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Abstract:

 A brief account of the present status of the recent nonlocal generalization of Einstein’s theory of gravitation is presented. The main physical assumptions that underlie this theory are described. We clarify the physical meaning and significance of Weitzenböck’s torsion and emphasize its intimate relationship with the gravitational field, characterized by the Riemannian curvature of spacetime. In this theory, nonlocality can simulate dark matter; in fact, in the Newtonian regime, we recover the phenomenological Tohline–Kuhn approach to modified gravity. To account for the observational data regarding dark matter, nonlocality is associated with a characteristic length scale of order 1 kpc. The confrontation of nonlocal gravity with observation is briefly discussed.
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1. Introduction

In relativity theory, Lorentz transformations are first extended in a pointwise manner to accelerated systems in special relativity and then to gravitational fields in general relativity via Einstein’s local principle of equivalence [1,2]. In this approach, the first step is based on the assumption that an accelerated observer in Minkowski spacetime, at each event along its world line, is physically equivalent to an otherwise identical momentarily comoving inertial observer. This hypothesis of locality generally amounts to a first approximation, since field measurements cannot be performed instantaneously and require an extended time interval. To go beyond the locality postulate, one must take the past history of the accelerated observer into account. Such history-dependent theories are nonlocal [3]. Nonlocal theories of special and general relativity have recently been developed [4,5,6,7,8,9,10,11,12,13]. It turns out that nonlocal general relativity simulates dark matter; that is, according to this theory, what appears as dark matter in astrophysics is essentially a manifestation of the nonlocality of the gravitational interaction.

Lorentz invariance is a fundamental symmetry of nature and involves the relationship between the measurements of ideal inertial observers in uniform relative motion in Minkowski spacetime. Such hypothetical observers do not truly exist; indeed, actual observers are all more or less accelerated. Thus, a physical hypothesis is required to relate the measurements of actual accelerated observers with those of hypothetical momentarily comoving inertial observers. The special theory of relativity is based on the hypothesis of locality, which postulates that an accelerated observer is pointwise inertial, so that Lorentz transformations may be applied event by event along its world line to determine what the accelerated observer measures. This locality postulate fits in well with Einstein’s local principle of equivalence, since these together imply that in general relativity (GR), an observer in a gravitational field is pointwise inertial [2].

The hypothesis of locality has its roots in the Newtonian mechanics of classical point particles. Thinking of classical physics in terms of particles and waves, it is clear that the locality postulate is valid for point particles and leads to a theory of point-like coincidences, whereas the measurement of wave properties requires an extended period of time. Indeed, Bohr and Rosenfeld have shown that the measurement of the classical electromagnetic field cannot be done instantaneously and necessitates a certain spacetime averaging procedure over past events [4]. Thus, to go beyond the hypothesis of locality for the measurement of classical fields, the past history of the accelerated observer and the fields must be taken into account. To incorporate history dependence, the usual partial differential equations for the fields must be replaced by integro-differential equations. In this way, one is led to nonlocal special relativity, in which fields are local, but satisfy integro-differential field equations [4].

Is gravitation history dependent? Einstein interpreted the principle of equivalence of inertial and gravitational masses to mean that an intimate connection exists between inertia and gravitation. We follow Einstein’s interpretation, but do not postulate a local equivalence between inertia and gravitation as in GR; rather, we wish to extend GR to make it history dependent along the same lines as in nonlocal special relativity. That is, GR should become history dependent, since accelerated systems in Minkowski spacetime are expected to be history dependent. It turns out that within the framework of teleparallelism [14,15,16], GR has an equivalent tetrad formulation, namely, GR||, that can be rendered nonlocal in close analogy with the nonlocal electrodynamics of media [5,6]. To implement these ideas, we need an extended general relativistic framework in which the Riemannian metric is supplemented with two metric-compatible connections, namely the standard Levi–Civita connection (Γαβμ0) and the Weitzenböck connection ([image: there is no content]). A left superscript “0” is used throughout to denote geometric quantities in GR that are directly related to the Levi–Civita connection. We describe this extended tetrad framework in Section 2. Section 3 is devoted to the formulation of nonlocal gravity (NLG). Observational aspects of NLG are treated in Section 4. Section 5 contains a discussion of our results.

It is important to note that there are other approaches to nonlocal gravitation (see [17,18] and the references cited therein); however, what sets our specific approach completely apart from other nonlocal modifications of GR is the initial physical motivation stemming from the hypothesis of locality and the specific path followed from nonlocal special relativity to NLG.



