
Galaxies 2015, 3, 53-71; doi:10.3390/galaxies3010053
OPEN ACCESS

galaxies
ISSN 2075-4434

www.mdpi.com/journal/galaxies

Article

Thermodynamic Relations for the Entropy and Temperature of
Multi-Horizon Black Holes
Wei Xu 1,2,*, Jia Wang 2 and Xin-he Meng 2,3

1 School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
2 School of Physics, Nankai University, Tianjin 300071, China;

E-Mails: wangjia2010@mail.nankai.edu.cn (J.W.); xhm@nankai.edu.cn (X.M.)
3 State Key Laboratory of ITP, ITP-CAS, Beijing 100190, China

* Author to whom correspondence should be addressed; E-Mail: xuweifuture@gmail.com;

Academic Editor: Lorenzo Iorio

Received: 12 October 2014 / Accepted: 28 January 2015 / Published: 2 February 2015

Abstract: We present some entropy and temperature relations of multi-horizons, even
including the “virtual” horizon. These relations are related to the product, division and sum
of the entropy and temperature of multi-horizons. We obtain the additional thermodynamic
relations of both static and rotating black holes in three- and four-dimensional (A)dS
spacetime. Especially, a new dimensionless, charge-independence and T+S+ = T−S−-like
relation is presented. This relation does not depend on the mass, electric charge, angular
momentum and cosmological constant, as it is always a constant. These relations lead us to
obtaining some interesting thermodynamic bounds of entropy and temperature, including the
Penrose inequality, which is the first geometrical inequality of black holes. Besides, based
on these new relations, one can obtain the first law of thermodynamics and the Smarr relation
for all horizons of a black hole.
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1. Introduction

One of the central issues in quantum gravity is to understand the entropy of a black hole microscopically.

Significant insights have been achieved for four- and five- dimensional, supersymmetric, asymptotically
flat, multi-charged black holes [1], where the microscopic degrees of freedom can be explained in terms
of a two-dimensional conformal field theory. Another important work has focused on the microscopic
entropy of extreme rotating solutions [2] via the Kerr/CFT correspondence. Besides, it is found in [3–6]
that black hole entropy and the number of micro-states result in being a function of the principal quantum
number of the quasi-normal modes (QNMs), which can represent the “quantum level” of a black hole.
This seems consistent with various quantum gravity models, where the spacetime is fundamentally
discrete and leads to another possible way for studying black hole entropy microscopically. However,
the detailed microscopic origin of the entropy of non-extremal, rotating, charged black holes remains an
open problem now. For this issue, much attention has been paid to the additional entropy relations of
black holes recently [7–29].

The entropy products of multi-horizons [7–25] are firstly introduced, which are expected to be not
only expressed solely in terms of the quantized charges, including the electric charge Q, the angular
momentum J and the cosmological constant Λ (which can be treated as pressure after explaining
the mass of the black hole as enthalpy rather than the internal energy of the system), but to also
have mass independence. This study is generalizable to many theories, including the super-gravity
model [7–11], Einstein gravity [12–20,25] and other modified gravity models [9,21–25] in both
four and higher dimensions. It is always independent of the mass of the black hole, as shown
in [7–11,13–16,18,23,24,27,28]. However, the mass independence of the entropy product fails in some
asymptotically non-flat spacetime or modified gravity theories [12,17,21,22,25]. Hence, the “part”
entropy product [17,25,26] i.e.,

∑
1≤i<j≤D(SiSj)

1
d−2 (here and below, D and d are denoted as the

number of horizons and the dimensions, respectively, in this paper) and the entropy sum [25,27–29] are
introduced, which always are independent of the mass of the black hole in (A)dSspacetime. These two
never depend on the electric charge Q and angular momentum J , but only depend on the cosmological
constant and the constants characterizing the strength of these extra matter fields. Beside, it is found
that the entropy product and the “part” entropy product belong to the same kind of entropy relation, as
their mass independence of entropy hold complementarily in the theory without the Maxwell field [25].
Furthermore, the “part” entropy product and entropy sum of the Schwarzschild–de-Sitter black hole are
actually equal [25], when only the effect of the physical horizons are considered, as they both can be
simplified into mass-independent entropy relations of a physical horizon [17,25].

