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Abstract: In this work we analyze kinematical conformal cosmology (KCC), an alternative
cosmological model based on conformal Weyl gravity (CG), and test it against current type
Ia supernova (SNIa) luminosity data and other astrophysical observations. Expanding upon
previous work on the subject, we revise the analysis of SNIa data, confirming that KCC
can explain the evidence for an accelerating expansion of the Universe without using dark
energy or other exotic components. We obtain an independent evaluation of the Hubble
constant, H0 = 67.53 kms−1 Mpc−1, very close to the current best estimates. The main
KCC and CG parameters are re-evaluated and their revised values are found to be close to
previous estimates. We also show that available data for the Hubble parameter as a function
of redshift can be fitted using KCC and that this model does not suffer from any apparent
age problem. Overall, KCC remains a viable alternative cosmological model, worthy of
further investigation.
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1. Introduction

Alternative theories of gravity (for reviews see [1,2]) have become more popular in recent years
due to their ability to account for astrophysical observations without using dark matter (DM) and dark
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energy (DE). However, the cosmological constant-cold dark matter model (ΛCDM) remains the standard
explanation of current astrophysical knowledge [3].

Fourth-order conformal Weyl gravity (CG, for short, in the following) is the name given to an
alternative gravitational theory, following the original work by Weyl [4], not to be confused with other
theories based on conformal invariance. It was shown that CG [5,6] can describe the rotation curves
of galaxies without DM [1,7–12] and can give rise to the accelerated expansion of the universe without
resorting to DE [1,13].

A similar, but different approach to conformal cosmology was proposed by the current author in a
series of papers [14–16] introducing a model which was called kinematical conformal cosmology [14]
(KCC in the following) since it was based on purely kinematic considerations, without using any
dynamical equation of state for the Universe. This model was able to account for the accelerated
expansion of the Universe [15] and might also be able to explain the origin of some gravitational
anomalies, such as the Pioneer Anomaly [16] and the Flyby Anomaly [17].

Both models, the “standard” CG cosmology by Mannheim and KCC, were critically analyzed by
Diaferio et al. [18] and compared to standard ΛCDM cosmology by applying a Bayesian approach to
available astrophysical data from type Ia supernovae (SNIa) and gamma-ray bursts. Contrary to the
authors’ expectations [18], the results of this analysis showed that ΛCDM, Mannheim’s CG, and KCC
can all describe the current astrophysical data equally well. Therefore, models based on conformal
gravity can be considered viable alternatives to ΛCDM and are worthy of further investigation.

In addition, a recent study by Yang et al. [19] has tested Mannheim’s CG against recent astrophysical
data from SNIa, determinations of the Hubble parameter at different redshift, and in relation to the “age
problem” of the old quasar APM 08279+5255 at z = 3.91. The outcome of this analysis is that CG can
describe all these astrophysical data in a satisfactory manner and does not suffer from an age problem,
as opposed to the case of ΛCDM.

Following this recent work, the goal of this paper is to test our KCC against the same astrophysical
data used in Reference [19] in order to ascertain whether KCC is still a viable cosmological model.
In Section 2, we begin by reviewing the main results of conformal gravity and KCC. In Section 3,
the main part of our paper, we will constrain the KCC parameters, by using the latest Union 2.1 SNIa
data, and show that KCC can produce Hubble plots of the same quality as those obtained with standard
ΛCDM. In Section 4, we will compare the experimental data for the Hubble parameter, as a function of
redshift z, with KCC predictions and also briefly analyze the age problem in the context of KCC.

2. Conformal Gravity and Kinematical Conformal Cosmology

Conformal Gravity is based on the Weyl action:

IW = −αg
∫
d4x (−g)1/2 Cλµνκ C

λµνκ, (1)

where g ≡ det(gµν), Cλµνκ is the conformal or Weyl tensor, and αg is a dimensionless coupling
constant. IW is the unique general coordinate scalar action that is invariant under local conformal
transformations: gµν(x) → e2α(x)gµν(x) = Ω2(x)gµν(x). CG does not suffer from the cosmological
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constant problem and is renormalizable [20]; it is a ghost-free theory [21,22], although it still faces some
theoretical challenges ([23–28]).

The fourth-order CG field equations, 4αgWµν = Tµν (where Wµν is the Bach tensor—see [1,14]
for full details), were studied in 1984 by Riegert [29], who obtained the most general, spherically
symmetric, static electrovacuum solution. The explicit form of this solution, for the practical case of a
static, spherically symmetric source in CG, i.e., the fourth-order analogue of the Schwarzschild exterior
solution in General Relativity (GR), was then derived by Mannheim and Kazanas in 1989 [5,6]. This
latter solution, in the case Tµν = 0 (exterior solution), is described by the metric

ds2 = −B(r) c2dt2 +
dr2

B(r)
+ r2(dθ2 + sin2 θ dφ2), (2)

with
B(r) = 1− 3βγ − β(2− 3βγ)

r
+ γr − κr2. (3)

The three integration constants in the last equation are as follows: β (cm) can be considered the CG
equivalent of the geometrized mass GM

c2
, where M is the mass of the (spherically symmetric) source

and G is the universal gravitational constant; two additional parameters, γ (cm−1) and κ (cm−2), are
required by CG, while the standard Schwarzschild solution is recovered for γ, κ → 0 in the equations
above. The quadratic term −κr2 indicates a background De Sitter spacetime, which is important only
over cosmological distances, since κ has a very small value. Similarly, γ measures the departure from
the Schwarzschild metric at smaller distances, since the γr term becomes significant over galactic
distance scales.

The values of the CG parameters were first determined by Mannheim [1] (Other estimates of these
parameters exist in the literature. For example, in Reference [30], constraints on the value of the γ
constant were obtained by studying the perihelion shift of planetary motion in CG.):

γ = 3.06× 10−30 cm−1, κ = 9.54× 10−54 cm−2 . (4)

In our previous KCC publications [14,15] we have shown a different way to compute the CG
parameters, obtaining values which differ by a few orders of magnitude from those above:

γ = 1.94× 10−28 cm−1, κ = 6.42× 10−48 cm−2 . (5)

We will revise and update the values of these parameters in Section 3 by constraining them with recent
astrophysical data.

Mannheim et al. ([1,7–12] used the CG solutions in Equations (2) and (3) to perform extensive
data fitting of galactic rotation curves without any DM contribution, with the values of γ and κ as in
Equation (4). Although the values of these CG parameters are very small, the linear and quadratic terms
in Equation (3) become significant over galactic and/or cosmological distances.