2. Extension of the GR Framework

In general relativity, spacetime is a smooth, four-dimensional manifold with a Lorentz metric, such that the invariant spacetime interval [image: there is no content] is given by:



ds2=[image: there is no content]d[image: there is no content]dxν



(1)




The path of a test particle of constant inertial mass m is obtained as usual from:



δ∫−mcds=0



(2)




which results in the geodesic equation of motion for the test particle:



d2[image: there is no content]ds2+Γαβμ0dxα[image: there is no content]dxβ[image: there is no content]=0



(3)




Similarly, rays of radiation follow null geodesics of the spacetime manifold. The four-velocity vector of a test particle, [image: there is no content], is parallel transported along a geodesic via the Levi–Civita connection that is given by the Christoffel symbols:



Γαβμ0=12gμν(gνα,β+gνβ,α−gαβ,ν)



(4)




This symmetric connection is torsion-free, but has Riemannian curvature (Rμνρσ0). In our convention, an event in spacetime has coordinates [image: there is no content], where Greek indices run from zero to three, while Latin indices run from one to three; moreover, the spacetime metric has signature +2, [image: there is no content] and [image: there is no content], unless otherwise specified. The gravitational field equations in GR are given by [1]:



Rμν0−12[image: there is no content]R0+Λ[image: there is no content]=κ[image: there is no content]



(5)




where Rμν0=R μανα0 is the symmetric Ricci tensor, R0=gμνRμν0 is the scalar curvature, Λ is the cosmological constant and [image: there is no content] is the symmetric energy-momentum tensor of matter.
Each observer in spacetime carries an orthonormal tetrad frame [image: there is no content], where [image: there is no content] is the observer’s unit temporal direction and [image: there is no content] , [image: there is no content] constitute its local spatial frame. The projection of tensor fields on an observer’s tetrad frame indicates the local measurement of the corresponding physical quantities by the observer. Spacetime indices are raised and lowered via the metric tensor [image: there is no content], while the hatted tetrad indices, that is, the local Lorentz indices, are raised and lowered via the Minkowski metric tensor [image: there is no content] given by diag[image: there is no content] in our convention. The orthonormality condition for the tetrad frame [image: there is no content] can be expressed as:



[image: there is no content](x)=ηα^β^λμα^(x)λνβ^(x)



(6)




so that we can write Equation (1) as


ds2=ηα^β^d[image: there is no content]dxβ^



(7)




where d[image: there is no content]=λμα^d[image: there is no content]. Thus, the tetrad provides the local connection between spacetime quantities and local Lorentz quantities for the observer.
The differential form d[image: there is no content]=λμα^d[image: there is no content] is, in general, not exact, since an exact form would imply that it is integrable, namely that there exist four functions [image: there is no content], such that [image: there is no content]. It would then follow from Equation (6) that we are in Minkowski spacetime with Rμν ρσ0=0. Indeed, the family of observers with such a frame field would be the static inertial observers with tetrad frames that are all parallel and point along the Cartesian coordinate axes of a global inertial frame with coordinates [image: there is no content]. If Rμν ρσ0≠0, then d[image: there is no content] is not integrable, and at each event, such one-forms will constitute a non-coordinate or anholonomic Lorentz basis. Therefore, changing a holonomic spacetime index of a tensor into an anholonomic local Lorentz index or vice versa, one can simply project the tensor onto the corresponding local tetrad frame.

In GR, the gravitational field is identified with spacetime curvature; moreover, one traditionally works with admissible coordinate systems [19,20]. Coordinate bases are holonomic, while non-coordinate bases are anholonomic. In differential geometry, one can work with either holonomic or anholonomic bases. We find it convenient to work primarily with holonomic bases in this paper.

In a patchwork of admissible coordinate charts in spacetime, consider a smooth orthonormal tetrad frame field [image: there is no content] corresponding to a preferred set of observers. We use this preferred tetrad system to define a new linear Weitzenböck connection [21]:



[image: there is no content]=eμρ^∂αeβρ^



(8)




It can be checked directly that this nonsymmetric connection is curvature-free; moreover, it is so constructed as to render the frame field parallel, namely [image: there is no content]eμα^=0, where [image: there is no content] here denotes covariant differentiation with respect to the Weitzenböck connection. This circumstance leads to teleparallelism; that is, distant vectors can be considered parallel if they have the same components with respect to their local preferred frames. The Levi–Civita and Weitzenböck connections are both compatible with the spacetime metric tensor; indeed, the latter is a consequence of [image: there is no content]gαβ=0, which follows from the orthonormality relation [image: there is no content]=eμα^eνβ^ηα^β^.

Under a general transformation of coordinates [image: there is no content], a linear connection transforms just as, say, the Weitzenböck connection:



Γαβ′μ=∂x′μ∂xν∂xγ∂x′α∂xδ∂x′βΓγδν+∂x′μ∂xν∂2xν∂x′α∂x′β



(9)




Therefore, the difference between two linear connections on the same spacetime manifold is a tensor. In this way, we have the torsion tensor:



Cαβμ=[image: there is no content]−Γβαμ=eμρ^∂αeβρ^−∂βeαρ^



(10)




and the contorsion tensor:


Kαβμ=Γαβμ0−[image: there is no content]



(11)




From the compatibility of the Weitzenböck connection with the metric, namely ∇γgαβ=0, we find:



gαβ,γ=Γγαμgμβ+Γγβμgμα



(12)




which can be substituted in the Christoffel symbols to show that the contorsion tensor is linearly related to the torsion tensor via:


Kαβγ=12(Cαγβ+Cβγα−Cαβγ)



(13)




The torsion tensor is antisymmetric in its first two indices, while the contorsion tensor is antisymmetric in its last two indices.