Actually, there exist several reasons why people study the entropy relations of multi-horizons and
the physics near other horizons. Firstly, it is shown in [30–32] that the Green functions are sensitive to
the geometry near all of the black hole horizons and not just the outermost one. Hence, the entropy at
each horizon can therefore be expected to play a role in governing the properties of the black hole at
the microscopic level. Secondly, the entropy inequalities of multi-horizons of four-dimensional general
axisymmetric stationary solutions in the Einstein–Maxwell theory [33–39] are interpreted as a general
criterion for extremality [40], which also results in a no-go theorem for the possibility of force balance
between two rotating black holes [41]. This makes the physics at each horizon more intriguing. Besides,
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the effect of the other horizons is necessary in order to preserve the mass independence [17,27–29]. Only
including this effect can these additional equalities of multi-horizons of black holes be “universal”.

In this paper, we study the additional thermodynamic relations of black holes with multi-horizons,
in order further study the understanding of the origin of black hole entropy at the microscopic
level. The thermodynamic relations are related to the thermodynamic quantities, especially for the
temperature and entropy for two physical horizons [11,12,15,21,42–48]. Other quantities, like the charge
potential and angular velocity, are sometime considered, as well [11,19–21,48]. These thermodynamic
relations were understood well and physically, which were also linked closely with the entropy
product via their holographic description, i.e., the thermodynamic method of the black hole/CFT
correspondence [15,42–47]. The black hole/CFT (BH/CFT) correspondence focuses on black holes
with two physical horizons, and its key point is that the inner horizon thermodynamics may play an
essential role in setting up the BH/CFT correspondence. From the thermodynamics laws of both horizons
(one need note that it is a so-called “thermodynamics law”-like relation for the inner horizon), it is
straightforward to read the thermodynamics of the left- and right-mover and the corresponding dual
temperatures. This method has only been used for the black holes in the Einstein (and Maxwell) gravity
with two physical horizons up till now [15,42–47]. However, only for the two physical horizons’ case,
one can prove that the first law of thermodynamics of the outer horizon always indicates that of the
inner horizon under reasonable assumption. Moreover, only for this class of gravity theory, which is
diffeomorphism invariant, is its dual two-dimensional CFT required to have cR = cL. As a result,
the central charge being the same is equivalent to the condition T+S+ = T−S− in the thermodynamics
method or, equivalently, the condition that the entropy product S+S− is mass-independent [12,15,42–47],
where T±, S± are the outer and inner horizon temperatures and entropies, respectively. Therefore, the
thermodynamics relations T+S+ = T−S− (equivalently, entropy product S+S− being mass independent)
may be taken as the criterion, whether there is a two-dimensional CFT dual for the black holes
in the Einstein gravity and other diffeomorphism invariant gravity theories [15,42–47]. Namely,
these thermodynamics relations really give a clue to the microscopics of black holes. When the
discussion generalizes to some cases of black holes with more than two horizons, the thermodynamics
relations T+S+ = T−S− (equivalently, entropy product S+S− being mass independent) break
down [12,15,17,21,25], and there are even only two physical horizons. Hence, we aim to study the
additional thermodynamic relations of black holes with more than two horizons (other than the case of
two physical horizons), in order to improve the understanding of the origin of black hole entropy at the
microscopic level for these (A)dS black holes.

