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Abstract: In this paper, we comprehensively review the five-dimensional (5D)
fully-covariant theory of gravitation developed by Zhang two decades ago and its recent
applications in astrophysics and cosmology. This 5D gravity describes not only the fields, but
also the matter and its motion in a 5D spacetime. The greatest advantage of this theory is that
there does not exist any unknown parameter, so that we can apply it to explain astrophysical
and cosmological issues by quantitatively comparing the results obtained from it with
observations and to predict new effects that could not be derived from any other gravitational
theories. First, the 5D covariant description of matter and its motion enabled Zhang to
analytically derive the fifteenth component of the 5D energy-momentum tensor of matter
(T̄ 44), which significantly distinguishes this 5D gravity from other 5D gravitational theories
that usually assumed a T̄ 44 with an unknown parameter, called the scalar charge s, and,
thus, to split the 5D covariant field equation into (4 + 1) splitting form as the gravitational,
electromagnetic, and scalar field equations. The gravitational field equation turns into the
4D Einstein’s field equation of general relativity if the scalar field is equal to unity. Then,
Zhang solved the field equations and obtained an exact static spherically-symmetric external
solution of the gravitational, electromagnetic and scalar fields, in which all integral constants
were completely determined with a perfect set of simple numbers and parameters that only
depend on the mass and electric charge of the matter, by comparing with the obtained
weak internal solution of the fields at a large radial distance. In the Einstein frame, the
exact field solution obtained from the 5D fully-covariant theory of gravitation reduces to
the Schwarzschild solution when the matter is electrically neutral and the fields are weak
in strength. This guarantees that the four fundamental tests (light deflection, gravitational
redshift, perihelion advance and radar echo delay) of the 4D Einstein’s general relativity in
the case of weak fields are also the tests of the 5D fully-covariant theory of gravitation. In
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the case of strong fields, especially when the matter is highly charged, however, the results
from the 5D fully-covariant theory of gravitation are significantly different from the 4D
Einstein’s general relativity. Applying this 5D gravity and its exact field solution, Zhang
has recently developed a new redshift mechanism, called electric redshift, a new supernova
explosion mechanism with gravitational field shielding, a new gravitationless black hole
model, a modified neutron star mass-radius relation, a modified Friedmann equation for the
accelerating universe, and so on. This paper provides an overview of this 5D fully-covariant
theory of gravitation, including also its solution properties and astrophysical applications.

Keywords: Kaluza–Klein theory; classical black hole; neutron star; quasars

1. Introduction

To unify Einstein’s general theory of relativity and Maxwell’s theory of electromagnetism, in 1921,
Kaluza proposed a five-dimensional (5D) unification theory [1]. A symmetric 5D spacetime metric has
fifteen independent components. The first through tenth metric components describe the gravitational
field; the eleventh through fourteenth metric components describe the electromagnetic field; and
the fifteenth metric component is kept as a constant l. All field variables are explicitly independent of
the fifth coordinate x4 of the 5D spacetime. Then, Klein and other scientists further developed the 5D
unification theory in the aspects of space structure, field covariance and tensor transformations [2–6].
With these efforts, people have understood that the 5D spacetime is composed of the normal 4D
spacetime and a 1D small circular space with a radius of ∼ 10−33 cm [7]. Because the fifth dimension
is circular, compact and small, the early 5D unification theory, which is usually called the Kaluza–Klein
(KK) theory, does not conflict with our perspective of 4D spacetime. Mathematically, the early
5D KK theory successfully unified Einstein’s general theory of relativity and Maxwell’s theory of
electromagnetism, but the unification did not produce any new effect in physics.

Taking into account Dirac’s idea of a varying gravitational parameter [8], theorists had considered the
fifteenth metric component to be a variable rather than a constant [9–11]. This variable corresponds to a
new field, called the scalar field Φ, which is governed by the fifteenth field equation (i.e., the scalar field
equation). The 5D KK theory with a scalar field (5D KKΦ theory) produces new effects, such as the
space or vacuum polarization [12,13]. The 5D KKΦ theory has been applied to study various physical
issues, such as Planck mass [14], particle motion [15–17], charge-to-mass ratio [18–20], experimental
tests [16,19], comparison with the Brans–Dicke theory [21], magnetic monopoles [22–25], cosmological
phenomena [26–30], atomic properties [31] and other gravitational and electromagnetic phenomena [32].
The analyses for most of these physical issues must rely on a static, spherically-symmetric field solution
of the 5D KKΦ theory.

Various static, spherically-symmetric field solutions of the 5D KKΦ theory had been
obtained [16,20,22,23,33–38]. However, all of these field solutions contained one or more undetermined
constants. For instance, Vladimirov and Kislov [16] introduced a scalar field by multiplying Φ2 with
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the metric of the early KK theory. They obtained a static, spherically-symmetric field external solution
with a unknown parameter, named the scalar charge s, which has no observational support. According
to the field solution, they calculated the perihelion precessions of planets and the deflection of star light
by the Sun. The results were shown to be consistent with Einstein’s general theory of relativity and
experimental measurements, if the scalar charge is chosen to be zero. In [33], Chodos and Detweiler
developed a 5D KKΦ theory by assuming the 5D metric with a spacelike killing vector. They derived the
gravitational, electromagnetic and scalar field equations with the projection method and exactly solved
the set of field equations with two independent constants. To determine these constants, they also used
the scalar charge to assume the fifteenth component of the 5D energy-momentum tensor T̄ 44 = sρ,
where ρ is the mass density. The unknown scalar charge leads to all predictions obtained from the
5D KKΦ theory being indecisive and the roles of the scalar field unsettled. Some other static solutions of
the 5D KKΦ theory generalized from the Schwarzschild solution also have two or more constants
undetermined [36–38]. Using a field solution with one or more undetermined constant or unknown
parameter, we cannot obtain any conclusive result for a specific problem and, hence, cannot meaningfully
compare the 5D KKΦ theory with other gravitational theories and experimental measurements [39,40].

To find a field solution for 5D gravity that does not include any undetermined constant, like
the Schwazschild solution, the fifteenth component of the 5D energy-momentum tensor must be
analytically derived, rather than assumed usually with a unknown parameter. Zhang [41] developed
a 5D fully-covariant KKΦ theory by describing not only the fields, but also the matter and its
motion to be covariant in the 5D spacetime without assuming a scalar charge (see also [42,43]). The
fifteenth component of the 5D energy-momentum tensor analytically derived was given by T̄ 44 =

ρα2/(Φ2
√

Φ2 + α2), where the charge-mass ratio α was defined by Equation (59). For this 5D
fully-covariant theory of gravitation (or say, 5D fully-covariant KKΦ theory), Zhang further obtained an
exact static spherically-symmetric field external solution without any undetermined constant or unknown
parameter [41,44,45]. All integral constants in the field solution of this 5D fully-covariant theory of
gravitation were nicely determined by a perfect set of simple numbers and parameters that only depend
on the mass and electric charge of matter. In the Einstein frame, the field solution reduces to the
Schwarzschild solution when the fields are weak and the matter is electrically neutral. This guarantees
that the four fundamental tests of Einstein’s general theory of relativity in the case of weak fields, where
the gravitational energy of a test particle is much less than its rest energy, are also the tests of the 5D
fully-covariant KKΦ theory. The four fundamental tests usually refer to the gravitational redshift of
light from the Sun, the deflection of star light by the Sun, the perihelion precession of planets and the
time delay of radar echoes. However, in the case of strong fields, especially when the matter is not only
massive and compact, but also significantly charged electrically, the 5D fully-covariant KKΦ theory
can, in accordance with the field solution, predict results that are significantly different from Einstein’s
general theory of relativity with the Schwarzschild solution. In this case, the 5D fully-covariant KKΦ

theory is competitive and has a wide application in strong field astrophysics.
Recently, Zhang has applied the 5D fully-covariant KKΦ theory to describe and explain the strong

field astrophysical issues. First, he has developed a new redshift mechanism, called electric redshift [45].
The results indicated that an electrically-charged, massive, compact object can significantly shift the
light that is emitted from the object toward the red end in comparison with the gravitational redshift. For
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an electrically-charged, compact object with density and mass comparable to that of a neutron star, the
electric redshift can be as great as that of quasars. Then, he has developed a new supernova explosion
mechanism with gravitational field shielding [46] and a new gravitationless black hole model [47]. It is
shown that a dense compact neutral core of a star, when it collapses to a critical density, suddenly turns
off or shields its gravitational field. The core, if its mass exceeds an upper limit, directly collapses into a
black hole. Otherwise, the extremely large pressure, as the gravity is turned off, immediately stops the
collapse and drives the mantle material of the supernova to move outward, which leads to an impulsive
explosion and forms a neutron star as a remnant. A neutron star can further evolve into a black hole
when it accretes enough matter from a companion star, such that the total mass exceeds a lower limit.
The black hole in the 5D fully-covariant KKΦ theory is gravitationless at the surface, because the scalar
field is infinitely strong, which varies the equivalent gravitational constant to zero. In general, a star,
at the end of its evolution, is relatively harder to collapse into a gravitationless KK black hole than a
strong gravitational Schwarzschild black hole. This is consistent with the recent observation of some
very massive stars forming neutron stars, rather than the expected black holes [48–50]. In addition, a
gravitationless KK black hole should be able to more easily generate jets than a Schwarzschild black hole.