There is a subtle correlation between the curvature of the Levi–Civita connection and the torsion of the Weitzenböck connection. To illustrate this point, let us first imagine that [image: there is no content]. This is mathematically equivalent, via Equation (10), to the requirement that d(eμα^d[image: there is no content])=0. On a smoothly contractible spacetime domain, every closed form is exact in accordance with the Poincaré lemma. In this case, there are thus four functions [image: there is no content], such that eμα^d[image: there is no content]=d[image: there is no content] or eμα^=∂[image: there is no content]/∂[image: there is no content]. As before, it follows from the orthonormality condition that we are back in Minkowski spacetime where our preferred observers are the static inertial observers of a global inertial frame with coordinates [image: there is no content], such that the tetrad axes are all parallel with the corresponding Cartesian coordinate axes. Therefore, [image: there is no content] implies that Rμν ρσ0=0, so that there is no gravitational field. In the presence of gravitation, however, Rμν ρσ0≠0, and this implies that [image: there is no content]. It thus appears that in curved spacetime, one can characterize the gravitational field via the torsion tensor, as well.

In extended GR, the parallel frame field defined by the Weitzenböck connection is the natural generalization of the parallel frames of static inertial observers in a global inertial frame in special relativity to the curved spacetime of general relativity. Let us recall that in the standard GR framework, a parallel (or non-rotating) frame field may be defined via parallel (or Fermi–Walker) transport using the Levi–Civita connection along a timelike world line; however, it cannot in general be extended to a finite region, as this is obstructed by the Riemannian curvature of spacetime. The introduction of the Weitzenböck connection remedies this situation.

As is well known, in the curved spacetime of GR, at an event with coordinates [image: there is no content], one can introduce locally geodesic coordinates in the neighborhood of [image: there is no content], such that in the new coordinates the Christoffel symbols all vanish at [image: there is no content] and geodesic world lines that pass through [image: there is no content] are rendered locally straight. In a similar way, consider the coordinate transformation [image: there is no content],



x′μ=[image: there is no content]−[image: there is no content]+12[image: there is no content]x¯(xα−x¯α)(xβ−x¯β)+...



(14)




In the new coordinate system, however, only the symmetric part of the Weitzenböck connection vanishes at [image: there is no content], and [image: there is no content], in general, remains nonzero. In this case, the corresponding Weitzenböck autoparallels passing through [image: there is no content] are rendered locally straight. Thus, at each event in our extended GR framework, the curvature and torsion tensors both characterize the gravitational field [22]. In fact, the symbiotic relationship between the Riemann curvature and the Weitzenböck torsion of the spacetime manifold turns out to be crucial for the nonlocal generalization of GR.

We illustrate in Appendix A, via a specific example, how the Weitzenböck torsion tensor might be measured in a given gravitational field. In particular, we show that Weitzenböck torsion behaves like tidal acceleration and has dimensions of (length)-1, while curvature has dimensions of (length)-2. Moreover, we show, among other things, that it is possible to introduce Fermi coordinates and tetrad frames in the neighborhood of an arbitrary timelike geodesic, such that the Levi–Civita and Weitzenböck connections both vanish along the timelike geodesic path.

The Riemann curvature tensor can be expressed in terms of the Christoffel symbols and their derivatives; therefore, Equation (11) can be used to write the Riemann curvature tensor in terms of the torsion tensor. After detailed, but straightforward, calculations, it is then possible to write the Einstein field Equation (5) in Maxwellian form in terms of the torsion tensor. To this end, it proves useful to introduce an auxiliary torsion tensor:



[image: there is no content]:=Kγαβ+Cαgγβ−Cβgγα



(15)




where [image: there is no content] is the torsion vector. Furthermore, let [image: there is no content] be an auxiliary field strength defined by:


[image: there is no content]:=−gκ[image: there is no content]



(16)




so that [image: there is no content] and [image: there is no content] are both antisymmetric in their first two indices. Then, the Einstein tensor Gμν0 can be written in the form:


Gμν0=−κ[image: there is no content]+κ−geμγ^gνα∂∂xβHαβγ^



(17)




where [image: there is no content],


−g[image: there is no content]=CμρσHνρσ−14[image: there is no content]CαβγHαβγ



(18)




turns out to be the trace-free energy-momentum tensor of the gravitational field in the new scheme. Einstein’s gravitational field equations now take the form:


∂∂xβHαβγ^=−geμγ^gαν[image: there is no content]+[image: there is no content]−Λκ[image: there is no content]



(19)




It follows from Equation (19) and the antisymmetry of [image: there is no content] in its first two indices that:



∂∂[image: there is no content]−g(Tα^μ+Eα^μ−Λκeμα^)=0



(20)




This is the law of conservation of total energy-momentum tensor that consists of contributions due to matter, the gravitational field and the cosmological constant.

To summarize, within the context of GR, we have chosen a preferred frame field, which together with the corresponding Weitzenböck connection has generated a GR|| framework that is the teleparallel equivalent of GR. In GR, the ten gravitational field equations can be used in principle to determine the ten components of the spacetime metric tensor. A tetrad frame field has, however, sixteen components, which are subject to ten orthonormality relations that, in effect, determine the metric in terms of the tetrad frame. This circumstance points to the six-fold degeneracy of GR||. In fact, the extra six degrees of freedom are elements of the local Lorentz group; that is, the boosts and rotations that locally characterize one system of observers with respect to a fiducial system. This basic degeneracy of GR|| will be removed in the nonlocal generalization of this theory in the next section.