Mainly, we present some general entropy and temperature relations of multi-horizons, even the
“virtual” horizon. Actually, studying these kinds of relations for understanding the internal physics
of black holes is not a new idea. A discussion of a Kerr black hole had been presented in [48] in
1992. These relations are related to the product, division and sum of the entropy and temperature
of multi-horizons. We generalize them to the similar relations of static and rotating black holes in
three and four dimension. Some general thermodynamic relations are constructed and found to hold
for both AdSand dS black holes. Moreover, a new dimensionless and charge-independence relation(∑D

i=1 TiSi

)
×
(∑D

i=1
1

TiSi

)
is presented, which is the generalizing of the T+S+ = T−S− relations for

two horizons. This does not depend on the mass, electric charge, angular momentum and cosmological
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constant, as it is always a constant for black holes, as shown in the present paper. This relation is
expected to be helpful of constructing the BH/CFT correspondence for more than two horizons, in order
to understand the black hole entropy microscopically. Besides, based on these relations, we obtain some
interesting thermodynamic bounds of entropy and temperature, including the Penrose inequality, which
is the first geometrical inequality of black holes (event horizon) (see [49] for a review). We also get the
Penrose-like inequalities for other horizons. Moreover, these thermodynamic relations can lead to the
thermodynamic law and Smarr relation of the event horizon and the Cauchy horizon of black holes. We
take the case of a Kerr black hole as a detailed example. This discussion is generalized to a Kerr–Newman
black hole, as well.

This paper is organized as follows. In the next section, we will investigate the thermodynamic
relations of static black holes in four-dimensional (A)dS spacetime. In Section 3, the thermodynamic
relations of rotating black holes in three dimensions and four dimensions are presented. Using these
thermodynamic relations, we obtain some interesting thermodynamic bounds in Section 4 and the first
law and Smarr relation of black holes in Section 5, respectively. Section 6 is devoted to the conclusions
and discussions.

2. Thermodynamic Relations of Static (A)dS Black Holes

In this section, we investigate many thermodynamic relations of static black holes in four-dimensional
(A)dS spacetime. Among these relations, a new dimensionless and charge-independence relation(∑D

i=1 TiSi

)
×
(∑D

i=1
1

TiSi

)
is presented, which is the generalizing of the T+S+ = T−S− relations.

2.1. Thermodynamic Relations of Schwarzschild-(A)dS Black Holes

We firstly give the thermodynamic relations of Schwarzschild-(A)dS black holes in detail. We begin
with the line element:

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2

(
dθ2 + sin2 dϕ2

)
.

For four-dimensional a Schwarzschild–de-Sitter black hole, the horizon function is:

f(r) = 1− 2M

r
− Λr2

3
,

with M being the mass of the black hole and Λ = 1
L2 being the cosmological constant. The three black

hole horizons are [17]:

rE = 2L sin

(
1

3
arcsin

(
3M

L

))
rC = 2L sin

(
1

3
arcsin

(
3M

L

)
+

2π

3

)
rV = 2L sin

(
1

3
arcsin

(
3M

L

)
− 2π

3

)
, (1)
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where rE , rC and rV represent the event horizon, cosmological horizon and “virtual” horizon,
respectively. The Bekenstein area entropy [50] and Hawking temperature [51] of each horizon are
Si = Ai/4 = πr2

i and:

Ti =
f ′(ri)

4π
=
L2 − r2

i

4πL2ri
, (i = E,C, V )

respectively, where f ′(r) denotes the derivative function of f(r) with respect to r.
We firstly revisit some known entropy relations: the mass-dependence entropy product [17],

SESCSV = 36π3M2L4; (2)

the equal and mass independence “part” entropy product and entropy sum [17,25,27],

SESC + SESV + SCSV = 9π2L4; (3)

SE + SC + SV = 6πL2, (4)

which can lead into the entropy relations of two physical horizons having mass independence [17,25]:

SE + SC +
√
SESC = 3πL2. (5)

Based on these entropy relations, one can construct and calculate more relations. For example, the
mass-independence case:

S2
E + S2

C + S2
V = (SE + SC + SV )2 − 2(SESC + SESV + SCSV )

= 18π2L4; (6)

and some mass-dependence cases:

1

SE
+

1

SC
+

1

SV
=

1

4πM2
, (7)