This also means that CG solutions (including those for other types of sources, see discussion in [17])
are not asymptotically flat, thus raising the question of possible “gravitational redshift” effects at large
distances. In fact, this was the main motivation for our “kinematical approach” to conformal cosmology:
in regions far away from massive sources (for r � β(2 − 3βγ)) and also ignoring the term βγ, as
suggested by the analysis of galactic rotation velocities, B(r) simplifies to

B(r) = 1 + γr − κr2. (6)
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This implies a possible gravitational redshift at large distances, analogous to the one experimentally
observed in standard GR near massive sources such as the Earth, the Sun, or white dwarfs. This effect
is related to the square-root of the ratio of the time-time components g00 of the metric at two different
locations. In Reference [14] we considered our current spacetime location (r = 0; t0) in relation to the
spacetime location (r > 0; t < t0) of a distant galaxy which emits light at a time t in the past that reaches
us at present time t0 and appears to be redshifted in relation to the standard redshift parameter z.

We then argued that this observed redshift could be due (in part, or totally) to the gravitational redshift
effect mentioned above. If this effect were indeed the only source of the observed redshift, with the
metric in Equation (6), we would have:

1 + z =

√
−g00(0, t0)

−g00(r, t)
=

1√
1 + γr − κr2

. (7)

In other words, if the CG metric in Equations (2) and (3) has a true physical meaning, as it seems
to be the case from the detailed fitting of galactic rotational curves, it should also determine strong
gravitational redshift at very large cosmological distances. (Equation (6) is valid for regions far away
from massive sources, i.e., for r � β(2 − 3βγ) ' 2β ' 2GM

c2
, where M can be considered the

mass of the largest structures in our Universe, such as galaxies, or clusters of galaxies. Therefore, the
resulting characteristic distance r represents the scale at which our kinematical approach is appropriate.
For example, considering the estimated mass of a cluster, or a supercluster of galaxies, the resulting
characteristic distance is approximately r & 0.1 − 10 Mpc, which shows that KCC mainly applies to
the inter-galactic or cosmological scale.) As far as we are aware, this issue has never been raised in all
current CG literature (except, of course, in our previous papers).

The CG metric in Equations (2) and (6) is actually conformal to the standard FRW metric (see details
in [5] or [14]):

ds2 = −c2dt2 + a2(t)

[
dr2

1− kr2 + r2(dθ2 + sin2 θ dφ2)

]
, (8)

where a(t) is the standard Robertson-Walker scale factor, k = k/ |k| = 0,±1 and k = −γ2/4 − κ.
As in our previous papers, we distinguish here between two sets of coordinates: the Static Standard
Coordinates-SSC (r, t) used in Equations (2), (3), (6) and (7), as opposed to the FRW coordinates
(r, t)—in bold—used in Equation (8) (Similarly, bold type characters will be used for quantities referring
to the FRW geometry, while normal type characters will be used with reference to the SSC coordinates.
For example, the RW scale factor will be denoted here as a(t) or a(t), respectively, in the two cases. In
our previous papers we used R(t) and R(t) for the scale factor, but we now prefer to adopt the more
common notation, a(t) or a(t), in this work). Full details of the complete transformations between these
coordinates can be found in our References [14,15].

This local conformal invariance induces a dependence of the length and time units on the local metric,
so that the observed redshift can be interpreted as the ratio between the wavelength λ(r, t) of the radiation
emitted by atomic transitions, at the time and location of the source, and the wavelength λ(0, t0) of the
same atomic transition measured here on Earth at current time. Since modern metrology defines our
common units of length δl and time δt as being proportional respectively to the wavelength and to the
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period (inverse of the frequency ν) of radiation emitted during certain atomic transitions, we can write
the following “redshift equation”

1 + z =
a(t0)

a(t)
=

λ(r, t)

λ(0, t0)
=

δl(r, t)

δl(0, t0)
=
ν(0, t0)

ν(r, t)
=

δt(r, t)

δt(0, t0)
, (9)

connecting wavelengths λ to unit-lengths δl and frequencies ν to unit-time intervals δt (we also use
λν = c, with a constant speed of light c).

Therefore, in KCC the observed redshift is due to the change of length and time units over
cosmological spacetime, as opposed to the standard explanation of a pure expansion of the scale factor a.
In view of this interpretation, and connecting together Equations (7) and (9), KCC is able to derive
directly the scale factor as a function of space or time coordinates, without solving the dynamical field
equations. In terms of SSC, we have:

1 + z =
a(0)

a(r)
=

1√
1 + γr − κr2

, (10)

or, using appropriate coordinate transformations, in terms of FRW coordinates:

1 + z =
a(0)

a(r)
=
√

1− k r2 − δr, (11)

with

δ =
γ

2

{
|k|−1/2 for k 6= 0

1 for k = 0

}
. (12)

All these scale-factor equations can also be written explicitly in terms of the time coordinates t and t,
as is usually done in standard cosmology, by computing the time it takes for a light signal, emitted at
radial distance r or r, to reach the observer at the origin. The detailed expressions for a(t) and a(t),
as well as all the connecting formulas between the different variables and conformal parameters, can be
found in Reference [14] (see Table 1). Furthermore, from the plots of the KCC scale factors, such as
a(r) from Equation (11), it can be seen that the observed redshift z > 0 is only possible for k = −1, so
that the other two cases, k = 0,+1, are actually ruled out.

The new CG dimensionless parameter δ = γ

2
√
|k|

(for k = −1) in Equation (12) becomes the most

important quantity in KCC (The parameter δ in Equation (12) is dimensionless only for k = ±1. For
the k = 0 case, Equation (11) simply becomes 1 + z = a(0)/a(r) = 1 − γ

2
r. In this particular case,

the coordinate r has dimensions of length, so this equation is still dimensionally correct (in this case the
scale factor a(t) becomes a dimensionless quantity, so that Equation (8) is also correct). This is due to
the particular form of the transformation between SSC and FRW coordinates, for the special k = 0 case.
See Section 3.1 in Reference [14] for complete details.): it combines together the original CG parameters
γ and κ, in view also of the relation between k and κ

k = −γ
2

4
− κ (13)

already mentioned above. (In our previous papers, we considered the possibility that all these CG
parameters might also be changing with spacetime coordinates. In particular, we supposed that the δ
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parameter might play the role of a universal time and we used the zero subscript to denote the current
values of all these parameters (i.e., δ0, γ0, etc.). In this paper, we are just considering the current values
of these parameters, so we simply write δ, γ, κ, etc.) It can be shown that |δ| < 1 and that, for k = −1,
Equation (11) yields the following direct relation between r and z:

r =
δ(1 + z)±

√
(1 + z)2 − (1− δ2)

1− δ2
. (14)

The plus-minus sign in the last equation indicates that there are two locations where z = 0: at the
origin r = 0, and at a particular radial location rrs = 2δ

1−δ2 which becomes of physical significance
for δ > 0. In fact, in this particular case, there is a region of negative redshift (i.e., a blueshift) for
0 < r < rrs, followed by a standard redshift region at larger radial distances, for r > rrs = 2δ

1−δ2 . This
suggests that the (current) value of δ should be small and positive, so that the supposed blueshift region
would be a small (practically undetectable) region around the observer: for example, a small region of
the size of the Solar System, or similar.