A comprehensive account of the tetrad formulation of GR is contained in [14,15,16] and the references cited therein. A detailed treatment of the approach to GR|| adopted here can be found in the excellent review by Maluf [16].

GR||, the teleparallel equivalent of GR, is the gauge theory of the Abelian group of spacetime translations [14,15,16]. As such, the structure of GR|| bears certain similarities with electrodynamics. For instance, Equation (10) can be written as [image: there is no content], so that for each tetrad index [image: there is no content], [image: there is no content] is analogous to the electromagnetic field tensor with vector potential [image: there is no content]. The analogy with electrodynamics has provided the basis for the present approach to the nonlocal generalization of GR [5,6] that is described in the following section.



3. Nonlocal Gravity (NLG)

In the electrodynamics of media, the constitutive relation between [image: there is no content] and [image: there is no content] could be nonlocal [23,24]. Therefore, in the nonlocal electrodynamics of media, Maxwell’s original equations remain unchanged, but the constitutive relation now involves the past history of the electromagnetic field. In GR||, Einstein’s field equations are analogous to Maxwell’s original equations, and Equation (16) plays the role of a local constitutive relation. We wish to construct here a nonlocal theory of gravitation in analogy with the nonlocal electrodynamics of media. To render observers nonlocal in a gravitational field in the same sense as in nonlocal special relativity, we simply change Equation (16) to:



HμνρNLG:=−gκ(Cμνρ+[image: there is no content])



(21)




where [image: there is no content] is a tensor involving the past history of the gravitational field. The field equations of nonlocal gravity are therefore obtained from Equations (18) and (19) by substituting HμνρNLG for [image: there is no content]. That is, the field equations of nonlocal gravity are given by:


∂∂xβ−gκ(Cαβγ^+Nαβγ^)=−geμγ^gαν[image: there is no content]+[image: there is no content]−Λκ[image: there is no content]



(22)




where [image: there is no content] now takes the place of [image: there is no content], namely,


κ[image: there is no content]=Cμρσ(Cνρσ+Nνρσ)−14[image: there is no content]Cαβγ(Cαβγ+Nαβγ)



(23)




As before, the law of conservation of total energy-momentum tensor takes the form:



∂∂[image: there is no content]−g(Tα^μ+Eα^μ−Λκeμα^)=0



(24)




Let us now specify the form of the nonlocality tensor [image: there is no content]. We assume, for the sake of simplicity, a nonlocal ansatz involving a scalar kernel, namely,



[image: there is no content]=−∫Ωμμ′Ωνν′Ωρρ′[image: there is no content](x,[image: there is no content])Xμ′ν′ρ′([image: there is no content])−g([image: there is no content])d4[image: there is no content]



(25)




where [image: there is no content] is the scalar causal kernel of nonlocal gravity [5,6,7,8,9,10,11,12,13] and [image: there is no content] depends upon the spacetime torsion. Here, event [image: there is no content] is connected to event x via a unique future directed timelike or null geodesic, and we define the square of the proper length of this geodesic to be 2Ω, where Ω is Synge’s world function [19]. In Equation (25), indices [image: there is no content] refer to event [image: there is no content], while indices [image: there is no content] refer to event x; moreover,


Ωμ(x,[image: there is no content]):=∂Ω∂[image: there is no content],Ωμ′(x,[image: there is no content]):=∂Ω∂x′μ′



(26)




For any bitensor, the covariant derivatives at x and [image: there is no content] commute [19]; that is, Ωμμ′(x,[image: there is no content])=Ωμ′μ(x,[image: there is no content]) is a dimensionless bitensor, such that:



lim[image: there is no content]→xΩμμ′(x,[image: there is no content])=−gμμ′(x)



(27)




To simplify matters further, we assume that [image: there is no content] is a linear combination of the components of the torsion tensor, namely,



[image: there is no content]=χμνραβγ[image: there is no content]



(28)




This relation is reminiscent of the local constitutive relation between [image: there is no content] and [image: there is no content] in electrodynamics [25]. Various forms of Equation (28) have been explored in [13], and the relation that has been adopted for NLG is:



[image: there is no content]=Cμνρ+p([image: there is no content]gνρ−Cˇνgμρ)



(29)




Here, [image: there is no content] is a constant dimensionless parameter and [image: there is no content] is the torsion pseudovector given by:



Cˇα=13[image: there is no content]Cβγδ



(30)




where [image: there is no content] is the Levi–Civita tensor.
It is interesting to express the main field equations of nonlocal gravity Equation (22) as non-locally modified Einstein’s equations. To this end, Equation (17) can be written as:



Gμν0=−κ[image: there is no content]+eμγ^gνα1−g∂∂xβ−gCαβγ^



(31)




Let us now use Equation (22) to write Equation (31) as:



Gμν0+Λ[image: there is no content]+[image: there is no content]−[image: there is no content]=κ[image: there is no content]