1

SESC
+

1

SESV
+

1

SCSV
=

1

6π2M2L2
,

SCSV
SE

+
SV SE
SC

+
SESC
SV

=
9πL4

4M2
− 12πL2,

SC + SV
SE

+
SV + SE
SC

+
SE + SC
SV

=
3L2

2M2
− 3,

following the same procedure.
Then, we turn to the temperature relations and study the product, division and sum of the temperature

of multi-horizons. In order to construct similar relations, we need to introduce the relationship of
three horizons:

rE + rC + rV = 0, rE + rC + rV = −6ML2

rErC + rErV + rCrV = −3L2,
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and by using this, one can find the mass-independence case:

TETC + TCTV + TV TE = 0,

1

TE
+

1

TC
+

1

TV
= 0,

TC + TV
TE

+
TV + TE
TC

+
TE + TC
TV

= −3,

and some mass-dependence cases:

TE + TC + TV =
1

8πM
,

T 2
E + T 2

C + T 2
V =

1

64π2M2
, (8)

TCTV
TE

+
TV TE
TC

+
TETC
TV

= − 1

4πM
,

1

TETC
+

1

TCTV
+

1

TV TE
=

12π2L4

9M2 − L2
,

TETCTV =
6M

L4
− 2

3ML2
.

One can conclude that:

1

SE
+

1

SC
+

1

SV
= 16π(TE + TC + TV )2 = 16π(T 2

E + T 2
C + T 2

V )

For the T+S+ = T−S−-like relations, one can find:

TESE + TCSC + TV SV =
9M

2
, (9)

1

TESE
+

1

TCSC
+

1

TV SV
=

2

M
, (10)

which are both dependent of mass and different from the results for flat black holes with two
physical horizons.

For the discussion of a Schwarzschild-AdS black hole, one can find that the above relations are all
universal after taking the transitions L → iL. Namely, instead L of 1

Λ
, all of the above relations always

hold for a Schwarzschild-(A)dS black hole. Moreover, we obtain the dimensionless relation:

(TESE + TCSC + TV SV )

(
1

TESE
+

1

TCSC
+

1

TV SV

)
= 9. (11)

One will find that this one is always charge independent, as shown again in the cases for Reissner–
Nordström-(A)dS black holes.

2.2. Thermodynamic Relations of Reissner–Nordström-(A)dS Black Holes

For further studying, we list the thermodynamic relations of Reissner–Nordström-(A)dS black holes
following the same procedure. The horizon function is:

f(r) = 1− 2M

r
− Λr2

3
+
Q2

r2
,
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The four black hole horizons are r1, r2, r3 and r4. The Bekenstein area-entropy [50] and Hawking
temperature [51] of each horizon are Si = Ai/4 = πr2

i and:

Ti =
f ′(ri)

4π
=

1

4π

(
1

ri
− Λri −

Q2

r3
i

)
, (i = 1, 2, 3, 4)

respectively.
We still firstly revisit some known entropy relations: the mass-independence entropy product and

entropy sum [17,27]:

S1S2S3S4 =
9π4Q4

Λ2
(12)

S1 + S2 + S3 + S4 =
6π

Λ
. (13)

Based on these entropy relations and the following relationship of four horizons:

r1 + r2 + r3 + r4 = 0, r1r2 + r1r3 + r1r4 + r2r3 + r2r4 + r3r4 = − 3

Λ
,

r1r2r3r4 = −3Q2

Λ
, r1r2r3 + r1r3r4 + r1r2r4 + r2r3r4 = −6M

Λ
,

one can also construct and calculate more relations. For example, the mass-independence case:

S1S2 + S1S3 + S2S3 + S1S4 + S2S4 + S3S4 =
9π2

Λ2
− 6π2Q2

Λ
,

1

S1S2

+
1

S1S3

+
1

S2S3

+
1

S1S4

+
1

S3S4

+
1

S2S4

=
1

π2Q4
− 2Λ

3π2Q2
;

and some mass-dependence cases:

S1S2S3 + S1S3S4 + S2S3S4 + S1S2S4 = −6π3(M2 + 3Q2)

Λ2
,

S2
1 + S2

2 + S2
3 + S2

4 =
18π2

Λ2
+

12π2Q2

Λ
,

1

S1

+
1

S2

+
1

S3

+
1

S4

= −2(M2 + 3Q2)

3πQ4
,

S2S3S4

S1

+
S1S3S4

S2

+
S1S2S4

S3

+
S2S3S4

S4

=
4π2M4

Λ2Q4
+

24π2M2

Λ2Q2
+

12π2Q2

Λ
+

18π2

Λ2
,

S2 + S3 + S4

S1

+
S1 + S3 + S4

S2

+
S1 + S2 + S4

S3

+
S1 + S2 + S3

S4

= − 4M2

ΛQ4
− 12

ΛQ2
− 4,

following the same procedure.
Then, we turn to the temperature relations and study the product, division and sum of the temperature

of multi-horizons. However, one can only find some mass-dependence cases:

T1 + T2 + T3 + T4 =
2M

πQ2
− 13M3

3πQ4
,

T1T2T3 + T1T3T4 + T2T3T4 + T1T2T4 =
7ΛM3

36π3Q4
.

These relations are not universal, as one anticipates.
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For the T+S+ = T−S−-like relations, one can find:

T1S1 + T2S2 + T3S3 + T4T4 = 16M, (14)
1

T1S1

+
1

T2S2

+
1

T3S3

+
1

T4S4

= 0, (15)

which are both from the results for asymptotically flat black holes with two physical horizons and that
for Schwarzschild-(A)dS black holes.

One can note that all of the above relations always hold for both AdS and dS black holes. Moreover,
we again obtain the dimensionless and charge-independence relation:

(T1S1 + T2S2 + T3S3 + T4S4)

(
1

T1S1

+
1

T2S2

+
1

T3S3

+
1

T4S4

)
= 0, (16)

for Reissner–Nordström-(A)dS black holes. This also belongs to the kind of thermodynamic relation(∑D
i=1 TiSi

)
×
(∑D

i=1
1

TiSi

)
, with D = 4 being the number of horizons, which is always a constant.

Consider the degenerated case Λ = 0, i.e., a Reissner–Nordström black hole; the relation (16) reduces to:

(T1S1 + T2S2)

(
1

T1S1

+
1

T2S2

)
= 0, (17)

D = 2 in this case, one is an event horizon and another is a Cauchy horizon, which is also a constant. This
is the generalizing of the T+S+ = T−S− relations; hence, it is expected to be helpful for constructing
the BH/CFT correspondence for more than two horizons.

3. Thermodynamic Relation of Rotating Black Holes

In this section, we focus on the thermodynamic relation of rotating black holes in three and
four dimensions, especially for the the dimensionless relation. Namely, we will mainly recheck the
generalizing of the T+S+ = T−S− relations for more than two horizons, i.e.,

(∑D
i=1 TiSi

)
×
(∑D

i=1
1

TiSi

)
for rotating black holes. It is still a constant, which is charge independent (mass independent, charge
independent and angular momentum independent).

3.1. Thermodynamic Relation of Kerr (and Newman) Black Holes

The Kerr metric in Boyer–Lindquist coordinates is:

ds2 =− ∆− a2 sin2 θ

Σ
dt2 − 2a sin2 θ

(
r2 + a2 −∆

Σ

)
dtdφ

+

(
(r2 + a2)2 −∆a2 sin2 θ

Σ

)
sin2 θd2φ+

Σ

∆
dr2 + Σd2θ,

where:

Σ = r2 + a2 cos2 θ,

∆(r) = r2 − 2Mr + a2.