In two of our previous papers [15,16] we actually suggested that this local blueshift region could have
been the origin of the Pioneer Anomaly (PA—for a review, see [31]) since “blueshifted” signals coming
from the Pioneer spacecraft would appear to be equivalent to the observed anomalous acceleration. In
view of this possible connection, the value of the γ parameter in Equation (5) was directly inferred from
the Pioneer anomalous acceleration [15,16]; the value of the δ parameter was then computed [15] from
the fitting of the SNIa data available at the time, and the values of the parameters k and κ were obtained
through Equations (12) and (13). In summary, the values of the CG parameters were determined as
follows (see also Table 1 in Reference [15]):

δ = 3.83× 10−5, γ = 1.94× 10−28 cm−1, k = −6.42× 10−48 cm−2, κ = 6.42× 10−48 cm−2 . (15)

Although it is still possible that the PA might have a gravitational origin, i.e., due to modifications of
GR, it is now widely accepted that the cause of this anomaly is probably more mundane [32]: thermal
recoil forces originating from the spacecraft radioactive thermoelectric generators. Therefore, in the
following sections we will perform a new computation of the CG parameters in Equation (15), without
using any more data related to the PA. We will begin, in the following section, by constraining our
parameters using updated SNIa data.

3. KCC and Type Ia Supernovae

In order to constrain the CG parameters with recent SNIa data we need to redefine the luminosity
distance in KCC, since this is the main cosmological distance used in this context. In this section we
will expand upon concepts already introduced in Reference [15] (more details about the definitions of
distances in KCC can be found in this reference). We start by noticing that the new interpretation of the
redshift discussed in the previous section (in particular, in Equation (9)) implies that lengths and time
intervals scale with redshift z as:

∆lz = (1 + z) ∆l0 (16)

∆tz = (1 + z) ∆t0,
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where the subscript 0 indicates intervals of the given quantity associated with objects which share the
same spacetime location of the observer at the origin (namely, here on Earth at r = 0 and at our current
time t0), while the subscript z indicates intervals of the same quantity associated with objects at redshift
z 6= 0, as seen or measured by the same observer at the origin.

It should be emphasized that this change in lengths, or time intervals (as well as wavelengths,
frequencies, and all other kinematical quantities derived from lengths and times), is due to the spacetime
location of the object being studied (as measured by the redshift parameter z) and not to the “cosmic
expansion” as in the standard cosmological model.

It is natural to assume that masses, energies, luminosities, and other dynamical quantities will follow
similar scaling laws, but not necessarily the same as the one in Equation (16). In Reference [15] we
assumed the following scaling laws for masses and energies (Mass and energy will scale in the same way,
since ∆E ∝ ∆l2∆t−2∆m, with lengths and times scaling in the same manner, due to Equation (16)):

∆mz = f(1 + z) ∆m0 (17)

∆Ez = f(1 + z) ∆E0,

where f(1 + z) is some arbitrary function of (1 + z), so that limz→0 f(1 + z) = 1.
As a consequence of these scaling laws, the “absolute luminosity” L, or energy emitted per unit time,

will scale as

Lz =
f(1 + z)

(1 + z)
L0, (18)

where the meaning of the subscripts is the same as described above for the other quantities. Thus,
KCC postulates a change in the absolute luminosity of a “standard candle”, which is intrinsically due
to its spacetime location, while standard cosmology assumes an invariable absolute luminosity L of the
standard candle being considered.

Standard cosmology defines the luminosity distance as dL =
√

L
4πl

= a0r(1 + z), with L and l being
the absolute and apparent luminosities of the standard candle being used as a distance indicator; a0

denotes the current value of the scale factor and the (1 + z) factor on the right-hand side of the equation
originates from a (1+z)2 dimming factor under the square root. This factor is due to the standard redshift
of the photon frequency and also to a time dilation effect of the emission interval of photons.

KCC considers instead this (1 + z)2 dimming factor as unphysical, so the (1 + z) factor on the
right-hand side of the standard luminosity distance equation is completely eliminated. In view also of
our scaling law for luminosities in Equation (18), and of Equation (14), we then define the luminosity
distance in KCC as (In the following equation we choose the positive sign in front of the square root to
select the solution corresponding to past redshift, z > 0 for r > rrs = 2δ/(1− δ2), which is the correct
choice for the following analysis of SNIa data)

dL ≡
√
Lz
4πl

=

√
f(1 + z)

(1 + z)

L0

4πl
= a0r = a0

δ(1 + z) +
√

(1 + z)2 − (1− δ2)

(1− δ2)
. (19)

Since this definition assumes an intrinsic dimming of the luminosity Lz with redshift z, it leads to
distance estimates which are dramatically different from those of standard cosmology for different values
of z (see the first three columns in Table 2 of Reference [15]).
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To avoid this issue, an alternative definition could be employed, which would retain the concept of an
invariable luminosity L0 of a standard candle, while including the other aspects of KCC. We can obtain
this alternative luminosity distance d̃L by modifying the previous equation as follows:

d̃L ≡
√
L0

4πl
=

√
(1 + z)

f(1 + z)
a0r =

√
(1 + z)

f(1 + z)
a0

δ(1 + z) +
√

(1 + z)2 − (1− δ2)

(1− δ2)
, (20)

so that the right-hand side of the equation now depends explicitly on the still unknown function f(1+z).
In Table 2 of Reference [15], it was shown that distances estimated using d̃L are very close to those of
standard cosmology (compare the values in the fourth column of this table with those in the third or fifth
columns), so the KCC definition in Equation (20) more closely agrees with the luminosity distance of
standard cosmology.