(32)




Here, [image: there is no content] and [image: there is no content] are not in general symmetric tensors; moreover, [image: there is no content] is given by:



[image: there is no content]:=gναeμγ^1−g∂∂xβ−gNαβγ^



(33)




and [image: there is no content]:=κ([image: there is no content]−[image: there is no content]) is a traceless tensor, namely,


[image: there is no content]:=CμρσNνρσ−14[image: there is no content]CδρσNδρσ



(34)




In Equation (32), we have sixteen field equations for the sixteen components of the gravitational potentials specified by our preferred tetrad field [image: there is no content]. Nonlocal gravity is thus a tetrad theory that is invariant under the global Lorentz group and in which the Riemann curvature tensor and the Weitzenböck torsion tensor both originate from the mass-energy content of the universe in accordance with Equation (32).

It remains to determine the constitutive kernel [image: there is no content]. The structure of NLG implies that [image: there is no content] could, in general, depend upon spacetime scalars at x and [image: there is no content], such as Ωμ(x,[image: there is no content])eμα^(x) and Ωμ′(x,[image: there is no content])eμ′α^([image: there is no content]). We take the view that the functional form of the kernel should be determined from the observational data. A detailed discussion of this issue is contained in [5,6,7,8,9,10,11,12,13].

The implications of this NLG theory have thus far been explored only in the linear regime. The investigation of the nonlinear regime of NLG remains a task for the future.



4. Confrontation of NLG with Observation

In the general linear approximation of NLG, we can deal with problems regarding linearized gravitational radiation, bending of light and gravitational lensing, as well as the Newtonian regime of nonlocal gravity.

In the Newtonian limit of NLG, the Poisson equation for the gravitational potential Φ takes the form:



∇2Φ=4πG(ρ+[image: there is no content]),[image: there is no content](t,[image: there is no content])=∫q([image: there is no content]−[image: there is no content])ρ(t,[image: there is no content])d3y



(35)




where [image: there is no content] has the interpretation of the density of “dark matter” that is mimicked by nonlocality. It turns out that in Equation (35), we can recover the phenomenological Tohline–Kuhn approach to modified gravity [12]. Indeed, for most situations of physical interest, the reciprocal kernel q is a generalization of the Kuhn kernel and is given by [12]:


q=14π[image: there is no content](1+μr)r2e−μr



(36)




where [image: there is no content] and [image: there is no content] and μ are positive constant parameters, such that 0<μ[image: there is no content]<1. It follows from Equations (35) and (36) that the attractive force of gravity acting on a point mass [image: there is no content] at [image: there is no content] due to a point mass [image: there is no content] at [image: there is no content] is given by:


f=−G[image: there is no content][image: there is no content]([image: there is no content]−[image: there is no content])r31+α−α(1+12μr)e−μr



(37)




where α:=2/([image: there is no content]μ) is a dimensionless parameter. In the framework of nonlocal gravity, Equation (37) replaces the Newtonian inverse-square force law. A detailed analysis reveals that the gravitational physics of the solar system, spiral galaxies and clusters of galaxies can all be explained with Equation (37) provided the parameters are chosen such that [image: there is no content], [image: there is no content] kpc and [image: there is no content]≈3 kpc [12]. It is interesting to note that the non-locally modified force law Equation (37) consists of an enhanced attractive Newtonian part with [image: there is no content] and a repulsive Yukawa part with a decay length of [image: there is no content].
Linearized gravitational radiation has been investigated within the framework of NLG [10,11,13]. The linearized gravitational waves with frequencies in the range that is currently of observational interest have wavelengths that are much shorter than 1 kpc; therefore, nonlocal effects in their generation and detection turn out to be negligible [10]. However, nonlocality does lead to the damping of gravitational waves as they propagate over cosmological distances, but the exponential damping time turns out to be longer than the age of the universe for gravitational waves of current observational interest [10,11].

Nonlocal gravity has a galactic length scale of order 1 kpc; hence, NLG effects are generally negligible in systems with dimensions [image: there is no content] kpc, such as planetary systems or binary pulsars. On the other hand, it would be most interesting to detect the influence of nonlocality in such systems. In this connection, the NLG-induced periastron precession must be mentioned. The effect is at present buried in the noise; e.g., it is retrograde, and the ratio of its magnitude for Mercury to Einstein’s precession is about [image: there is no content] [7,12,26].

It remains to confront the predictions of NLG with gravitational lensing observations [13]. The implications of NLG for structure formation in cosmology also remain a task for the future.



5. Discussion

Among the fundamental interactions, gravitation has the unique feature of universality. It may also be history dependent. In this paper, the main aspects of the recent nonlocal generalization of Einstein’s theory of gravitation have been briefly described. If it turns out that nonlocal gravity is supported by observational data, this may lead to a deeper understanding of the gravitational interaction and provide a clue towards its eventual quantization.
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Appendixes


A. Measurement of Weitzenböck’s Torsion

Torsion and curvature are the two fundamental differential geometric notions associated with a linear connection, or the corresponding covariant differentiation, on a manifold. Torsion has to do with the lack of symmetry of the connection and curvature is related to the lack of commutativity of covariant differentiation [27]. The Gaussian curvature of a surface is its most significant property and is easy to visualize [28]. In general, spacetime curvature can be operationally defined, for instance, via geodesic deviation (the Jacobi equation and its generalizations) or via parallel vector fields (holonomy). Torsion, on the other hand, can be visualized as the failure of a parallelogram to close, a concept related to the presence of dislocations in continuous media [25,29]. However, in contrast to the case of curvature, there is no general operational definition for the torsion of spacetime. In particular, the torsion tensor apparently has no relation with the torsion of a curve in space [30].

