆z fbar,0

√
Σ∗,0 (4)

Remarkably, a least-square fit to the data-points in Figure 1 returns a slope of ∼0.5 (equivalent to
−0.2 when the central surface brightness is expressed in units of mag arcsec−2 instead of L� pc−2,
see [18,26]). The actual value of the slope remains uncertain due to several effects in the determination
of dRV0 and Σ∗,0, but it can be constrained between ∼0.4 and ∼0.6. Despite these uncertainties, it is
interesting to check whether the zero point and the observed scatter along the relation are consistent with
typical values of α, ∆z, Mbar/LR, and fbar,0. In both panels of Figure 1, the yellow band is calculated
assuming that fbar,0 is constant for each galaxy (fbar,0 = 1 in the left panel, fbar,0 = 0.17 in the right
one), while α varies from 0.5 to 1, ∆z varies from 100 to 500 pc, and Mbar/LR varies from 1 to 3.
The dashed line shows an “intermediate” model with α = 0.75, ∆z = 300 pc, and Mbar/LR = 2.
The width of the band is dominated by the variation in ∆z (factor

√
5) followed by the variations in

Mbar/LR (factor
√

3) and α (factor
√

2). Note that the objects in the sample cover a wide range in
total mass (20 . Vmax . 300 km s−1, as indicated by the different symbols in Figure 1), and span the
entire Hubble sequence going from bulge-dominated galaxies (S0 to Sb), typically characterized by old
stellar populations in the central regions, to disk-dominated galaxies (Sc to Irr), characterized by young
stellar populations. Considering possible differences in their star formation history, molecular content,
metallicity, internal extinction, and initial mass function, a variation in Mbar/LR by a factor of 3 is a
rather conservative choice (cf. [27–29]).

In the left panel of Figure 1, I consider fbar,0 = 1 (no DM). The agreement with the observations
is striking. The scatter along the relation can be fully explained by variations in the 3D distribution of
baryons (∆z and α) and stellar populations (Mbar/LR), without any need of DM in the innermost galaxy
regions (typically within ∼0.5 Rd). In the right panel, I consider the opposite, extreme case where fbar,0

is fixed to 0.17 (the cosmic value). Clearly, this low baryonic fraction cannot reproduce the observed
relation, unless one significantly increases ∆z and/or decreasesMbar/LR. The characteristic thickness of
the central stellar component should be increased up to values of∼3 kpc, which appear quite unrealistic.
The baryonic mass-to-light ratio, instead, should be decreased down to ∼0.1–0.2, which is inconsistent
with standard stellar population synthesis models (e.g., [27–29]). Models with intermediate values of
fbar,0 are possible, provided that Mbar/LR and/or ∆z are properly fine-tuned. For example, a plausible
model is obtained by fixing fbar,0 ' 0.5 (∼3 times the cosmic value) and varying Mbar/LR between 0.5
and 1.5, ∆z between 100 and 500 pc, and α between 0.5 and 1. Such a model cannot be distinguished
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from the one in Figure 1 (left panel) due to the degeneracies between Mbar/LR, ∆z, and fbar,0. Surface
photometry in infrared (IR) bands (K-band or 3.6 µm) may improve the situation and help to break these
degeneracies, given that one expects a smaller scatter in the values of Mbar/L (e.g., [4,27]), which may
translate into a smaller scatter around the dRV0 − Σ∗,0 relation. It would also be useful to investigate
whether the residuals around the central relation correlate with some galaxy properties. For example,
if baryons dominate the central galaxy regions (fbar,0 ' 1), one may expect the residuals to correlate
with the central colors (tracing Mbar/LR) and/or the central morphology (roughly tracing α and ∆z).
These issues will be addressed in future studies.

3. Discussion & Conclusions

I investigated the implications that the dRV0−Σ∗,0 relation poses to the central baryonic fraction fbar,0

of disk galaxies (spirals and irregulars). Surprisingly, I found that the observed relation is consistent
with a model where fbar,0 is fixed to 1 (no DM) and the scatter is entirely given by variations in the
baryonic mass-to-light ratio Mbar/LR (from 1 to 3 in the R-band), in the characteristic thickness of the
central stellar component ∆z (from 100 to 500 pc), and in the 3D shape of the gravitational potential
(parametrized by α ' 0.5 to 1). Models with very low values of fbar,0 (such as the “cosmic” value of
0.17) are very unlikely, since they would require values of Mbar/LR and ∆z that are in tension with
our current knowledge on stellar populations and galaxy structure. Models with intermediate values of
fbar,0 ('0.5) are possible, provided that the parameters Mbar/LR and ∆z are properly fine-tuned.

If fbar,0 ' 1 and, thus, baryons dominate the innermost regions of disk galaxies (R . 0.5Rd), even
in low-luminosity and low-surface-brightness ones, the whole controversy about cuspy versus cored DM
density profiles is undermined (see, e.g., [17]). Cored DM profiles may be allowed if their characteristic
central surface density is relatively low (<100 M� pc−2), whereas cuspy DM profiles would generally be
disfavored as they should have low concentrations that are unexpected in a ΛCDM cosmology (e.g., [30]).
Broadly speaking, a dominant baryonic component in the innermost galaxy regions would leave “little
room” for a central DM cusp. If fbar < 1, both cored and cuspy DM profiles may be allowed, but one
should explain why, for galaxies of very different masses and rotation velocities, the central baryonic
density scales almost linearly with the central dynamical mass density due to the dominant DM halo.

Regardless of the actual value of fbar,0, it is surprising that models with fixed fbar,0 can naturally
reproduce the dRV0 − Σ∗,0 relation. In a ΛCDM cosmology, the central baryonic fractions of galaxies
are the result of complex baryonic physics (including mergers, gas inflows, star formation, stellar and
AGN feedback, etc.), which likely depends on the specific properties of the galaxy (total mass, angular
momentum, environment, etc.). It is puzzling, therefore, that the data can be accurately described
using a fixed value of fbar,0 for very different types of galaxies, ranging from dwarf irregulars with
Vmax ' 20–30 km s−1 to bulge-dominated spirals with Vmax ' 200–300 km s−1. A large variation
in fbar,0 from galaxy to galaxy would introduce further scatter along the relation that is not observed.
Intriguingly, the situation is very different for the BTFR. The zero point and slope of the BTFR imply
that the global baryonic fraction in the disk fd is smaller than the cosmic value by ∼1–2 orders of
magnitude and systematically decreases with Vflat [24,31]. In other words, galaxies must progressively
lose more and more baryons during their formation with decreasing mass (as suggested by the BTFR),
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but the fraction of baryons in the inner regions should remain higher than the cosmic value and almost
constant in any type of galaxy (as suggested by the dRV0 − Σ∗,0 relation). This may be a challenge
for models of galaxy formation in a ΛCDM cosmology. I stress, however, that the current observations
constrain the slope of the dRV0−Σ∗,0 relation between∼0.4 and∼0.6 [18]: values slightly lower/higher
than 0.5 may point to systematic variations of fbar,0 with Σ∗,0. Future observational studies, therefore,
should aim at obtaining a better calibration of this scaling law.
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