We will see in the following that both definitions, in Equations (19) and (20), lead to the same
results when applied to SNIa data, but they differ conceptually: the former assumes a variable absolute
luminosity Lz of a standard candle, while the latter assumes an invariable absolute luminosity L0, which
is more in line with the standard interpretation.

Before we can apply these definitions to the analysis of SNIa data, we need to obtain an explicit form
for the f(1+z) function, which enters most of the KCC equations above. Expanding upon the arguments
discussed in our previous work [15], we can assume the following properties for this function:

(1) f is some arbitrary function of (1 + z), with a “fixed point” at 1, that is, f(1) = 1,
or limz→0 f(1 + z) = 1.

(2) f is a dimensionless quantity, so that Equations (17)–(20) are dimensionally correct.

(3) f is a function possibly built out of other expressions of KCC, which also depend on
the factor (1 + z).

Although the last property in the list above is just an educated guess, it suggests that the function f
might depend on the following KCC factor:

dL
dREF

=
δ(1 + z) +

√
(1 + z)2 − (1− δ2)

2δ
, (21)

constructed as the (dimensionless) ratio between the luminosity distance in Equation (19) and the
reference distance

dREF = a0rrs = a0
2δ

1− δ2
, (22)

which corresponds to the value rrs of the radial coordinate (other than the origin) where we have z = 0

(see discussion after Equation (14)). Therefore, as it was argued also in Reference [15], dREF represents
the ideal reference distance at which we should place a “standard candle” of given absolute luminosity
L0: at this location its luminosity is not affected by the scaling effect of Equation (18), since z = 0 for
r = rrs. In KCC dREF is the equivalent of the standard reference distance of 10 parsec, used for standard
candles, such as supernovae.

Following the discussion above, the most general form of the function f(1 + z) that we will
consider is:
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f(1 + z) =
(1 + z)β(

dL
dREF

)α =

[
2δ

δ(1 + z) +
√

(1 + z)2 − (1− δ2)

]α
(1 + z)β, (23)

where α and β are coefficients to be determined from SNIa data fitting. Again, the choice of the function
f(1 + z) in the previous equation is just an educated guess, an “ansatz” based on the only two functions
of (1 + z) introduced in KCC: a function (1 + z)β , which generalizes the simple (1 + z) scaling factor
in Equation (16), and a function 1/ (dL/dREF )α, which generalizes the inverse-square dependence of
the apparent luminosity of a radiation source upon the (luminosity) distance between the observer and
the source.

3.1. SNIa Data Fitting

In our previous work, we determined the CG parameters by using the SNIa data available at the time
(292 SNIa data of the “gold-silver” set, see [15] for details) and by considering the value of the Pioneer
anomalous acceleration. As already mentioned, we will not use the PA data in this study, but we will use
the latest compilation of SNIa data: the 580 supernovae from the Union 2.1 data set ([33–35]).

The distance modulus µ (difference between the apparent magnitude m and the absolute
magnitude M ) is usually computed, using Pogson’s law, in terms of the logarithm of the ratio between
the apparent luminosity lz (at redshift z) and the reference apparent luminosity lREF (at the reference
distance of choice). It can then be expressed in terms of absolute luminosities and distances, using the
general relation l = L

4πd2L
. We have:

µ(z) = m(z)−M = −2.5 log10

(
lz

lREF

)
= −2.5 log10

(
Lz

LREF

d2
REF

d2
L

)
, (24)

where the subscript z refers to quantities evaluated at redshift z 6= 0, while the subscript REF indicates
the “reference” value of the quantity, i.e., when the standard candle is placed at the reference distance.

As explained before, we have two possible choices for this reference distance: the traditional distance
of 10 pc (since usually the absolute luminosity L of a “standard candle” is defined as the apparent
luminosity of the same object placed at 10 parsec) and the KCC reference distance dREF in Equation (22)
above, since this is the only location, other than the origin, where z = 0.

Using this latter choice for the reference distance and combining Equation (24) with
Equations (18), (19), (21) and (23), we obtain explicitly:

µ(z) = 2.5(2 + α) log10(dL/dREF ) + 2.5(1− β) log10(1 + z) (25)

= 2.5(2 + α) log10

[
δ(1 + z) +

√
(1 + z)2 − (1− δ2)

2δ

]
+ 2.5(1− β) log10(1 + z),

an expression which can be used directly to fit SNIa data and determine the value of the three free
parameters α, β, and δ.

Using this last equation as a fitting formula for the Union 2.1 SNIa data, we obtained the following
“best-fit” values for the free parameters:

α = 2.096± 0.027, β = 1.141± 0.091, δ = (4.120± 0.221)× 10−5. (26)
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Assuming that α and β are likely to be integer numbers, due to their role in the definition of the
function f(1+z) in Equation (23), and close to the values reported in the previous equation, we repeated
the fitting procedure, first by setting β = 1:

α = 2.058± 0.010, β = 1, δ = (3.817± 0.087)× 10−5, (27)

then by fixing both α and β as follows:

α = 2, β = 1, δ = (3.356± 0.005)× 10−5. (28)

All these fits have good statistical quality (R2 = 0.996) and clearly confirm the results of our past
SNIa data fitting [15], where it was a priori postulated that α = 2, β = 1, and δ was found to be as
in Equation (15). It can also be shown that our fitting formula in the second line of Equation (25) can
even be obtained by using the alternative definition of the luminosity distance d̃L in Equation (20), with
appropriate changes in all formulas leading to Equation (25). Thus, our SNIa data fitting procedure is
valid even if we use d̃L instead of dL, which is equivalent to using a luminosity distance whose estimates
are very close to those of standard cosmology.

In KCC, the values of the CG parameters γ and δ are also connected to the current value of the
Hubble parameter:

H0 =
γ

2
c (29)

H0 =
c

a0

δ

in SSC or FRW coordinates, respectively, but with H0 ' H0 for |δ| � 1 [15]. Since in this work we
are not relying any longer on the PA data, we can now derive the value of γ directly from the Hubble
constant, using the previous equation.

The Union 2.1 SNIa data are consistent with the Hubble constant estimate by Riess et al. [36],
H0 = (73.8± 2.4) km s−1 Mpc−1, from which we obtain γ = 2

c
H0 = (1.596± 0.052)× 10−28 cm−1.