In this paper, we will fully describe the 5D fully-covariant KKΦ theory and its astrophysical
application and comprehensively analyze the characteristics and new physical effects obtained from
this unification theory. In Section 2, we will detail the development of the 5D fully-covariant KKΦ

theory. Both the fields and matter, including its motion, will be described as 5D covariant. In Section 3,
we will examine the 5D energy-momentum tensor and field equation to derive all fifteen components
of the 5D energy-momentum tensor and to decouple the 5D field equation to have the gravitational,
electromagnetic and scalar field equations without introducing any unknown parameter. In Section 4, we
will derive the equation of motion according to the 5D fully-covariant KKΦ theory. In Section 5, we will
solve the field equation and obtain an exact static spherically-symmetric field external solution of the
present 5D KKΦ theory and then determine all integration constants according to the internal field weak
limits. In Section 6, we will analyze the properties of the exact static spherically-symmetric field external
solution, such as the singularity, vacuum polarization, frame transformation and charge and scalar field
effects on light, gravity and the electric field, including the electric redshift mechanism, the gravitational
field shielding concept and the gravitationless black hole model. In the last section, we will give our
discussions and conclusions.

2. The 5D Fully-Covariant KKΦ Theory

2.1. The 5D Spacetime Metric and Fields

To describe the geometric structure of a spacetime, one usually defines an orthogonal frame (i.e.,
vielbein) attached to each point in the spacetime. In the present 5D fully-covariant KKΦ theory [41–43],
the 5D spacetime vielbein is represented by the following (4 + 1) splitting form,

ēAα =

(
eiµ 0

qlΦAµ lΦ

)
, (1)
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and its inverse is given by:

ēαA =

(
eµi 0
−qAi l−1Φ−1

)
, (2)

where eiµ and eµi are the 4D spacetime vielbein and its inverse, respectively; Aµ is the 4D electromagnetic
potential; Φ is the scalar field; l is a constant that is usually chosen to be unity or absorbed into Φ; q is
a scale constant defined by ql = 2

√
G with G the gravitational constant. The 5D spacetime vielbein

indices are integers represented by the uppercase Latin letters, A, B, etc., running through zero to four;
while the 4D spacetime vierbein indices are integers represented by the lowercase Latin letters, i, j,
etc., running through zero to three. The 5D spacetime coordinate indices are integers represented by the
Greek letters, α, β, etc., running through zero to four; while the 4D spacetime coordinate indices are
integers represented by µ, ν, etc., running through zero to three. All 5D quantities are headed with a bar
to distinguish them from the 4D quantities. If ēAα and ēαA are independent of the fifth coordinate x4, then
from the 5D KK field equation, one can derive Einstein’s gravitational field equation of general relativity
and Maxwell’s electromagnetic field equation of classical electrodynamics. When Φ = 1, it reduces to
the 5D spacetime vielbein of the early KK theory without a scalar field.

The 5D spacetime Lorentz metric is given by:

η̄AB = η̄AB =


-1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 . (3)

From Equations (1)–(3), the 5D spacetime metric ḡαβ and its inverse ḡαβ can be split into the following
(4 + 1) forms, respectively:

ḡαβ ≡ η̄AB ē
A
α ē

B
β =

(
gµν + q2l2Φ2AµAν ql2Φ2Aν

ql2Φ2Aµ l2Φ2

)
, (4)

ḡαβ ≡ η̄AB ēαAĒ
β
B =

(
gµν −qAν

−qAµ q2AλAλ + l−2Φ−2

)
. (5)

Note that, when l = 1 or absorbed into Φ, the 5D spacetime metric Equation (4) is exactly the same as
the 5D spacetime metric given by Overduin and Wesson [51]. When Φ = 1, we have the 5D spacetime
metric of the early KK theory that does not have a scalar field.

The 5D Einstein curvature tensor depends on the 5D spacetime metric with vielbein indices through
the following set of formulae in accordance with the Riemann geometrical theory,

ḠAB = R̄AB − 1

2
η̄ABR̄, (6)

where the 5D spacetime Ricci tensor R̄BC , its inverse R̄BC and its curvature scalar R̄ are given by:

R̄BC = Γ̄ABC,A − Γ̄ABA,C + Γ̄ADAΓ̄DBC − Γ̄ADCΓ̄DBA + Γ̄ABDΓ̄DAC , (7)

R̄BC = η̄FB η̄ECR̄FE, (8)
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R̄ = η̄ABR̄
AB. (9)

Here, the 5D Christoffel symbol Γ̄ABC is defined by:

Γ̄ABC =
1

2

(
B̄A

BC + B̄ A
BC − B̄ A

C B

)
, (10)

with:
B̄A
BC =

(
ēAα,β − ēAβ,α

)
ēβB ē

α
C , (11)

and:
B̄A

BC = B̄A
BC , (12)

B̄ A
BC = η̄AE η̄BF B̄

F
CE, (13)

B̄ A
C B = η̄AE η̄CF B̄

F
EB. (14)

Substituting the 5D spacetime vielbein (1) and its inverse (2) into the above formula and using the
5D spacetime Lorentz metric (3), we obtain the 5D Einstein curvature tensor in the (4 + 1) splitting form
with the 4D vielbein indices as:

Ḡij = Gij − 2GΦ2

(
F ikF j

k −
1

4
ηijF klFkl

)
− 1

Φ

(
Φ,i;j − ηijΦ,k

;k

)
, (15)

Ḡ4j = Ḡj4 =
√
GΦ

(
F jk

;k +
3

Φ
F jkΦ,k

)
, (16)

Ḡ44 =
3

2
GΦ2F jkFjk −

1

2
R, (17)

and other components are zero. Here, F ij = Aj,i − Ai,j is the electromagnetic field tensor, in which the
symbol “,” refers to the usual derivative; the symbol “;” refers to the covariant derivative; and R is the
4D Ricci curvature scalar, which is related to the 5D Ricci curvature scalar R̄ by,

R̄ = R−GΦ2F jkFjk −
2

Φ
Φ,j

;j. (18)

The 5D action of fields is usually represented as:

S̄(G) =
1

16πḠ

∫ √
−ḡR̄dx0dx1dx2dx3dx4 (19)

where Ḡ is a 5D coupling constant, ḡ is the determinant of the 5D metric ḡαβ and the fifth coordinate
x4 is integrated in the range of 0–1. This section describes in the standard way the field and metric of the
present 5D KKΦ theory.

2.2. The 5D Covariant Description of Matter

In the various types of 5D KKΦ theories developed so far, scientists have described the geometric
tensors and the action of fields to be 5D covariant similar to what is shown in the above section. However,
the 5D covariance of the energy-momentum tensor and action of matter has not yet been fully considered.
All previous 5D theories did not define a 5D covariant density of matter and a 5D covariant velocity of
motion, so they did not define a 5D covariant action of matter, in the 5D spacetime. The field
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equations were formulated in a 5D covariant form only through assuming a 5D covariant
energy-momentum tensor. To assume the fifteenth component of the 5D energy-momentum tensor, one
had to introduce an unknown parameter, the scalar charge s.