Galaxies 2015, 3 61

The zeros of ∆(r) correspond to the event horizon and Cauchy horizon, denoted as r+ and r−:

r+ = M +
√
M2 − a2,

r− = M −
√
M2 − a2. (18)

Since the metric is not diagonal, the Hawking temperature [51] should be T = κ
2π

. The surface gravity
κ and temperature T are:

κ± =
r± − r∓

2(r2
± + a2)

,

T± =
r± − r∓

4π(r2
± + a2)

. (19)

Additionally, the Bekenstein area entropy [50] for each horizon is:

S± =
A±
4

= π(r2
± + a2), (20)

with:

T±S± =
r± − r∓

4
. (21)

Obviously, these lead to the entropy product:

S+S− = 4π2J2, (22)

entropy sum:

S+ + S− = 4πM2, (23)

entropy minus:

S+ − S− = 2πM(r+ − r−) = ±8πMT±S±, (24)

and the mass-dependent relation:

1

S+

+
1

S−
=
S+ + S−
S+S−

=
M2

π J2
, (25)

where J = aM is the angular momentum. The angular velocity is:

Ω± =
a

r2
± + a2

=
π J

MS±
, (26)

based on which, we can obtain:

Ω+ + Ω− =
M

J
(27)

On the other hand, we find:

T+S+ + T−S− = 0, (28)
1

T+S+

+
1

T−S−
= 0,
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thus:

(T+S+ + T−S−)

(
1

T+S+

+
1

T−S−

)
= 0. (29)

which shows that the charge-independence of dimensionless relation
(∑D

i=1 TiSi

)
×
(∑D

i=1
1

TiSi

)
holds.

For a Kerr–Newman black hole, one can substitute a2 with a2 + Q2, where Q is the electric charge;
apparently the relation (29) still holds.

3.2. Thermodynamic Relation of a BTZ Black Hole

Considering a BTZ black hole [52], the metric reads:

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2(Nφ(r)dt+ dφ)2,

where the cosmological constant Λ = − 1
l2

, and the horizon function f(r) and the angular velocityNφ(r):

f(r) = −M +
r2

`2
+
J2

4r2
,

Nφ(r) = − J

2r2
,

where M and J are the mass and angular momentum of the black hole, respectively. The horizon
function f(r) has four zeros:

r1 =

√√√√√
1 +

√
1−

(
J

M`

)2
M`, r2 = −

√√√√√
1 +

√
1−

(
J

M`

)2
M`,

r3 =

√√√√√
1−

√
1−

(
J

M`

)2
M`, r4 = −

√√√√√
1−

√
1−

(
J

M`

)2
M`,

where r1 and r3 correspond to the event horizon and Cauchy horizon, i.e., physical horizons, while r2 and
r4 represent the negative and un-physical “virtual” horizons, which often are discarded in the literature.

As discussed in [52], the Bekenstein “area” entropy [50] is equal to twice the perimeter length of
the horizon,

Si = 4πri

and the Hawking temperature [51] is:

Ti =

(
∂Si
∂M

)−1

.

Firstly, we discuss the physical horizons only, i.e., r1 and r3. With the help of a computer algebra
system (CAS), one can get:

T1S1 + T3S3 = 0, (30)
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meanwhile, T1S1 or T3S3 does not equal zero explicitly, so obviously:

(T1S1 + T3S3)

(
1

T1S1

+
1

T3S3

)
= 0. (31)

Secondly, we should include the un-physical, “virtual” horizons r2 and r4. We note that r1 and r2 have
the opposite sign, as well as r3 and r4. Therefore, S2, S4, T2 and T4 have a minus sign to their counterpart,
respectively, as we discussed in the last paragraph. However, T2S2 + T4S4 = T1S1 + T3S3 = 0,
and apparently:

(T1S1 + T2S2 + T3S3 + T4S4)

(
1

T1S1

+
1

T2S2

+
1

T3S3

+
1

T4S4

)
= 0. (32)

Again, the dimensionless relation
(∑D

i=1 TiSi

)
×
(∑D

i=1
1

TiSi

)
is charge independent.