It appears that the measurement of spacetime torsion depends upon the physical theory in which torsion plays a significant role [14,15,16]. Within the framework of teleparallelism, the metric is connected to the preferred parallel frame field via orthonormality; furthermore, the Weitzenböck torsion is naturally related to the Riemannian curvature of spacetime. The elements necessary for the establishment of metric geometry, namely, infinitesimal rods, clocks, light signals, etc., may then be employed to provide an indirect operational definition of Weitzenböck’s torsion. This is illustrated below via a specific example involving a frame field in an arbitrary Fermi coordinate system.

Consider a gravitational field in the extended GR framework; that is, we allow for nonlocality, a possibility that is immaterial for our considerations. It is possible to establish an extended quasi-inertial Fermi normal coordinate system [image: there is no content] in a world tube along the path of a test observer following a geodesic in this curved spacetime. These coordinates are scalar invariants by construction and are indispensable for the interpretation of measurements in GR. More specifically, imagine a congruence of future directed timelike geodesics representing the motion of free test observers in an arbitrary gravitational field. In this congruence, we choose a reference observer [image: there is no content] that follows a world line [image: there is no content] and carries, via the Levi–Civita connection, an orthonormal parallel-propagated tetrad frame [image: there is no content] along its path. Here, τ is the reference observer’s proper time; moreover, [image: there is no content] is a unit timelike vector tangent to the world line of the observer [image: there is no content] and is its local temporal axis, while [image: there is no content], [image: there is no content], form its local spatial frame. We wish to introduce a geodesic coordinate system in the neighborhood of the world line of [image: there is no content]; see [19,31] and the references cited therein. At each event [image: there is no content] along [image: there is no content], the class of spacelike geodesics orthogonal to [image: there is no content] forms a local hypersurface. Let P be an event with coordinates [image: there is no content] on this hypersurface, such that there is a unique spacelike geodesic that connects Q to P. The Fermi coordinates of P are [image: there is no content]=[image: there is no content], which are defined by:



T=τ,Xi=σ[image: there is no content]λμi^(τ)



(38)




where [image: there is no content] is the unit vector at [image: there is no content] that is tangent to the unique spacelike geodesic segment from Q to P and σ is the proper length of this segment. The reference observer [image: there is no content] thus permanently resides at the spatial origin of the Fermi coordinate system.
In general, the coordinate transformation [image: there is no content]↦[image: there is no content] can only be specified implicitly; therefore, it becomes necessary to have Taylor expansions in powers of the spatial distance away from the reference world line. Indeed, the spacetime metric in Fermi coordinates is given by:



[image: there is no content]



(39)






[image: there is no content]



(40)






[image: there is no content]



(41)




where [image: there is no content] is the projection of the Riemann curvature tensor evaluated along the reference geodesic, where [image: there is no content] and [image: there is no content], on the orthonormal tetrad frame of the reference observer [image: there is no content]; that is,


[image: there is no content](T):=Rμν ρσ0λμα^λνβ^λργ^λσδ^



(42)




The Fermi coordinates are admissible in a finite cylindrical region about the world line of [image: there is no content]; moreover, the radius of the cylinder is essentially characterized by the radius of the curvature of spacetime.

In the quasi-inertial Fermi coordinate system, the spacetime metric may be written as [image: there is no content]=[image: there is no content]+hμν(X), which is the metric of a perturbed Minkowski spacetime. It proves useful to characterize this perturbation within the context of the spacetime curvature approach to gravitoelectromagnetism (GEM), namely, [image: there is no content], [image: there is no content] and [image: there is no content], where Φ is the generalization of the Newtonian potential in this case, so that [image: there is no content] is the gravitoelectric potential, and [image: there is no content] is the gravitomagnetic vector potential [31]. More explicitly, we set:



Φ=12[image: there is no content](T)XiXj,[image: there is no content]i=13R^0jik(T)XjXk,Σij=16R^ikjl(T)XkXl



(43)




where only the dominant terms in the perturbation have been retained. The gravitoelectric field, [image: there is no content], and the gravitomagnetic field, B=∇×[image: there is no content] , are then given by:


[image: there is no content]



(44)






[image: there is no content]



(45)




Henceforth, we will ignore all higher-order terms in the perturbation and note that with this simplification, the gravitoelectric field becomes directly proportional to the “electric” components of the of the Riemann curvature tensor [image: there is no content], and similarly, the gravitomagnetic field is directly proportional to the “magnetic” components of the Riemann curvature tensor [image: there is no content]. Moreover, the spatial part of the metric perturbation, [image: there is no content], is likewise proportional to the spatial components of the curvature [image: there is no content].