To develop a 5D fully-covariant KKΦ theory, we must describe the matter and its motion in the 5D
spacetime. We must define a 5D covariant action of matter from which one can derive a 5D covariant
energy-momentum tensor, rather than having to assume it with an unknown parameter. For this purpose,
in the 5D fully-covariant KKΦ theory developed by Zhang [41] (see also [42,43]), the matter and its
motion are described in the 5D spacetime by a 5D covariant density ρ̄ and a 5D covariant velocity ūα,
where ūα is defined by:

ūα =
dxα

d̄s
(20)

and the line element of the 5D spacetime d̄s is given, in the coordinate indices, by:

d̄s
2

= −ḡαβdxαdxβ, (21)

and, in the vielbein indices, by:
d̄s

2
= −ηABdqAdqB, (22)

with dqA = ēAαdx
α. The 5D current of matter can be written as:

J̄α = ρ̄ūα. (23)

Given the 5D current of matter as a 5D conserved quantity, we have:

J̄α;α = 0. (24)

Then, in the 5D spacetime, the conserved quantity (energy of matter) of Equation (24) in a closed
system can be represented as:

M̄ =

∫
J̄0
√
−ḡdx1dx2dx3dx4. (25)

Here, ḡ is the determinant of the metric tensor, ḡ = det(ḡαβ). Replacing
√
−ḡ by lΦ

√
−g00
√
γ with

γ the determinant of the 5D spacetime metric in the 3D space and integrating Equation (25) with respect
to the fifth coordinate x4 from zero to one, we have:

M̄ =

∫
lΦρ̄f−1

dτ

ds
dV. (26)

where f is defined by:

f =
d̄s

ds
, (27)

and the time and volume elements of the 4D spacetime dτ and dV are given, respectively, by:

dτ =

∫ √
−g00dx0, (28)

dV =

∫
√
γdx1dx2dx3. (29)
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Using the line elements in both the 4D and 5D spacetimes, we can determine the factor f , which has
never been studied in any other KKΦ theory, as:

f =
1√

1 + (w̄4)2
, (30)

where w̄4 is the fifth component of the 5D velocity in the vielbein indices w̄A, which is given by:

w̄A ≡ dqA

d̄s
= ēAα

dxα

d̄s
= ēAαū

α. (31)

In the general relativity of the 4D spacetime, matter is described by density ρ and velocity vµ. The
conserved energy of matter in the 4D spacetime is given by:

M =

∫
ρ
dτ

ds
dV, (32)

where ds is the line element of the 4D spacetime. Since both M̄ and M denote the conserved energy of
matter and have the same dimension, we have M̄ = M . Then, from Equations (26) and (32), we obtain
the relation between densities ρ̄ and ρ,

ρ̄ = l−1Φ−1fρ. (33)

This density relation can be used to split the 5D energy-momentum tensor into a (4 + 1) expression.
For the pressureless matter described by ρ̄ and ūα, we can define the 5D action of matter in a way similar
to general relativity as:

S̄(m) = −
∫
ρ̄
√
−ḡdx0dx1dx2dx3dx4. (34)

If we introduce a quantity of the form,

P̄α =
√
−ḡJ̄α, (35)

then we can rewrite Equation (24) as:
∂αP̄

α = 0, (36)

where ∂α ≡ ∂/∂xα. That is to say, the quantity P̄α is independent of the 5D spacetime metric ḡαβ .
Using P̄α, we obtain the 5D covariant action of the pressureless matter as the following form:

S̄(m) = −
∫ √

−ḡαβP̄αP̄ βdx0dx1dx2dx3dx4. (37)

All of above definitions and analyses were done in the same way as previously done in general
relativity. For the conserved energy of matter derived from the present 5D KKΦ theory to be equal
to that derived from general relativity, we have related the 5D covariant density of matter to the density
observed in the 4D spacetime (Equation (33)). This also guarantees the gravitational field equation
(Equation (64)) derived from the present 5D theory to be Einsteinian in the case of neutral matter and a
constant scalar field.

It should be also noted that the matter description does not affect the field external solution. To
obtain a weak field interior solution for low-density matter, a 5D pressureless matter approximation is
sufficient. In general relativity, physicists have developed both the 4D pressureless matter model and
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the fluid model with a non-zero pressure. In the previous 5D theories, however, theorists had not yet
developed a 5D covariant matter model. Matter and its motion were still described in the 4D spacetime.
The only difference is that a scalar charge is introduced to assume the fifteenth energy-momentum tensor.
In the present 5D theory, we have fully described matter and its motion in the 5D spacetime. We have
successfully developed a 5D pressureless matter model and obtained significant results from this 5D
fully-covariant KKΦ theory. This section has uniquely described the matter, including its motion and the
action of matter with 5D covariance.

3. The 5D Energy-Momentum Tensors and Field Equations

The total action of field and matter with 5D covariance is:

S̄(total) = S̄(G) + S̄(m). (38)

Making use of the variation principle δS̄(total) = 0, we obtain the 5D field equation of the 5D
fully-covariant KKΦ theory as,

Ḡαβ = 8πGT̄αβ, (39)

or in superscripts as:
Ḡαβ = 8πGT̄αβ. (40)

In the 5D vielbein indices form, we can rewrite Equation (40) as:

ḠAB = 8πGT̄AB. (41)

Here, we have chosen Ḡ = lG and defined the 5D energy-momentum tensor of matter by:

T̄αβ = l
2√
−ḡ

∂

∂ḡαβ

(√
−ḡα1β1P̄

α1P̄ β1

)
. (42)

Using the following formulae:
∂ḡα1β1

∂ḡαβ
= −ḡαα1 ḡββ1 , (43)

and Equations (23), (33), (35) and (36), we obtain the 5D energy-momentum tensor as:

T̄αβ = lρ̄ūαūβ = Φ−1f−1ρv̄αv̄β, (44)

or:
T̄αβ = lρ̄ūαūβ = Φ−1f−1ρv̄αv̄β, (45)

where v̄α is defined by:

v̄α ≡ dxα

ds
= fūα. (46)

Expressing T̄αβ with the vielbein indices, we have:

T̄AB = lρ̄w̄Aw̄B = Φ−1fρw̄Aw̄B, (47)

which can be easily split into (4 + 1) form as follows:

T̄ ij = Φ−1f−1T ij, (48)
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T̄ i4 = T̄ 4i = Φ−1ρviw̄4, (49)

T̄ 44 = Φ−1fρw̄4w̄4. (50)

Here, we have used the following relations:

w̄i = ēiαū
α = ēiµū

µ = ēiµv
µf−1 = eiµv

µf−1 = vif−1. (51)

The 4D energy-momentum tensor of matter T ij is given by:

T ij = ρvivj. (52)

Then, the field equations can be divided into:

Gij = 8πGΦ−1f−1T ij + 2GΦ2

(
F ikF j

k −
1

4
ηijF klFkl

)
+

1

Φ

(
Φ,i;j − ηijΦ,k

;k

)
, (53)

(
F ikΦ3

)
;k

= 8π
√
GΦρviw̄4, (54)

3

2
GΦ2F ijFij −

1

2
R = 8πGΦ−1fρw̄4w̄4. (55)

Equation (54) should have the form of Maxwell’s equation of electromagnetic fields. For this reason,
we have:

8π
√
GΦρviw̄4 = 4πjie, (56)

where jie is the 4D electric current density. For a uniform charged system with mass m and electric
charge Q, the electric current density jie can be written as:

jie =
Q

m
ρvi, (57)

Substituting Equation (57) into Equation (56), we obtain the fifth component of the 5D covariant
velocity of motion:

w̄4 =
Q

2
√
Gm

Φ−1 = αΦ−1, (58)

where:
α =

Q

2
√
Gm

. (59)

Then, the factor f (Equation (30)) becomes:

f =
Φ√

α2 + Φ2
, (60)

the fifteenth component of the 5D energy-momentum tensor T̄ 44 (Equation (50)) can be derived as:

T̄ 44 =
ρα2

Φ2
√
α2 + Φ2

, (61)

and the field equations cam be simplified as:

Gij = 8πGΦ−1f−1T ij(m) + 2GΦ2

(
F ikF j

k −
1

4
ηijF klFkl

)
+

1

Φ

(
Φ,i;j − ηijΦ,k

;k

)
, (62)
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(
Φ3F ik

)
;k

= 4πjie, (63)

Φ,k
;k = GΦ3F ijFij +

8πG

3
f−1

[
T i i(m)− 2α2ρ

Φ2 + α2

]
. (64)

In the coordinate indices form, the field equations of the 5D fully-covariant KKΦ theory are:

Gµ
ν = 8πGΦ−1

[
f−1T µν(m) + T µν(F ) + T µν(Φ)

]
, (65)

Hµν
;ν = 4πjµe , (66)

Φ,λ
;λ = GΦ−3HµνHµν +

8πG

3
f−1

[
T µµ(m)− 2α2ρ

Φ2 + α2

]
, (67)

where:
T µν(m) = ρvµvν , (68)

T µν(F ) =
Φ3

4π

(
F µλFνλ −

1

4
δµ νF

λρFλρ

)
, (69)

T µν(Φ) =
1

8πG

(
Φ,µ

;ν − δµ νΦ
,λ
;λ

)
, (70)

Hµν = Φ3F µν . (71)

It is seen that, from this set of field equations, there is not any unknown parameter like the scalar
charge in [33]. The parameter f is a new factor, which is determined by the constant α and the scalar
field Φ. When the matter is electrically neutral (α = 0), the factor f becomes unity. The scalar
field equation of the 5D fully-covariant KKΦ theory is comparable to the governing equation of the
Brans–Dicke theory with the dimensionless Brans–Dicke coupling constant ω = 0 for an asymptotic
limitation [52]. When α = 0 and Φ = 1, Equation (65) becomes the 4D Einstein field equation. A scalar
field (if Φ > 1) can significantly weaken both gravitational and electromagnetic fields of matter. In other
words, it can effectively shield the gravity and polarize the space.