4. Thermodynamic Relations and Thermodynamic Bound

In this section, based on the thermodynamic relations presented in this paper, we obtain some
thermodynamic bounds of the thermodynamic quantities, including the entropy and temperature. From
the entropy bound, one can get the area bound. Especially for the upper area bound of the event horizon
of black holes, one can find that it is actually the exact Penrose inequality of a black hole, which is the
first geometrical inequality of a black hole (see [49] for a review).

4.1. Thermodynamic Bound for a Schwarzschild-dS Black Hole

Firstly, we show the thermodynamic bound for a Schwarzschild-dS black hole. Consider the
thermodynamic relations of a Schwarzschild-dS black hole shown in Section 2.1. We will only focus on
the cases with:

3M

L
≤ 1, (33)

which leads to three real horizons according to Equation (1). Then, we will find that the entropy and
temperature for three horizons are all real (for 3M

L
> 1, one will only find one real horizon). Especially

for the event horizon, cosmological horizon and the “virtual” horizon, we know that 0 ≤ rE ≤ L ≤
rC ≤ |rV | ≤ 2L and rV < 0; hence, 0 ≤ SE ≤ SC ≤ SV ≤ 4π L2 and TE ≥ 0, TC ≤ 0, TV ≥ 0 (note
that the Hawking temperature of the cosmological horizon is T̂C = −TC ≥ 0).

From thermodynamic relation Equation (5), we get:

0 ≤ 3SE ≤ (SE + SC +
√
SESC) = 3π L2 ≤ 3SC ,

and:

0 ≤ SC ≤ 3π L2,

which together give:

0 ≤ SE ≤ π L2 ≤ SC ≤ 3π L2.
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As 0 ≤ (SC + SE) ≤ 3π L2, from the entropy sum Equation (4), we find:

SV ≥ 3π L2.

In total, we obtain the entropy bound of the event horizon, the cosmological horizon and the
negative horizon:

SE ∈
[
0, π L2

]
, SC ∈

[
π L2, 3π L2

]
, SV ∈

[
3π L2, 4π L2

]
. (34)

Additionally, the area entropy leads to the area bounds:√
AE
16π
∈
[
0,
L

2

]
,

√
AC
16π
∈
[
L

2
,

√
3

4
L

]
,

√
AV
16π
∈
[√

3

4
L,L

]
, (35)

which are all geometrical bounds of black hole horizons, as parameter L is actually the
cosmological radius.

On the other hand, consider the mass-dependence thermodynamic relations of entropy Equation (7);
we can also find:

SE ≥ 4πM2,

which leads to the Penrose-like inequality: √
AE
16π
≥ M

4
(36)

Inserting condition Equation (33) into the area bound, we can obtain other Penrose-like inequalities:√
AC
16π
≥ 3M

2
,

√
AV
16π
≥ 3

√
3

4
M. (37)

Furthermore, we can get the temperature bound from Equation (8), i.e.,

Ti ≤
1

8πM
(i = E, V ); |TC | ≤

1

8πM
(38)

4.2. Thermodynamic Bound for Kerr Black Holes

For black holes in rotating spacetime, we take the thermodynamic relations of the Kerr black holes
as an example, which is shown in Section 3.1. From Equation (18), the existence of black hole horizons
leads to the famous Kerr bound:

M

a
≥ 1, (39)

or equivalently, M2 ≥ J . Besides, r+ ≥ r− leads to S+ ≥ S− ≥ 0. Then, the entropy product
Equation (22) results in:

S+ ≥
√
S+S− = 2π J, S− ≤

√
S+S− = 2π J.



Galaxies 2015, 3 65

Additionally, from the entropy sum Equation (23), we obtain:

2πM2 =
(S+ + S−)

2
≤ S+ ≤ (S+ + S−) = 4πM2, S− ≤

(S+ + S−)

2
= 2πM2.

These together give the entropy bound of the event horizon and the Cauchy horizon:

S+ ∈
[
2πM2, 4πM2

]
, S− ∈

[
0, 2π J

]
. (40)

Note that the Kerr bound relation is used here. Because of the area entropy Equation (20), we also get
the area bound of the event horizon and the Cauchy horizon:√

A+

16π
∈
[
M√

2
,M

]
,

√
A−
16π
∈
[
0,

√
J

2

]
. (41)

Note that the upper bound of the event horizon is actually the exact Penrose inequality of the black
hole.