However, the most commonly used estimate of the Hubble constant is from the Planck collaboration
2013 results [37]:

H0 = (67.3± 1.2) km s−1 Mpc−1 =⇒ γ =
2

c
H0 = (1.455± 0.026)× 10−28 cm−1; (30)

therefore, in the rest of this paper we will consider the value of γ above as the current KCC estimate.
It could be argued that, since the Union 2.1 SNIa data are based on the standard

definitions for the luminosity distance, standard candles, etc., it might be more appropriate to use
dREF = 10 pc as a reference distance. This leads to a slightly different fitting formula, in view also
of Equations (19) and (29):

µ(z) = 2.5(2 + α) log10(dL/dREF ) + 2.5(1− β) log10(1 + z) (31)

= 2.5(2 + α)

{
log10

[
δ
δ(1 + z) +

√
(1 + z)2 − (1− δ2)

h(1− δ2)

]
+ 8.4768

}
+ 2.5(1− β) log10(1 + z),

which also includes the “normalized Hubble constant” h as a fitting parameter. This dimensionless
quantity is related to H0 as follows:
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H0 = 100 h km s−1 Mpc−1 = 3.2408× 10−18 h s−1 . (32)

As in our previous fitting Formula (25), we now have the option of leaving all four parameters (α, β,
δ, and h) completely free, or to fix some of them, for example, by choosing integer values for α and β.
If we leave all four parameters free, our best fit to Union 2.1 SNIa data yields:

α = 2.005± 0.253, β = 0.766± 0.421, δ = 3.45× 10−5, h = 0.71, (33)

in line with our previous estimate of the parameters in Equation (26) and with our preferred value for H0

in Equation (30). If we fix the value of the Hubble constant as in Equation (30), i.e., h = 0.673, and also
set α = 2, β = 1, as it was done in Equation (28), we obtain instead:

α = 2, β = 1, δ = (3.367± 0.008)× 10−5, h = 0.673. (34)

Comparing our results for δ, in Equations (28) and (34), we see that our two possible fitting
Formulas (25) and (31) produce consistent results for δ ' 3.36 − 3.37 × 10−5, in line also with our
previous determinations from Reference [15], or in Equation (15). In addition, our analysis confirms
that the f(1 + z) function in Equation (23) should be considered with α = 2 and β = 1, i.e.,

f(1 + z) =
1 + z(
dL

dREF

)2 =

[
2δ

δ(1 + z) +
√

(1 + z)2 − (1− δ2)

]2

(1 + z). (35)

Although our two fitting formulas, Equations (25) and (31), both yield similar results, we have to
choose one of the two methods for a final determination of the CG parameters. Since the former fitting
formula assumes dREF = a0

2δ
1−δ2 , which is more consistent with the KCC model, while the latter formula

assumes dREF = 10 pc, which is more consistent with standard cosmology, our final choice will be the
first expression (as it was also done previously in Equation (43) of Reference [15]).

Therefore, in view of Equations (12), (13), (28), and (30) our revised set of KCC parameters is
the following:

δ = 3.36× 10−5, γ = 1.46× 10−28 cm−1, k = −4.70× 10−48 cm−2, κ = 4.70× 10−48 cm−2, (36)

and the function f(1 + z) is given in Equation (35). In the next section we will plot our results and
compare them with those of standard cosmology.

3.2. Union 2.1 Data and KCC Plots

As already mentioned at the beginning of Section 3.1, our new KCC fits were performed with the latest
Union 2.1 SNIa data (Also available in electronic form at: http://supernova.lbl.gov/Union/) ([33–35]).
The Supernova Cosmology Project “Union2.1” SNIa compilation is an update of the previous “Union2”
compilation, bringing together data for 833 supernovae, drawn from 19 datasets. Of these, 580 SNe
pass usability cuts and are included in the data set. In Figure 1 we plot these 580 data points (distance
modulus µ vs. redshift z) together with the standard cosmology (SC) Hubble plot (blue, short-dashed
curve), obtained with standard values of the critical densities (ΩM

∼= 0.3, ΩΛ
∼= 0.7) and with the Hubble

constant value in Equation (30), i.e., h = 0.673.
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Figure 1. Data from Union 2.1 SNIa set [35] are fitted with Equation (25). Our KCC
fits (red-solid for fixed α and β; black long-dashed for variable α and β) show very good
statistical quality (R2 = 0.996) and are very close to the standard cosmology prediction (SC,
blue short-dashed). Also shown (dotted-green curves) is the range of our KCC fitting curves
for a variable α = 1.9− 2.1.
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Our KCC fits are also presented in this figure: in red, solid curve, we show our main fit, using
Equation (25) and with the values of the parameters as in Equation (28); the green-dotted curves show
how our fits depend on changes of the α parameter (in the range α = 1.9 − 2.1), keeping the other
parameters unchanged. Finally, the black, long-dashed curve is our KCC fit with the parameters as in
Equation (26), i.e., when all the parameters are left free in the fitting procedure. This curve is practically
the same as our main KCC fit in solid-red, and both KCC curves are very close to the standard cosmology
theoretical prediction.

In Figure 2 we reproduce the same data and the same fitting curves as in Figure 1, but in the form of
a standard Hubble plot, with logarithmic axis for redshift z. In this way, all the fitting curves become
almost straight lines and the differences between them can be better appreciated. Again, the two main
KCC fits (red-solid and black-long dashed) are almost indistinguishable and only slightly different from
the equivalent standard cosmology prediction (blue, short-dashed).

Similarly, Figure 3 presents the same information in the form of residual values ∆µ, with the baseline
represented by our main KCC fit (red-solid, with parameters as in Equation (28)). In this figure it is
easier to notice the small differences between our two KCC fits and the standard cosmology prediction.
It is also evident that most of the SNIa data points fall within the α = 1.9− 2.1 band.
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Figure 2. The same data and fitting curves presented in Figure 1 are shown here in a standard
Hubble plot, with logarithmic axis for the redshift z. The meaning of the symbols and of the
different plots is the same as in the previous figure.
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Figure 3. Data from Union 2.1 SNIa set [35] are fitted with Equation (25) and shown
as residuals ∆µ. The baseline is represented by our main KCC fit (red-solid curve, with
parameters as in Equation (28)). The meaning of the other curves and symbols is the same
as in the previous figures.
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The last study we performed, in connection with the Union 2.1 data, was related to the low-z behavior
of our fitting formulas. As already discussed at length in [15], we cannot effectively expand in powers of
z our luminosity distance dL in Equation (19), due to the very small value of the δ parameter. Therefore,
we just discard terms containing δ in the same expression for dL and retain only the leading term
depending on z:

dL ' a0

√
2z. (37)