For the electromagnetic field equation (Equation (54)) derived from the present 5D theory to be
Maxwellian, we determined the fifth component of the 5D covariant velocity of motion (Equation (58))
in terms of the charge-mass ratio and scalar field. We further determined the fifteenth component
of the 5D energy-momentum tensor in terms of the fifth component of the 5D covariant velocity of
motion (Equation (50)). Distinguishing from the previous 5D theories, which did not describe matter
and its motion in the 5D spacetime, we call the present one a 5D fully-covariant KKΦ theory or 5D
fully-covariant gravity.

The scalar field in the 5D fully-covariant KKΦ theory is governed by the scalar field equation
(Equation (64) or Equation (67)) without any free parameter and, thus, completely determined from the
solution rather than chosen arbitrarily. It deviates from (or reduces to) the 4D gravity, but is negligible in
the case of weak fields and neutral matter, so that the 5D fully-covariant KKΦ theory does not conflict
with Newton’s law of gravity and observations. The present 5D theory is permitted with the experimental
point of view. It also predicts new effects when the fields, including the scalar field, are strong and, thus,
has important applications in astrophysics with strong fields. The scalar field of all previous 5D theories
needs to be stabilized for it to be permitted with the experimental point of view, but the present 5D theory
does not need such constrains. We couple the matter with the scalar field through a 5D fully-covariant
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description of matter and its motion, rather than by a specific set of stabilization conditions. We develop
this 5D theory from the 5D vielbein or the metric for the fields and the 5D covariant description of
density and velocity for the matter and its motion.

4. Equation of Motion

Using the 5D Bianchi identity, ḠAB
;B = 0, we can obtain the 5D equation of motion from the

5D Einstein field equation (Equation (41)) as:

T̄AB;B = 0. (72)

When A = 4, we have that dα/ds = 0, and hence, dα/d̄s = 0. This means that α is a constant of
motion in the 4D spacetime, as well as in the 5D spacetime. When A = i, we have:

T ik;k = fF i
kj
k
e + ρα2f 2Φ−3Φ,i + ρf−1f,kv

ivk. (73)

In the coordinate indices, the equation of motion for the pressureless matter can be written as:

ρvµ ,λv
λ = −ρΓµ λνv

λvν + fF µ
νj
ν
e + ρα2f 2Φ−3(Φ,µ + Φ,νv

µvν). (74)

It is seen that the motion is governed by three forces: gravitational, electromagnetic and scalar field
forces. The factor f influences explicitly both the electromagnetic and scalar field forces. The scalar field
force is proportional to the scalar field gradient. In addition, the second term of the scalar field force is a
new result, which indicates that the scalar field with a gradient exerts more force on moving particles.

For the motion of a single particle, the 5D action of matter can be represented as:

S̄m = −
∫
md̄s. (75)

According to the principle of variation δS̄m = 0, we have the equation of particle motion in the
5D spacetime as:

dū

d̄s
+ Γ̄ABC ū

BūC = 0 (76)

When A = 4, we have again α = constant. When A = i, we have:

dvi

ds
+ Γijkv

ivk − 2
√
GαfF i

jv
j − α2f 2Φ−3Φ

′i − vid ln(f)

ds
= 0 (77)

In the coordinate indices, the equation of motion for a single particle can be written as:

dvµ

ds
+ Γµλνv

λvν − 2
√
GαfF µλgλνv

ν − α2f 2Φ−3Φ
′µ − vµd ln(f)

ds
= 0. (78)

This is similar to Equation (74). Again, the last term shows that the scalar field force may accelerate
a particle more significantly if it is moving faster. This may have an important effect in particle physics.
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5. Static Spherically-Symmetric Field Solution of the 5D Fully-Covariant KKΦ Theory

5.1. Exact External Field Solution

For a static spherically-symmetric system, we usually write the isotropic line element of the 4D
spacetime as [53]:

− ds2 = gµνdx
µdxν = −eνdt2 + eλ(dr2 + r2dθ2 + r2 sin2 θdφ2), (79)

where λ and ν are functions of the radial coordinate r. Then, the non-zero components of the Einstein
curvature tensor are:

G0
0 = e−λ

(
λ

′′
+

1

4
λ′2 +

2λ′

r

)
, (80)

G1
1 = e−λ

(
1

4
λ′2 +

1

2
λ′ν ′ +

λ′ + ν ′

r

)
, (81)

G2
2 = G3

3 = e−λ
(

1

2
ν

′′
+

1

2
λ

′′
+

1

4
ν ′2 +

ν ′ + λ′

2r

)
, (82)

where the prime ′ is the first order derivative with respect to r and the double prime ′′ is the second
order derivative with respect to r. The electromagnetic field Equation (66) can be easily integrated.
The non-zero components of Hµν and Hµν are:

H01 = −H10 =
Q

r2
exp

[
−ν + 3λ

2

]
, (83)

H01 = −H10 = −Q
r2

exp

[
ν − λ

2

]
. (84)

Here, Q is the total electric charge in the sphere with radius r. The gravitation and the scalar field in
the 5D spacetime with a pressureless matter are then determined by the following equations:

e−λ
(
λ′′ +

1

4
λ′2 +

2λ′

r

)
= 8πGf−1Φ−1T 0

0(m) +
Q2G

Φ4r4
e−2λ +

Φ′ν ′

2Φ
e−λ

− 8πG

3
f−1Φ−1T µµ(m) +

16πGα2ρ

3Φ2
√

Φ2 + α2
, (85)

e−λ
(

1

4
λ′2 +

1

2
λ′ν ′ +

λ′ + ν ′

r

)
= 8πGf−1Φ−1T 1

1(m) +
Q2G

Φ4r4
e−2λ+

1

Φ

(
Φ′′ − 1

2
Φ′λ′

)
e−λ − 8πG

3
f−1Φ−1T µµ(m) +

16πGα2ρ

3Φ2
√

Φ2 + α2
, (86)

e−λ
[

Φ′′

Φ
+

Φ′

Φ

(
2

r
+
λ′ + ν ′

2

)]
= −2Q2G

Φ4r4
e−2λ +

8πG

3
f−1Φ−1T µµ(m)− 16πGα2ρ

3Φ2
√

Φ2 + α2
. (87)

To solve the exact external solution, we can let ρ = 0 (i.e., all T µµ(m) = 0 with µ = 0, 1, 2, 3). Then,
the field equations become:

λ′′ +
1

4
λ′2 +

2λ′

r
=
Q2G

Φ4r4
e−λ +

Φ′ν ′

2Φ
, (88)
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1

4
λ′2 +

1

2
λ′ν ′ +

λ′ + ν ′

r
=

Φ′′

Φ
− Φ′λ′

2Φ
+
Q2G

Φ4r4
e−λ (89)

Φ′′

Φ
+

Φ′

Φ

(
2

r
+
λ′ + ν ′

2

)
= −2Q2G

Φ4r4
e−λ. (90)

From [33,41], the exact external solution of the field equations (Equations (85)–(87)) can be
represented as:

eλ =

(
1− B2

r2

)2

ψ−2, (91)

eν = ψ2Φ−2, (92)

Φ2 = a1ψ
p1 + a2ψ

p2 , (93)

where:

ψ =

(
r −B
r +B

) C
2B

(94)

and the seven constants (K, p1, p2, B, C, a1 and a2) hold the following five relations:

p1 = 1 +
√

1 +K, (95)

p2 = 1−
√

1 +K, (96)

K =
4(4B2 − C2)

C2
, (97)

Q2 + a1a2C
2(1 +K)G−1 = 0, (98)

a1 + a2 = 1. (99)

Here, we have used the asymptotic conditions: eλ → 1, eν → 1 and Φ → 1, at r → ∞. The five
constant relations cannot determine the seven unknown constants. Comparing the exact field external
solution at the large radial distance with a weak field internal solution, we can have two more constant
relations, so we can completely determine all of the constants. In the following section, we first solve the
field Equations (85)–(87) of the 5D fully-covariant KKΦ theory to have a weak field internal solution.