Let us now consider the class of observers that are all at rest in this gravitational field and carry orthonormal tetrads that have essentially the same orientation as the Fermi coordinate system. This class includes of course our reference observer [image: there is no content]. The orthonormal tetrad frame of these preferred observers can be expressed in [image: there is no content] coordinates as:



eμ0^=(1−Φ,0,0,0)



(46)






eμ1^=(−2[image: there is no content]1,1+Σ11,0,0)



(47)






eμ2^=(−2[image: there is no content]2,2Σ12,1+Σ22,0)



(48)






eμ3^=(−2[image: there is no content]3,2Σ13,2Σ23,1+Σ33)



(49)




As expected, [image: there is no content] reduces to [image: there is no content] either in the absence of spacetime curvature or along the reference geodesic, where [image: there is no content]. To have a globally parallel frame field for the preferred observers, we introduce the Weitzenböck connection and the associated torsion tensor as in Equations (8) and (10), respectively. The components of the torsion tensor as measured by the preferred observers themselves can be obtained from projecting the torsion tensor on the tetrad frames of these observers, namely,



Cα^β^γ^=eμα^eνβ^∂μeνγ^−∂νeμγ^



(50)




In general, other classes of observers may be considered that are all related to the static observers by constant boosts and rotations of their tetrads, Equations (46)–(49). The corresponding measured torsion tensor is then related to Equation (50) by global Lorentz transformations.

Equation (50) can be much simplified if we recall that [image: there is no content] differs from [image: there is no content] by a small perturbation, which we denote by [image: there is no content], since the distinction between holonomic and anholonomic indices disappears when dealing with this perturbation tensor. In fact, we find that:



(ψαβ)=−Φ2[image: there is no content]12[image: there is no content]22[image: there is no content]30Σ112Σ122Σ1300Σ222Σ23000Σ33



(51)




Therefore, the measured components of the torsion tensor in this linear approximation scheme may be expressed as:



Cαβγ=∂αψγβ−∂βψγα



(52)




In this relation, for each [image: there is no content], we have an antisymmetric tensor that has “electric” and “magnetic” components in analogy with the electromagnetic field tensor. Indeed, for [image: there is no content], the electric part corresponds to the gravitoelectric field Equation (44), and the magnetic part is twice the gravitomagnetic field Equation (45) in our linear approximation scheme; that is,



C0i0=−Ei,Cij0=2ϵijkBk



(53)




Moreover, for [image: there is no content], the electric parts only involve terms of higher order and can be ignored, so that:



C0ij=0



(54)




However, the corresponding magnetic parts depend on the spatial components of the curvature, and we find that for [image: there is no content],



C231=R^231iXi,C311=23R^311iXi,C121=23R^121iXi



(55)




Similarly, for [image: there is no content],



C232=23R^232iXi,C312=13(R^312i−R^123i)Xi,C122=13R^122iXi



(56)




and for [image: there is no content],


C233=13R^233iXi,C313=13R^313iXi,C123=0



(57)




Using the antisymmetry of the torsion tensor in its first two indices, all of the components of [image: there is no content] can be obtained from Equations (53)–(57); in fact, all of the components of the curvature tensor are involved in the determination of the torsion tensor. Moreover, it is straightforward to use these components to compute the elements of the torsion tensor that are irreducible under the global Lorentz group, namely the torsion vector, the torsion pseudovector and the reduced torsion tensor.

We note that the torsion tensor completely vanishes along the reference geodesic [image: there is no content]. This means that the contorsion tensor and, hence, the Weitzenböck connection vanish, as well, along the reference geodesic. We thus have a generalization of Fermi’s result, namely that the components of both the Levi–Civita and Weitzenböck connections can be made to vanish along a timeline geodesic by a proper choice of coordinates and preferred tetrad frames. The investigation of the case of an accelerated reference path is beyond the scope of this work. The limit of vanishing curvature is considered in Appendix B.

The preferred observers that are all at rest in the Fermi system are generally accelerated with an acceleration vector that is given in Fermi coordinates by [image: there is no content], which is valid to linear order in [image: there is no content]. The geodesic equation of motion of a free test particle in the Fermi system with velocity V=d[image: there is no content]/dT can be written as:



d2XidT2+[image: there is no content]Xj+2R^ikj0VkXj+2R^0kj0ViVk+23R^ikjlVkVl+23R^0kjlViVkVlXj=0



(58)




This is the generalized Jacobi equation [31], where tidal accelerations are given to first order in [image: there is no content]. It thus appears that the measured components of the torsion tensor Equations (53)–(57) are closely related to relativistic tidal accelerations.

The curvature components [image: there is no content] and the spatial Fermi coordinates [image: there is no content] can be measured as in standard GR; therefore, the Weitzenböck torsion, like tidal acceleration, has dimensions of (length)-1 and can be measured indirectly via Equations (53)–(57). By introducing a quasi-inertial Fermi coordinate system and a preferred class of observers in an arbitrary curved spacetime region, we have demonstrated that the gravitational field as given by the torsion tensor has physical significance, since, in principle, it can be measured. The connection between this approach to torsion and the lack of closure of parallelograms deserves further investigation [29].