Using this expression and dREF ' a02δ, from Equation (22), in Equation (25) and also assuming
β = 1, as suggested by previous fits, we have:

µ(z) = 2.5(2 + α) log10(dL/dREF ) ' 2.5(2 + α) log10

(√
2z

2δ

)
, (38)

which becomes our “low-z” fitting formula.
To check this expression we selected 179 SNIa data from the Union 2.1 set with z . 0.1 and applied

our fitting Formula (38) to this data subset. Figure 4 shows the results of this low-z fitting: our main
KCC fit (red-solid curve), for a fixed α = 2, yields δ = (3.359± 0.001) × 10−5, essentially the same
result as in Equation (28) for the whole set of 580 supernovae. Leaving both parameters free (black,
long-dashed curve) yields instead α = 2.121 ± 0.040, δ = (4.287± 0.340) × 10−5, and the two KCC
curves almost coincide. In this figure we also show how our low-z fit is sensitive to the value of α in
the range 1.9− 2.1 (green-dotted curves) and to the value of δ in the range (3.00− 4.00)× 10−5 (blue,
short-dashed curves).

Figure 4. A subset of Union 2.1 SNIa data [35], for z . 0.1, is fitted with Equation (38).
Our low-z KCC fits (red-solid curves for fixed α; black long-dashed curves for variable α)
yield essentially the same results as in the previous fits, which used the full range of values
for z. Also shown are the ranges of our KCC fitting curves, for a variable α = 1.9 − 2.1

(green-dotted curves) and for a variable δ = (3.00−4.00)×10−5 (blue, short-dashed curves).
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In our previous work (see Section 3.2 in [15]) we also remarked that our low-z distance modulus
expression in Equation (38), for α = 2, can be rewritten as µ(z) ' 10 log10

(√
2z

2δ

)
= 5 log10

(
z

2δ2

)
,

so that it corresponds perfectly to the first terms of the standard cosmology expansion µ(z) ' 25 +

5 log10

(
cz
H0

)
= 5 log10

(
105 cz

H0

)
, neglecting higher-order terms in z. Comparing the right-hand sides

of these two “low-z” expressions, we find a direct connection between the Hubble constant and the
KCC δ parameter:

H0 ' H0 = 2× 105cδ2 = 67.53 km s−1 Mpc−1, (39)

having used our best estimate for δ in Equation (28) and with the speed of light given as
c = 299792.458 km s−1.

It is very remarkable that our KCC model and the related SNIa data fitting are able to obtain an
estimate for the Hubble constant which is very close to th 2013 Planck collaboration value. We want to
emphasize that our value for δ in Equation (28) came from the fitting formula in Equation (25), which is
independent of any assumed value for H0.

Therefore, our value of H0 in Equation (39) represents KCC’s direct evaluation of the
Hubble constant, in agreement with current best estimates. We can recompute the value for γ
usingH0 = 67.53 km s−1 Mpc−1 as γ = 2

c
H0 = 1.460×10−28 cm−1, which is essentially equivalent to

our previous estimate in Equation (30), based on the 2013 Planck collaboration value for H0. Following
these two estimates, our final value for γ will be quoted as γ ' 1.46× 10−28 cm−1, as already reported
in Equation (36).

4. KCC and Hubble Parameter Data

Another important test of our KCC model can be performed in relation with observed data for the
Hubble parameter H(z), measured as a function of redshift. As it was done by Yang et al. in their
recent analysis [19] of Mannheim’s CG, we will use here all the available data for H(z), obtained from
different sources and with different methods, as reported in Table 1 (When both statistical and systematic
errors were quoted (as in [38,39]), we summed these errors in quadrature and reported the total error in
the table).

Although different methods were used to obtain the data in this table, the most common argument
relies on the fact that the Hubble parameter depends on the differential age of the Universe, as a function
of redshift, in the form:

H(z) = − 1

1 + z

dz

dt
. (40)

Therefore, a determination of dz
dt

, or more practically of the ratio ∆z
∆t

between finite intervals of redshift
and time, will lead to a direct measurement of H(z).

In order to measure the time interval ∆t, we need to identify and use so-called “cosmic
chronometers”, i.e., astrophysical objects, such as a galaxies, whose evolution follows a known fiducial
model, so that these objects behave as “standard clocks” in the Universe.
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Table 1. Available Hubble parameter data H(z), from various sources, obtained with
different methods.

z H(z) (km s−1 Mpc−1) Source Method (See Text)

0.0900 69± 12 Jimenez et al. (2003) [40] DA
0.1700 83± 8 Simon et al. (2005) [41] DA
0.2700 77± 14 Simon et al. (2005) [41] DA
0.4000 95± 17 Simon et al. (2005) [41] DA
0.9000 117± 23 Simon et al. (2005) [41] DA
1.3000 168± 17 Simon et al. (2005) [41] DA
1.4300 177± 18 Simon et al. (2005) [41] DA
1.5300 140± 14 Simon et al. (2005) [41] DA
1.7500 202± 40 Simon et al. (2005) [41] DA
0.4800 97± 62 Stern et al. (2010) [42] DA
0.8800 90± 40 Stern et al. (2010) [42] DA
0.1791 75± 4 Moresco et al. (2012) [38] DA
0.1993 75± 5 Moresco et al. (2012) [38] DA
0.3519 83± 14 Moresco et al. (2012) [38] DA
0.5929 104± 13 Moresco et al. (2012) [38] DA
0.6797 92± 8 Moresco et al. (2012) [38] DA
0.7812 105± 12 Moresco et al. (2012) [38] DA
0.8754 125± 17 Moresco et al. (2012) [38] DA
1.0370 154± 20 Moresco et al. (2012) [38] DA
0.2400 79.69± 2.65 Gaztañaga et al. (2009) [39] BAO
0.4300 86.45± 3.68 Gaztañaga et al. (2009) [39] BAO
0.0700 69± 19.6 Zhang et al. (2012) [43] DA
0.1200 68.6± 26.2 Zhang et al. (2012) [43] DA
0.2000 72.9± 29.6 Zhang et al. (2012) [43] DA
0.2800 88.8± 36.6 Zhang et al. (2012) [43] DA
0.4400 82.6± 7.8 Blake et al. (2012) [44] BAO and GC
0.6000 87.9± 6.1 Blake et al. (2012) [44] BAO and GC
0.7300 97.3± 7.0 Blake et al. (2012) [44] BAO and GC
0.3500 82.1± 5 Chuang et al. (2012) [45] GC

Once this population of standard clocks has been found and dated, the “differential-age” technique
can be used: the age difference ∆t, and the corresponding redshift difference ∆z, between two of
these cosmic chronometers can be measured, thus determining H(z) in view of Equation (40). This
differential age (DA) method has the advantage of not using any integrated cosmological quantity (such
as the luminosity distance, which is expressed through an integral in standard cosmology), since these
quantities depend on the integral of the expansion history, thus yielding less direct measurements of the
expansion history itself.