5.2. Weak Field Internal Solution

For weak fields, we can write eλ, eν and Φ as:

eλ = 1 + δλ, (100)

eν = 1 + δν, (101)

Φ = 1 + δΦ. (102)

Substituting Equations (100)–(102) into the field equation Equations (85)–(87) and keeping the first
order, we have the weak field equations:

1

r2
d

dr
[r2(δλ)′] = − 16πGρ

3
√

1 + α2
, (103)
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1

r2
d

dr
[r2(δΦ)′] = −8πGρ(1 + 3α2)

3
√

1 + α2
, (104)

1

r

d

dr
(δν + δλ+ 2δΦ) = 0. (105)

Here, we have not assumed the density of matter ρ nor the energy-momentum tensors to be zero,
because we are solving the internal field. Integrating and using the condition δλ → 0, δν → 0 and
δΦ→ 0, as r →∞, we have:

δλ =
4Gm

3
√

1 + α2

1

r
, (106)

δν = −4Gm(2 + 3α2

3
√

1 + α2

1

r
, (107)

δΦ =
2Gm(1 + 3α2)

3
√

1 + α2

1

r
. (108)

Then, the internal solution of the weak fields is obtained as:

H01 = −H10 = −H01 = H10 =
Q

r2
, (109)

eλ = 1 +
4Gm

3
√

1 + α2

1

r
, (110)

eν = 1− 4Gm(2 + 3α2)

3
√

1 + α2

1

r
, (111)

Φ = 1 +
2Gm(1 + 3α2)

3
√

1 + α2

1

r
. (112)

5.3. Determination of the Exact Solution Constants

The exact field external solution of the 5D fully-covariant KKΦ theory includes two independent
constants. The five constant relation Equations (95)–(99) cannot determine the seven unknown constants
(K, p1, p2, B, C, a1, a2) in the exact solution.

In Einstein’s general theory of relativity, one can get the Schwarzschild solution of a
spherically-symmetric object with mass M without any undetermined parameter, except for the mass
M , by the following three equivalent methods. The first is the Newton gravitational potential method,
which operates in two steps. We first obtain an exact external solution with one integration constant
and then compare the obtained exact solution with the Newton gravitational potential to determine the
constant [53,54]. The second is the volume integration method. For a pressureless or ideal fluid matter,
we can complete a volume integration to the non-vacuum Einstein field equation over a sphere to directly
find the Schwarzschild solution without any unknown parameter. The third method is the weak field
internal solution method. Furthermore, for a pressureless matter, we first obtain a weak field interior
solution (it is the same as that given by the Newton gravitational potential), as well as an exact external
solution, and then compare them on the surface of a sphere with a sufficiently large radius to determine
the integration constant of the exact external solution. These three methods lead to the same result: the
Schwarzschild solution.
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In a 5D KKΦ theory, however, there are three types of fields (gravitational, electromagnetic and scalar
fields), and also, the field equations are highly nonlinear. Thus, the first and second methods described
above are not appropriate for the 5D KKΦ theory. The third (or the weak field internal solution) method
may be applicable to the 5D KKΦ theory. It is important to find the weak field interior solution when
we apply this method to the 5D KKΦ theory. Chodos and Detweiler [33] determined the independent
constants by using the weak field limit at a large distance in the same way as in the Schwarzschild
solution; the single constant was determined by using the Newton potential of weak gravity [53,54].
To find the weak field internal solution, Chodos and Detweiler assumed the fifteenth component of
the 5D energy-momentum tensor of matter to be T̄ 44 = sρ, where s is the scalar charge per unit mass
and ρ is the matter density. Since they introduced an unknown parameter, the new results obtained from
the 5D KKΦ theory were non-conclusive. In [33], a weak field interior solution of the 5D KKΦ theory
was obtained, but it includes an unknown parameter named the scalar charge. The reason is because they
introduced the artificial parameter to describe the 5D pressureless matter. In the 5D fully-covariant KKΦ

theory, the author derived T̄ 44 (Equation (61)) without the scalar charge. With this weak field internal
solution method, we should be able to determine all constants in the exact field external solution.

Expanding the exact external solution of the 5D fully-covariant KKΦ theory and comparing it with
the weak field interior solution on a spherical surface at a large distance, we obtain two more independent
constant relations, which can be used along with the five constant relations to determine all of the seven
unknown constants,

C =
2Gm

3
√

1 + α2
, (113)

− C(a1p1 + a2p2) =
4Gm(1 + 3α2)

3
√

1 + α2
. (114)

Coupling Equations (113) and (114) with the other constant relation Equations (95)–(99), we can
exactly solve all seven unknown constants in the exact external solution as:

K = 8, (115)

p1 = 4, p2 = −2, (116)

a1 = −α2, a2 = 1 + α2, (117)

C =
2Gm

3
√

1 + α2
, B =

Gm√
3(1 + α2)

. (118)

The cgs unit system with c = 1 is adapted in this study. If the light speed c is retained, the constants
B and C need to be multiplied by 1/c2. This set of constants is the simplest and most elegant, because
of K = 8, for the field solution of the 5D fully-covariant KKΦ theory to be non-trivial. It is seen that
the obtained static, spherically-symmetric field external solution of the 5D fully-covariant KKΦ theory
does not involve any unknown parameter and undetermined constant. The exact external solution is
completely determined by giving the gravitational constant G, the mass M and the electric charge Q
or α. Therefore, the radial dependences of the most general time-independent, spherically-symmetric
field external solution is completely determined when the charge and mass of matter are given. In the
following section, we will analyze the solution properties and their astrophysical applications.
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6. Field Solution Properties and Astrophysical Applications

6.1. Solution Properties

To see the field solution properties, we plot eλ, eν , Φ and E/Ec in Figure 1 as functions of the
normalized radial distance r/B with five different charge-to-mass ratios α = 0, 1, 10, 100, 1,000.
Here, E is the electric field strength defined by E = F10 and Ec is the Coulomb electric field strength,
Ec = Q/r2. It is seen that all of these variables of the field solution asymptotically approach unity
when r is sufficiently large or approaches infinity. When r tends to be small, the solution eλ, which is
independent of α at any normalized radial distance, reaches a maximum of about two at r ' 2B and then
wanes to zero rapidly as r → B (Figure 1a). The solutions, eν , Φ and E/Ec, however, are significantly
affected by the electric charge of the matter when r is not sufficient large. Especially, as r → B, both
eν and E/Ec become zero (Figure 1b,d), while Φ tends to infinity (Figure 1c). For a non-massive or
non-dense object, the effects of electric charge and scalar field on the gravitational, electromagnetic and
scalar fields are very small, no matter how big the charge-to-mass ratio α is, because B is very small in
comparison with the size of the object.

Figure 1. Radial dependences of the static spherically-symmetric solutions of gravitation,
electromagnetism and the scalar field with α = 0, 1, 10, 100, 1,000 (taken from [45]).
(a) eλ vs. r/B; (b) eν vs. r/B; (c) Φ vs. r/B; and (d) E/Ec vs. r/B.

Table 1 shows that the values of B for a spherical object with different α and m. It is seen that
B increases if either m increases or α decreases. In comparison with the general theory of relativity,
B is significantly smaller than the Schwarzschild radius, especially when the spherical body is highly
charged. Therefore, the electric charge effects on the fields are negligible if the charged body is not dense
and massive.
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Table 1. Values of B in centimeters with different α and m in grams.

m = 10−24 m = 10−10 m = 1 m = 1010 m = 1033 m = 1040

α = 1018 4× 10−71 4× 10−57 4× 10−47 4× 10−37 4× 10−14 4× 10−7

α = 1010 4× 10−63 4× 10−49 4× 10−39 4× 10−29 4× 10−6 4× 101

α = 105 4× 10−58 4× 10−44 4× 10−34 4× 10−24 4× 10−1 4× 106

α = 102 4× 10−55 4× 10−41 4× 10−31 4× 10−21 4× 102 4× 109

α = 1 3× 10−53 3× 10−39 3× 10−29 3× 10−19 3× 104 3× 1011

α = 0 4× 10−53 4× 10−39 4× 10−29 4× 10−19 4× 104 4× 1011

Figure 2 plots the field solutions eλ, eν , Φ and E/Ec of a star with 1.5 solar masses and α = 0, 1,
10, 100, 1,000 as functions of the radial distance r in meters. It is seen that all of the field solutions are
dependent on α and approach unity when r tends to infinity. The solution eλ has the same profile, but the
peak shifts towards the smaller radius end as α increases (Figure 2a). When r → B, all functions eλ, eν

andE/Ec approach zero (Figure 2a,b,d), while Φ approaches infinity (Figure 2c). A star, if it is compact,
has a large scalar field, but a weak gravitational field in comparison with the Newton gravitational field
and a weak electric field in comparison with the Coulomb electric field. These derivations from the
Newton gravitational law and Coulomb electric law are because the equivalent gravitational constant is
significantly decreased (or shed) and the space is greatly polarized by the strong scalar field (see the
following Sections 6.4 and 6.6).