B. Weitzenböck’s Torsion in Minkowski Spacetime

In teleparallelism as in GR, gravitation is characterized by the Riemannian curvature of spacetime; thus, so long as Rμνρσ0 is nonzero, the Weitzenböck torsion tensor, which represents the gravitational field in teleparallelism, is nonzero, as well. As demonstrated in Appendix A, the torsion tensor is physically measurable, and its components are closely associated with the Riemannian curvature of spacetime. On the other hand, if Rμνρσ0=0, then in flat spacetime, Weitzenböck’s torsion tensor loses its gravitational significance. In arbitrary systems of admissible coordinates in Minkowski spacetime, the torsion tensor vanishes only for inertial observers that are at rest in a global inertial frame and have orthonormal tetrad axes that are all parallel to the standard Cartesian coordinate axes of the global inertial frame; otherwise, the torsion tensor is nonzero. Thus, accelerated observers are endowed with torsion; similarly, torsion is nonzero for inertial observers that are static in a global inertial frame but have spatial frames that vary in space [32,33]. To illustrate the latter possibility, consider, for instance, a global inertial frame and static inertial observers with orthonormal tetrads, such that their spatial frames are all along the spherical polar coordinate axes; in this case, the torsion tensor has spatial components that do not vanish [33]. The purpose of this Appendix is to show how Weitzenböck’s torsion is related to the acceleration tensor of observer families in Minkowski spacetime.

Imagine an accelerated observer in a global inertial frame in Minkowski spacetime. The observer follows the reference world line [image: there is no content], where τ is its proper time; moreover, it carries along this path an orthonormal tetrad frame [image: there is no content], where [image: there is no content] is its unit temporal axis and [image: there is no content] , [image: there is no content], constitute its local spatial frame. Following the idea of a moving frame field, we have:



dλμα^dτ=ϕα^β^(τ)λμβ^



(59)




Here, [image: there is no content] is the antisymmetric acceleration tensor, such that [image: there is no content] and ϕi^j^=ϵijkωk are, respectively, the tetrad components of the reference observer’s translational acceleration of its world line and the rotational angular velocity of its spatial frame with respect to the local non-rotating (i.e., Fermi–Walker transported) frame. Let us now consider a geodesic system of coordinates [image: there is no content]=[image: there is no content] established along the world line of the reference observer. Given any event τ along [image: there is no content], the straight spacelike geodesic lines orthogonal to the reference observer’s world line span a hyperplane that is in fact the three-dimensional Euclidean space. For an event on this hyperplane with inertial coordinates [image: there is no content], the relationship between [image: there is no content] and [image: there is no content] is given by:



τ=X0,[image: there is no content]=[image: there is no content](τ)+Xiλμi^(τ)



(60)




It follows from Equations (59) and (60) that:



d[image: there is no content]=(Pλμ0^+Qjλμj^)dX0+λμi^dXi



(61)




where:


P=1+a·[image: there is no content],Qi=(ω×[image: there is no content])i



(62)




It is then simple to show that the Minkowski metric [image: there is no content]d[image: there is no content]⊗dxν with respect to the new geodesic coordinate system can be written as [image: there is no content]d[image: there is no content]⊗dXν, where:



g00=−P2+Q2,g0i=Qi,gij=δij



(63)




The new coordinates are admissible in a cylindrical spacetime region around [image: there is no content](τ), so long as [image: there is no content].

Consider now the class of accelerated observers that are at rest in space in the geodesic coordinate system [image: there is no content]=[image: there is no content] and carry spatial frames that are all nearly aligned with the spatial frame of the reference observer. To simplify matters, we will assume that |a·[image: there is no content]|≪1 and [image: there is no content]; then, to first order in these small quantities (i.e., to linear order in [image: there is no content]), the orthonormal tetrad frames of these preferred observers are given in [image: there is no content]=[image: there is no content] coordinates by:



eμ0^=(1−a·[image: there is no content],0,0,0)



(64)






eμ1^=(Q1,1,0,0)



(65)






eμ2^=(Q2,0,1,0)



(66)






eμ3^=(Q3,0,0,1)



(67)




As expected, for [image: there is no content], this tetrad system coincides with that of the reference observer in geodesic coordinates; i.e., the reference observer is naturally a preferred observer, as well.

Our linear approximation scheme is such that [image: there is no content] differs from [image: there is no content] by quantities whose magnitudes are very small compared to unity. Thus, let eμα^=[image: there is no content]−ψμα as before; then,



ψ00=−a·[image: there is no content],ψ0i=Qiψiα=0



(68)




In the linear approximation, the components of the torsion tensor are then given, as before, by Equation (52). It follows from Equation (68) that, to lowest order, the torsion tensor is the same for the class of preferred observers and is thus only a function of the temporal variable T; that is,



C0i0=−ai(T),Cij0=−2ϵijkωk(T)



(69)




while [image: there is no content]. Thus, the torsion tensor contains essentially the same information as the acceleration tensor. It is interesting to compare and contrast this inertial result involving acceleration with the gravitational case involving tidal acceleration in Appendix A.
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