Since the original proposal of this DA method [40,46], the best choice of “cosmic chronometers” was
found to be a population of “red-envelope” galaxies: massive galaxies, harbored in high-density regions
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of galaxy clusters and containing the oldest stellar populations, which are now evolving only passively
(i.e., with very limited new star formation). The age of these passively evolving galaxies can then be used
in connection with the DA technique explained above to measure H(z) [40–42]. A similar approach,
also based on passively evolving galaxies, but more centered on a differential spectroscopic evolution of
early-type galaxies as a function of redshift, was introduced by Moresco et al. [38,47], yielding more
data points, followed by the more recent work by Zhang et al. [43].

A different approach [39] to the measurement of H(z) considered instead the baryon acoustic
oscillations (BAO) peak position as a standard ruler in the radial direction. This BAO method was
later connected to the Alcock-Paczynski distortion from galaxy clustering (GC) in the WiggleZ Dark
Energy Survey [44], and one additional data point was recently obtained [45] by using galaxy clustering
data. All the measured data points for H(z) are reported in Table 1; we will now interpret these data in
view of our kinematical conformal cosmology.

In KCC, the Hubble parameter is directly related to z as follows (see Equation (10) in [15]):

H(z) =
c

a0

√
(1 + z)2 − (1− δ2) =

H0

δ

√
(1 + z)2 − (1− δ2), (41)

in view also of Equation (29) and assuming δ > 0. At first, it seems impossible to fit the observational
Hubble data (OHD) in Table 1 with the formula on the right-hand side of the last equation, for δ ∼ 10−5

and H0 close to standard values. However, the OHD are obtained essentially from Equation (40), or
rather from the critical determination of the time interval ∆t ≈ dt, which enters the denominator on the
right-hand side of this equation.

Although the differential age methods used to obtain these OHD in the literature are slightly different
(and even more different are the methods based on BAO and/or GC), they all rely heavily on time,
distance, and spectroscopic determinations, based on standard cosmology. Since KCC allows for
intrinsic scaling of lengths, time intervals, energies, luminosities, etc., as in Equations (16) and (18),
we need to allow the presence of these scaling factors, such as powers of (1 + z) and/or f(1 + z), into
our fitting Formula (41).

In view also of the general form of f(1 + z) in Equation (23), we generalize our fitting formula for
H(z) as:

H(z) =
H0

δ

(1 + z)l(
dL

dREF

)m√(1 + z)2 − (1− δ2) (42)

= 2× 105cδ(1 + z)l

[
2δ

δ(1 + z) +
√

(1 + z)2 − (1− δ2)

]m√
(1 + z)2 − (1− δ2),

where l and m are free parameters to be determined with our fitting procedure. The additional factor
of (1 + z)l / (dL/dREF )m, introduced in the last equation, is justified in the same way as it was done in
Equation (23): it is just a reasonable “ansatz” based on the only two functions of (1 + z) introduced
in KCC. Of course, the new parameters l and m in Equation (42) are not necessarily related to the
similar α and β parameters used before with the SNIa data, since we are now fitting a different type of
astrophysical data. In the last equation we also used our direct connection in Equation (39) between H0

and δ to avoid over-parametrizing this fitting formula.
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We then used our revised Formula (42) to fit the OHD in Table 1, allowing up to three dimensionless
parameters: δ, l, and m. However, leaving all three parameters completely free does not lead to a
satisfactory fit of the data, so we simply set δ to our preferred value: δ = 3.36 × 10−5. Our best fit,
considering l and m as free parameters, is:

l = 1.288± 0.084, m = 1.092± 0.006, δ = 3.36× 10−5, (43)

and is shown in Figure 5 (red-solid curve), together with all the OHD from Table 1. If we fix l to be an
integer value, close to the previous estimate, we obtain instead:

l = 1, m = 1.075± 0.003, δ = 3.36× 10−5, (44)

which is also shown in Figure 5 (black, long-dashed curve). In the same figure, the standard cosmology
prediction, H(z) = H0

√
ΩM(1 + z)3 + ΩΛ + ΩR(1 + z)4 + ΩK(1 + z)2, is shown (blue, short-dashed

curve) for ΩM
∼= 0.3, ΩΛ

∼= 0.7, ΩR = ΩK ≈ 0, and H0 = 67.3 km s−1 Mpc−1.
The l ' 1 value for the first parameter in our KCC fitting formula can be explained as originating

from the scaling law of time intervals, ∆tz = (1 + z) ∆t0, applied to the measured value ∆t ≈ dt

which enters Equation (40). In other words, the observed age differences at redshift z are actually
∆tz intervals, but the age intervals entering Equation (40) should be considered as ∆t0 intervals, since
standard cosmology does not allow for rescaled quantities. Thus, combining Equations (40) and (41), we
have: H(z) = − 1

1+z
∆z
∆t0

= (1 + z)H0

δ

√
(1 + z)2 − (1− δ2), where the (1 + z) factor on the right-hand

side is due to the rescaling of the time intervals.

Figure 5. OHD from Table 2 are fitted with our KCC Equation (42), using values for the
parameters as in Equation (43) (red-solid curve), or as in Equation (44) (black, long-dashed
curve). Also shown is the standard cosmology prediction (blue, short-dashed curve).
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Table 2. Standard Cosmology and KCC estimates for the age of the Universe and of quasar
APM 08279+5255.

Model Age of Universe Age of Quasar

SC (ΩM
∼= 0.3, ΩΛ

∼= 0.7, H0 = 67.3 km s−1 Mpc−1) 14.0 Gyr 1.34 Gyr

KCC—parameters from Equation (43) 14.2 Gyr 1.65 Gyr

KCC—parameters from Equation (44) 15.8 Gyr 2.45 Gyr

Them ≈ 1 value for the second parameter in our KCC fits is not so easily explained. This corresponds
to a factor 1/

(
dL

dREF

)m
on the right-hand side of our fitting Formula (42), with m close to unity. This

could be due to the fact that the OHD are determined through spectroscopic measurements (involving
the scaling factor f(1 + z) = (1 + z)/ (dL/dREF )2), or because the age determinations of the cosmic
chronometers, such as the “red-envelope” galaxies, involve their luminosity distances, thus allowing for
the KCC correction factor (dL/dREF ) to appear in our fitting formula.