Figure 2. Radial dependences of the static, spherically-symmetric solutions of gravitation,
electromagnetism and the scalar field for a star with 1.5 solar masses and α =

0, 1, 10, 100, 1,000. (a) eλ vs. r; (b) eν vs. r; (c) Φ vs. r; and (d) E/Ec vs. r.
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6.2. Field Solution in the Einstein Frame and Fundamental Tests

The 4D metric solution obtained above interprets the 4D spacetime in a frame, usually called the
Jordan frame. It can be transformed into the Einstein frame [55] via the following conformal transformation,

ds2E = φds2. (119)

Mathematically, both the Jordan and Einstein frames are equivalent. Physically, they should also be
equivalent if we are able to adjust our time and length measuring clocks and rods to be independent of
theory [56]. However, if we fix our measuring clocks and rods in one frame, then the two frames are
physically nonequivalent. Determining the planet perihelion procession, the deflection of light by the
Sun, the redshift of the Sun’s light and the delay of radar echoes (the four fundamental tests of general
relativity) in both frames and comparing with the results of experimental measurements can tell us on
which frame we are standing.

The 00- and 11-components of the 4D spacetime metric in the Einstein frame are:

− gE00 = φeν =
ψ2

φ
, (120)

gE11 = φeλ =

(
1− B2

r2

)2
φ

ψ2
. (121)

In the weak field approximation (i.e., B << r or, in other words, the gravitational potential energy of
a particle is much less than its rest energy), we have:

− gE00 = 1− 2Gm
√

1 + α2

r
−→ 1− 2Gm

r
, if α2 << 1 or 0, (122)

gE11 = 1 +
2Gm

√
1 + α2

r
−→ 1 +

2Gm

r
, if α2 << 1 or 0. (123)

It is seen that for an electrically neutral matter α2 = 0 or weakly charged matter α << 1, the field
solution of the 5D fully-covariant KKΦ theory reduces to the Schwarzschild solution. Considering the
normal star that can be electrically charged at most by about 100 Coulomb due to the radiation pressure,
we have α = 10−20 ∼ 0 for the Sun. Therefore, the four fundamental measurements that have tested
Einstein’s general theory of relativity have also tested the 5D fully-covariant KKΦ theory.

To see also the solution properties and differences in the strong field case, we plot in the left column
of Figure 3 the field solutions g11 and −g00 in the Einstein frame as functions of the normalized radial
distance r/B with the five different charge-to-mass ratios α = 0, 1, 10, 100, 1,000. It is seen that
as r → B, the 11-component of the metric solution increases and then suddenly decreases to zero.
For a greater α, the peak g11 is higher. The 00-component approaches zero as r → B. For a compact
(or strong field) object (especially when the object is electrically charged), the gravitational field solution
of the 5D fully-covariant KKΦ theory in both the Jordan and Einstein frames significantly deviates from
the Schwarzschild solution. To see the difference more quantitatively between them, we plot −g00 and
g11 in both the Jordan and Einstein frames with α = 0 along the Schwarzschild solution as functions of
the radial distance in the right column of Figure 3.
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Figure 3. Radial dependences of the static spherically-symmetric KK solution of the
gravitational field in the Einstein frame with α = 0, 1, 10, 100, 1,000. (a) g11 vs. r/B;
(b) −g00 vs. r/B; (c) g11 and (d) −g00 from the Kaluza–Klein (KK) solution in both Jordan
and Einstein frames with that from the Schwarzschild solution for a neutron object with 1.5
solar masses.

6.3. Electric Redshift and Quasars

The redshift mechanisms that are well-developed so far include: (1) the Doppler redshift due to
motion; (2) the Einstein gravitational redshift due to gravity; and (3) the cosmological redshift due to
the expansion of the universe. Recently, the author developed a new redshift mechanism, called electric
redshift [45], which is due to electric charge, according to the 5D fully-covariant KKΦ theory.

In the 5D fully-covariant KKΦ theory, light travels on null geodesics, i.e.,

d̄s
2

= f 2ds2 = 0. (124)

Then, along a radial light path, we have,
√
−g00dt =

√
g11dr. (125)

It follows that: ∫ to

te

√
−g00dt =

∫ to+δto

te+δte

√
−g00dt =

∫ ro

re

√
g11dr, (126)

where te is the time for the emission of the light and to is the time for the observation of the light. Since
δte,o = 1/νe,o = λe,o/c, the redshift Z can be determined as:

1 + Z =
λo
λe

=
νe
νo

=
δto
δte

=

√
−g00(re)√
−g00(ro)

. (127)
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Here, λe and νe (or λo and νo) are the wavelength and frequency of emitted (or observed) light,
respectively. Light from a source object is redshifted, because the time interval is increased or the energy
of photons is decreased due to the gravitational, electromagnetic and scalar fields. For light emitted from
the surface of an object with radiusR and observed by a distant observer (re = R and ro =∞), we have:

Z =
√
−g00(R)− 1 = e−ν(R)/2 − 1. (128)

As shown by this equation, this type of redshift depends on both mass m and electric charge Q and
can be called electric-gravitational redshift. The extra part due to electric charge was called electric
redshift [45], which can be significant and dominant when the charge-mass ratio is much greater than
unity, α >> 1.

Figure 4a plots Z as a function of R/B with α = 0, 1, 10, 100, 1,000. It is seen that the redshift
increases with increasing α, but decreases with increasing R/B. If α > 10 and R < 1000B, the redshift
can be greater than unity. If α < 1, the redshift cannot be greater than unity, except for R < 3B.

Figure 4. Electric redshifts (taken from [45]). (a) Z vs. R/B of a sphere with α = 0, 1, 10,
100, 1,000; (b) Z vs. R of a star with 1.5 solar masses and α = 0, 1, 10, 100, 1,000.

To satisfy R < 1, 000B, the spherical body must be very dense and massive, like a neutron star.
Figure 4b plots the redshift Z as a function of the radius R of a star with 1.5 solar masses and α = 0, 1,
10, 100, 1,000. It is seen that the redshift can exceed unity if α > 10 and R < 100 (km). For the redshift
to be greater than unity at α < 1, the star radius must be less than about 5 km. This result may have a
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great impact on the understanding of quasars with extremely large redshifts. If a quasar is a star as dense
as a neutron star, but electrically charged up to a certain amount, the light rays emitted from its surface
can be significantly shifted toward the red up to the order of quasar redshift measurements. For instance,
considering a star as dense as a neutron star with 1.5 solar masses (in which there are∼ 2×1057 neutrons)
and radius R = 20 (km), the redshift can be as high as Z ' 5, if 10−16% of neutrons are replaced by
protons (∼ 2× 1041 protons or α ' 60).

It might be possible that a star as dense and massive as a neutron star is charged due to holding
a certain amount of net protons or nuclei. The fraction of protons in neutron stars and the effect of
electric charge in compact stars have been considered for years [57,58]. To reproduce the observations
of Geminga, a model of a dense neutron star with localized protons was proposed [59,60]. The electric
redshift mechanism proposed in [45] may help people to understand more about quasars. If a quasar is a
dense, massive and highly charged star as a result of holding extra protons, then not only the evidence of
higher redshift quasars in association with lower redshift galaxies, but also the luminosity variations on
short timescales and the existence of a strong magnet moment can be understood [61–63]. In addition,
the quasi-stellar characteristic of a quasar is also understandable, because a dense, massive and highly
charged star should be surrounded by a hot, dense, thick, electron-rich plasma cloud or sheath. This new
redshift mechanism does not have to go against the Big Bang cosmology, because the electric redshifts
are negligible for normal stars, galaxies and large-scale matters.

In the Einstein frame, the electric redshift is given by:

ZE ' 1√
φ
e−ν(R)/2 − 1. (129)

It is relatively weak in comparison with that in the Jordan frame, but still much more significant than
the gravitational redshift when the object is compact and highly charged electrically [64].

6.4. Gravitational Field Shielding and Supernova Explosions

In the 5D fully-covariant KKΦ theory of the Einstein frame, the gravitational field of a spherical
object can be obtained from the equation of motion (Equation (74) or Equation (78)) for neutral matter
or particles as: [46]

g =
c2

2φ2

(
dφ

dr
+ φ

dν

dr

)
e−λ. (130)

The Newton gravitational field is given by gN = GM/r2. Figure 5 plots the KK (solid line) and
Newton (dotted-dashed line) gravitational fields as functions of r for a neutral object (i.e., α = 0)
with 1.5 solar masses. It is seen that when the object shrinks to about B in radius (i.e., r → B),
the KK gravitational field suddenly goes to zero (turns off or is shed). The radius difference δr for the
gravitational field turning off or shielding is only a few tens of meters, which is much smaller thanB. For
the case of Figure 5 (i.e., an object with 1.5 solar masses), δr ∼ 20 m andB ∼ 1.3 km. The gravitational
field of the compact object, when its mass-radius ratio is equal to M/B =

√
3c2/G ∼ 2.3× 1027 kg/m,

is shed by the strong scalar field or the huge mass enclosed.
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Figure 5. KK (solid line) and Newtonian (dot-dashed line) gravitational fields at the surface
of a spherical object with 1.5 solar masses vs. the radius of the object [46].

According to the 5D fully-covariant KKΦ theory, the gravitational and electromagnetic fields can be
significantly reduced by the scalar field. The decrease of the electromagnetic field by the scalar field
was called vacuum polarization [12,13]. We call the decrease of the gravitational field by the scalar field
gravitational field shielding or spacetime flattening by the scalar field [46,65]. As shown in our previous
studies, a massive compact object can produce a significant scalar field, which reduces the gravitational
field (or varies the equivalent gravitational constant) around the object. The scalar field not only polarizes
the space by reducing or shielding the electromagnetic field, but also flattens the spacetime by reducing
or shielding the gravitational field.

The critical density of the core for gravitational field shielding is given by:

ρc =
3M

4πB3
=

9
√

3c6

4πG3M2
, (131)

where the light speed is retained and M is the core mass. It is seen that the critical density is inversely
proportional to the square of the core mass.

When the gravity is shed, the large pressure causes the core to expand and throw the mantle material
of the supernova outward. The energy release for the supernova explosion can be roughly estimated
according to the work done by the thermal pressure to expand the core from B to B + δr:

E ∼
∫
PidV = 4π

∫ B+δr

B

Pir
2dr, (132)

where Pi is the thermal pressure given by Pi = (3/2)nkT with n being the baryon number density of
the core, k the Boltzmann constant and T the temperature. Because δr << B, the thermal pressure can
be considered as a constant in this expansion. Considering that a neutron star may have a temperature
as high as a hundred to a thousand billion degrees (e.g., 5 × 1011 K) at the moment of its birth by an
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explosion of a supernova [66], we can choose T ∼ 5 × 1011 K. Substituting Pi into Equation (132),
we have:

E = 4πPiB
2δr = 6πnkTB2δr =

9M

2mp

kT
δr

B
=

9
√

3c2kT

2Gmp

δr. (133)

For δr = 20 m and T = 5× 1011 K, we have E ∼ 8× 1044 J, which is about the order of supernova
explosion energy.

In the above calculation, the thermal pressure of ideal gas is applied. At T = 5× 1011 K, the thermal
pressure is Pi = (3/2)nkT ' 2×1036 Pa. If we consider the core matter as a degenerate gas, the pressure
at the critical density will be many orders of magnitude higher (e.g., 1040 Pa [67,68]), which crucially
depends on the equation of state (EOS) of the core matter. With this consideration of degeneracy, the
work done by the pressure in the expansion of the core when the gravitational field turns off will be
the order of 1048 J. It should be noted that the gravity will partially come back or turn on as the core
expands. The gravity resumed will dissipate the energy transformation from the expansion of the core to
the explosion of the mantle material. Ten-thousandths of the total work done by the pressure when the
gravitational field shielding takes place can provide enough energy to ignite the supernova explosion. To
characterize the explosion, a more realistic EOS must be considered.

6.5. Singularity and Gravitationless Black Hole

The obtained field solution of the 5D covariant KKΦ theory is singular at the point of r = B.
The functions, eλ, eν and F10, are limited to zero, but Φ approaches infinity at this point. All of the
functions are undefined and, hence, not physical when r < B, due to having a number, such as (−1)1/

√
3,

without a definition in mathematics. Thus, the field solution is only valid for r ≥ B (or ψ ≤ 1). We
cannot transform topologically from the space with r ≥ B into that with r < B. Therefore, the field
solution of the 5D fully-covariant KKΦ theory is singular at r = B. An object with a radius equal to or
less than B can be considered as a black hole. Given the same mass, the KK black hole has a smaller
size than the Schwarzschild black hole, by a factor of

√
3/6 in radius.

For a star core with radius R and mass M (so that the core density ρ = 3M/(4πR3)), its gravitational
pressure can be obtained by [47]:

Pg = −
∫ R

0

ρgdr, (134)

where g is given by Equation (130). When the core collapses into a black hole, the work done by the
gravitational field can be calculated by:

Wg = 4π

∫ B

Rc

PgR
2dR. (135)

where Rc is the core radius at initial (Rc >> B). On the other hand, the core gas pressure works against
the gravitational collapse. The work done by the core gas pressure Pi can be calculated by:

Wi = −4π

∫ B

Rc

PiR
2dR. (136)

Considering the core matter as a degenerate neutron gas, we can determine Pi by:

Pi =
1

8

(
3c3h3

π

)1/3

n
4/3
i (137)
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for relativistic and:

Pi =
1

10mn

(
3h3

8π

)2/3

n
5/3
i (138)

for non-relativistic, where mn is the neutron mass, h is the Planck constant and ni is the neutron
number density.

Integrating Equations (135) and (136) with Equations (134), (137) and (138), we plot in Figure 6
the work done by the gravitational field (solid line) and by the pressure of relativistic (dotted line) and
non-relativistic (dashed line) degenerate neutron gases as functions of the core mass. It is seen that to
collapse into a gravitationless black hole, a relativistic degenerate neutron core must have a mass greater
than ∼ 7.5 solar masses (called the upper limit), while a non-relativistic core need only exceed ∼ 2.7

solar masses (called the lower limit). A sufficiently cooled neutron star, because the degenerate neutron
gas is non-relativistic, will collapse into a gravitationless black hole when it accretes enough matter
from a companion star, such that the total mass exceeds the lower limit. A collapsing core of a massive
star at the end of evolution can collapse directly into a gravitationless black hole if the core degenerate
gas is relativistic and the core mass exceeds the upper limit. If the core degenerate gas is intermediate
relativistic, the upper mass limit will be less than 7.5 solar masses. In the work integrations, we have
chosen Rc/B = 20, on which the lower and upper mass limits depend, but not significantly.

Figure 6. The work done by gravity (Wg) and pressure Pi (Wi,1 for relativistic and Wi,2 for
non-relativistic) vs. the core mass when the core radius collapses to B [47].

Therefore, in general, a star with a collapsing core above the upper mass limit will directly collapse
into a black hole, including the mantle material. In this case, no supernova explosion occurred, and the
formed black hole includes the entire star with a mass usually tens of solar masses or more. A star with
a collapsing core below the lower mass limit will form a neutron star after the mantle, including the core
crust, is exploded out, due to the gravitational field shielding or turning off. The formed neutron star
can further evolve into a black hole when it accretes enough matter from a companion star, such that the
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total mass exceeds the lower limit. The formed black hole includes the masses of the neutron star and
the companion star. A star with a collapsing core below the upper limit, but above the lower limit, will
form a neutron star first and, then, as it cools, collapse further into a black hole with a mass below the
upper limit. The cooling period of neutron stars can be hundreds of years up to millions of years [69].
The compact object formed from SN1979C should be a neutron star at the moment of its formation [70]
and should collapse into a black hole as it cools, if its mass exceeds the lower limit.

In accord with the Schwarzschild solution of the Einsteinian general relativity, the lower and upper
mass limits for the formation of a Schwarzschild black hole are much lower than those in the KK theory.
This implies that a collapsing star forms a strong gravitational Schwarzschild black hole more easily than
a gravitationless KK black hole. This can explain the observations that some very massive stars with
masses over 40 solar masses, after supernova explosions, formed neutron stars rather than the expected
black holes [48–50].