In particular, age estimates are typically sensitive to the distance scale (see discussion in
Reference [48], pp. 62–63): a fractional change δd/d in distance estimates will produce a change
δL/L = −2δd/d in absolute luminosities and thus a fractional change δt/t ≈ +2δd/d in age estimates,
since the absolute luminosity of stars at the turn-off point in the main sequence is roughly inversely
proportional to the age of the globular cluster being studied. In KCC the change in luminosity distance
δdL is due to the difference between the revised dL =

√
f(1+z)
(1+z)

L0

4πl
of Equation (19) and the standard

cosmology expression dL =
√

L0

4πl
, which assumes an invariable luminosity L0.

Therefore, in view also of Equation (35), a fractional change δdL/dL =
√

f(1+z)
(1+z)

−1 = 1/
(

dL
dREF

)
−1

might introduce a correcting factor 1 + δdL/dL = 1/
(

dL
dREF

)
into our CG age estimates and ultimately

yield a corresponding factor 1/
(

dL
dREF

)m
on the right-hand side of our fitting Formula (42), with m ≈ 1.

Due to the complexity of the details related to the experimental measurements of the OHD, at this point
we are unable to further explain the presence of this factor in our fitting formula for H(z).

Finally, we wish to comment on the “age problem” analyzed in Reference [19], which was
related to Mannheim’s CG. The issue being studied was a possible age problem for the old quasar
APM 08279+5255 at z = 3.91, as well as the current estimates of the age of the Universe. As already
remarked in Section 1, it was shown that CG does not suffer from an age problem, as it might be the case
instead for standard cosmology (see again [19] and references therein).

For a cosmological model where H(z) is known explicitly, all age estimates are essentially obtained
by integrating Equation (40). For instance, the current age of the Universe t0 is:

t0 = T (0,∞) = −
0∫
∞

1

(1 + z)H(z)
dz, (45)

assuming z = ∞ at time zero and z = 0 at current time. More generally, the age of an astrophysical
object (such as the old quasar mentioned above) which is observed at redshift z, but whose formation
occurred at earlier times, corresponding to a formation redshift zf > z, is computed as:
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T (z, zf ) = −
z∫

zf

1

(1 + z)H(z)
dz. (46)

In ΛCDM cosmology, using the standard expression for H(z) with ΩM
∼= 0.3, ΩΛ

∼= 0.7,
ΩR = ΩK ≈ 0, and H0 = 67.3 km s−1 Mpc−1, the age of the Universe from Equation (45) is computed
as t0 = 14.0 Gyr, in line with estimates based on globular clusters, or other astrophysical objects.
On the contrary, the quasar APM 08279+5255 is observed at z = 3.91, with an estimated formation
redshift zf = 15 [19]. Using Equation (46), the standard cosmology age for this quasar would be
TSC(3.91, 15) = 1.34 Gyr, causing a possible age problem, since the best estimated age for this quasar
is 2.1 Gyr, with a 1σ lower limit of 1.8 Gyr and an absolute lowest limit of 1.5 Gyr [19].

As discussed at length in our previous work (see Section 4.5 in Reference [14]), in KCC we have two
possible time coordinates: the static standard coordinate t related to our local unit of time, as opposed to
the FRW coordinate t, where the former is essentially the conformal time of the latter. When using the
former coordinate t, the Universe does not appear to have initial or final singularities (thus, the age of
the Universe would be infinite, if measured using this coordinate), while both singularities appear when
using the latter coordinate t.

However, if we use FRW coordinates to estimate ages, i.e., if we use H(z) as in Equations (41), (45)
and (46), we would obtain extremely small estimates for the age of the Universe and for the age of
the quasar being studied. This shows that age estimates in KCC are not directly comparable with age
estimates in SC, in the same way that luminosity distances in KCC and SC are widely different, as
already mentioned in Section 3.

Once again, to reconcile the two different views, we must use the “revised” formula for H(z) in
Equation (42) with the KCC parameters determined in Equation (43), or Equation (44). Using this
formula and the related parameters in the age Equations (45) and (46) yields the results reported in
Table 2 (the corresponding SC results are also shown in this table).

As it can be seen from the values in this table, the KCC age of the Universe is, in both cases, in
agreement with the accepted estimates. In KCC, there is also no apparent age problem for the Quasar
APM 08279+5255: our first estimate (1.65 Gyr) is greater than the lowest age limit of 1.5 Gyr, while
our second estimate (2.45 Gyr) is larger than the best estimated age for this quasar of 2.1 Gyr.

5. Conclusions

In this work we analyzed KCC in view of recent astrophysical data from SNIa and determinations of
the Hubble parameter as a function of redshift. The analysis of the supernova data essentially confirmed
our previous work on the subject, but this time we used the recent Union 2.1 data (580 data points,
instead of 292) and more general assumptions for our KCC fitting formulas.

It was shown that the KCC model can again accommodate all existing SNIa data, without resorting to
dark energy, or to any other exotic component of the Universe. Moreover, the current value of the Hubble
constant was derived directly from the SNIa data, using the KCC model, without any prior assumption
for this value. We obtained a KCC estimate of the Hubble constant as H0 = 67.53 km s−1 Mpc−1, very
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close to the 2013 Planck collaboration value. The other KCC fundamental parameters, δ, γ, κ, and k,
were critically re-evaluated and their updated values reported in Equation (36).

KCC was also tested against OHD for H(z) and in relation with the age of the Universe and of old
quasars. As in the case of luminosity distance determinations, it was found that age determinations in
KCC need to be corrected by using the same scale factors which are at the basis of our model. With
these scale corrections, KCC can effectively accommodate the existing H(z) data, and does not show
any apparent age problem, including the case of quasar APM 08279+5255.

Therefore, our final conclusion is that kinematical conformal cosmology is still a viable alternative
cosmological model, although surely not as popular as other models based on conformal gravity,
or standard ΛCDM cosmology. Further studies will be needed to check this model against other
astrophysical data in order to see if it remains a possible alternative cosmology.
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