A black hole that has no gravity at the surface may generate a jet more easily than a black hole that
has a strong gravitational field. Accreting material near the surface will be subjected to a strong pressure
force along the direction perpendicular to the accreting disc (or parallel to the z-axis) when the gravity is
turned off. The strong z-component pressure force can accelerate the material to become relativistic jet
flows along the polar magnetic field lines. A magnetohydrodynamic model with the gravitational field
shielding effect may simulate the physical process of jet generation.

The gravitationless black hole model does not violate Penrose’s cosmic censorship conjecture,
because its surface is also an infinite redshift surface (1 + Z = (−gE00)−1/2 = φ3/2 → ∞, as r → B),
or an event horizon [45]. This implies that the singularity is not naked, and even light cannot escape
from the gravitationless KK black hole, similar to the Schwarzschild black hole. Particle motion around
the KK black hole will be studied and simulated in future according to the motion equation of the 5D
fully-covariant KK theory with a scalar field.

6.6. Space Polarization

Figure 1d has shown that the electric field of a charged compact object significantly derives from the
Coulomb electric field. The reason for this derivation is the polarization of the space by the strong scalar
field. To explore this space polarization in more detail, we define the dielectric constant (or the relative
permittivity) as,

εr ≡
Ec
E

= φ3 exp

(
λ− ν

2

)
. (139)

The relative permittivity εr depends on the scalar field φ and the gravitational field metric functions
eλ and eν . Therefore, εr is a function of α, m and r. If εr > 1 (i.e., E < Ec), we say that the space
is polarized.

The polarization coefficient is usually defined by:

δp ≡
Ec − E
Ec

= 1− 1

εr
. (140)

Here, the polarization coefficient is similar to the dielectric susceptibility, which is defined by
χ ≡ εr − 1 = (Ec − E)/E. The polarization coefficient is in the range of 0 ≤ δp ≤ 1. The space
or vacuum is not polarized when δp = 0 (or εr = 1) and completely polarized when δp = 1 (or εr =∞).
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Figure 7 plots the relative permittivity εr as a function of r/B for a charged object with α = 0.1,
1, 10, 100, 1,000. Figure 8 plots the relative permittivity εr as a function of radial distance r for a
charged compact star with 1.5 solar masses and a charge in the range of α = 0.1−1,000. It is seen
that the electric field asymptotically approaches the Coulomb’s electric field (i.e., εr → 1 or δp → 0)
when r is sufficiently large or approaches infinity. When r tends to be small, however, the electric
field significantly deviates from the Coulomb’s electric field (i.e., εr � 1 or δp → 1), because the
vacuum space is extensively polarized by the strong scalar field. When r tends to B, the dielectric
coefficient approaches to infinity, and the electric field becomes weak as compared with the strength of
the Coulomb’s electric field, especially when the object is highly charged. In the limit case of εr = ∞,
we say that the vacuum space is completely polarized by the extreme gravitational and scalar fields. It
should be noted that a big deviation at r ∼ B still exists, even if the object is weakly charged (α << 1).
The deviation increases as the charge increases. For instance, at α = 100 and r = 100 km, the electric
field is only 1% of the Coulomb electric field. The electric field is so weak compared with the strength
of the Coulomb electric field, and the vacuum space is almost completely polarized, especially when the
object is highly charged. If the compact star is weakly charged, the deviation is negligible when r > 30

km, but can be increased by about ten times when r decreases to be about 10 km.

Figure 7. Relative dielectric coefficient εr or electric field ratio Ec/E versus the normalized
radial distance r/B for a charged object with α = 0.1, 1, 10, 100, 1,000, respectively.

Using the Coulomb electric field, Ray et al. [58] obtained the maximum amount of charge in a
compact star by Q ∼

√
GM , which is Q ∼ 2.5 × 1020 C or α ∼ 0.5 if M = 3 × 1033 g. In the KK

theory with a scalar field, the extensive polarization of the space by the strong scalar field significantly
decreases the electric field from the Coulomb electric field around the charged compact star (see Figure
2d of [45] for the scalar field). Therefore, to produce an electric field capable of balancing the radiation
dragging between electrons and ions, a compact star requires more electric charges. In other words, the
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maximum amount of charge in a compact star can be significantly higher than that predicted with the
Coulomb force if the effect of the scalar field is considered.

Figure 8. Relative dielectric coefficient εr or electric field ratio Ec/E versus
the radial distance r for a charged compact star with 1.5 solar masses and α = 0.1, 1,
10, 100, 1,000, respectively.

7. Discussions and Conclusions

The 5D fully-covariant KKΦ theory can also be applied to develop a cosmology by modifying the
Friedmann equation. The scalar field in the 5D gravity plays the role of dark energy for the acceleration
of the universe expansion [71,72]. Recently, we have also, in accord with the 5D fully-covariant KKΦ

theory, developed a new mass-radius relation that perfectly explained the new observations of neutron
stars, especially those with greater masses and/or smaller radii [73–77]. From this 5D fully-covariant
KKΦ theory, we can have a modified Friedmann equation for cosmology, as well as a modified
Tolman-Oppenheimer-Volkoff (TOV) equation for neutron star. These modified equations will reveal
the roles of the scalar field in cosmology and astrophysics.

The 5D fully-covariant KKΦ theory is a classical unification of gravitational, electromagnetic and
scalar fields. In comparison with other 5D KKΦ theories and 4D scalar-tensor theories, it has three
essential advantages: (1) there does not exist any unknown parameter, such as a scalar charge s or a
coupling constant ω, and, thus, it can quantitatively be compared with observations; (2) it is equivalent
to the 4D Einstein’s general relativity, when the fields are weak and the matter is neutral, and, thus,
also passes the fundamental tests, such as the gravitational redshift of light, precession of a planet’s
perihelion, deflection of light by the Sun, delay of radar echoes, and so on; and (3) it predicts many new
effects, when the fields are strong, such as the space polarization, electric redshift, gravitational fielding
(or space flattening) etc., and, thus, is able to remodel cosmology and strong field astrophysics. To unify
more fundamental interactions, such as weak and strong forces, we must extend the dimension of the



Galaxies 2015, 3 46

spacetime from 5D to (n+ 4)D to include non-Abelian Yang–Mills fields. To develop a quantum theory
of unification, we shall study quantum wave equations in higher dimensions [78].

Figure 9. Various aspects of the 5D fully-covariant KKΦ theory with a scalar that
unified the 4D Einstein’s general relativity and Maxwell’s electromagnetic theory.
Zhang’s field solution reduces to the Schwarzschild solution in the Einstein frame
when the fields are weak and matter is neutral and, thus, experimentally well tested
with the fundamental measurements. In the strong field case, especially when matter
is significantly charged, the field solution predicts results with new effects, such as the
space polarization, electric redshift, gravitational field shielding, and so on. Furthermore,
a 5D fully covariant KKΦ cosmology with a scalar field dark energy can be developed by
using the Friedmann–Lemaitre–Robertson–Walker metric of spacetime.

As a consequence, we have comprehensively reviewed the 5D fully-covariant KKΦ theory and its
application to high energy and strong field astrophysics. This model uniquely describes the action of
matter also in 5D spacetime, which allows us to analytically derive the fifteenth component of the 5D
energy-momentum tensor of matter without assuming as usually an unknown parameter, called the scalar
charge, and thus, this guarantees that the developed 5D fully-covariant KKΦ theory does not include
any unknown parameter and undetermined constant. The gravitational, electromagnetic and scalar field
equations that are obtained from splitting the 5D Einsteinian field equation of the 5D fully-covariant
KKΦ theory were solved with an exact static spherically-symmetric external field solution and a weak
internal field solution. All integration constants in the exact external field solution were completely
determined with a perfect set of simple numbers and parameters that only depend on the mass and
electric charge. In the Einstein frame, the exact field solution obtained from the 5D fully-covariant KKΦ
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theory reduces to the Schwarzschild solution of Einstein’s general relativity when the matter is neutral
and the fields are weak. This guarantees that the fundamental tests of Einstein’s general relativity in
the cases of the weak field are also the tests of the 5D fully-covariant KKΦ theory. In the strong field,
especially when the matter is charged, however, the results from the 5D fully-covariant KKΦ theory
are significantly different from Einstein’s general relativity. Recently, the author has developed a new
redshift mechanism, called electric redshift, a new supernova explosion mechanism, called gravitational
field shielding, and a gravitationless black hole model, in accord with the exact solution of this 5D
fully-covariant Kaluza–Klein theory with a scalar field. Figure 9 summarizes the various aspects of
the 5D fully-covariant KK theory with a scalar field. This paper has provided an overall review of this
5D fully-covariant theory of gravitation, including the development of the theory, the properties of the
solution and applications in astrophysics.
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