Actually, for black holes with real horizons (e.g., Kerr–Newman black holes, Reissner–Nordström-dS
black holes, etc.), we can follow a similar procedure to obtain the bound of thermodynamic quantities.
However, if the black hole horizon is not real, the method presented here fails.

5. Thermodynamic Relations and Thermodynamic Laws

The thermodynamic bounds in the preceding section can be seen as the application of the
thermodynamic relations, while how they link to the thermodynamics of black holes seems to be still
unclear. However, based on these thermodynamic relations, as well, one can obtain the thermodynamic
law and Smarr relation of all horizons of black holes. In this section, we only take the discussion about
the event horizon and Cauchy horizon of a Kerr black hole as a detailed example.

From the entropy product Equation (22) and entropy sum Equation (23), one can find:

S−dS+ + S+dS− = 8π2JdJ,

dS+ + dS− = 8πMdM.

This leads to:

dS+ = − 8π2J

S+ − S−
dJ +

8πM S+

S+ − S−
dM

dS− =
8π2J

S+ − S−
dJ − 8πM S−

S+ − S−
dM.

Then, using the entropy minus relation Equation (24), this can be transformed to:

dM = +T+dS+ +
π J

MS+

dJ

dM = − T̂−dS− +
π J

MS−
dJ,

where we have used the relation of the Hawking temperature of the Cauchy horizon [15]:

T̂− = −T+|r+↔ r− = −T− (42)
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and r+ ↔ r− is the exchange of two horizons. After inserting the relations Equation (26), we obtain
the first law of thermodynamics of the event horizon and the Cauchy horizon of a Kerr black hole from
the above equations:

dM = +T+dS+ + Ω+dJ

dM = − T̂−dS− + Ω−dJ. (43)

On the other hand, the scaling discussion of mass M(S+, J) gives:

M = 2(+T+S+ + Ω+J).

For the Smarr relation of the Cauchy horizon, one can assume that:

M = c T̂−S− + dΩ−J.

Using the Hawking temperature of the Cauchy horizon Equation (42) and the dimensionless relation
Equation (28), the Smarr relation of the Cauchy horizon leads to:

2M = 2(+T+S+ + Ω+J) + (−c T−S− + dΩ−J)

= −(2 + c)T−S− + (2Ω+ + dΩ−)J.

Inserting the relation Equation (27), we find:

2M = −(2 + c)T−S− +

(
(d− 2)Ω−J + 2M

)
implying c = −2, d = 2, as the mass behaviors as M(S−,Ω−) in the Cauchy horizon. Finally, we get
the Smarr relation of the event horizon and the Cauchy horizon of a Kerr black hole:

M = 2

(
+ T+S+ + Ω+J

)
M = 2

(
− T̂−S− + Ω−J

)
. (44)

The above first law of thermodynamics Equation (43) and Smarr relation Equation (44) of the event
horizon and the Cauchy horizon of a Kerr black hole are consistent with those in [21].

This discussion can be easily generalized to a Kerr–Newman black hole by substituting a2 with a2+Q2

in the whole procedure. One can get the following thermodynamic laws:

dM = ± T̂±dS± + Ω±dJ + Φ±dQ, (45)

M = 2

(
± T̂±S± + Ω±J

)
+ Φ±Q. (46)

Note here that the Hawking temperature of the Cauchy horizon Equation (42) is used, as well. One
may expect to generalized this discussion to black holes with three horizons, as well. For example, one
can try to obtain the thermodynamic laws of the Schwarzschild-(A)dS black holes by these relations.
However, it is not so easy to work out it, as the first law of thermodynamics and the Smarr relation in
(A)dS spacetime are still open questions.
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6. Conclusions

In this paper, we study the additional thermodynamic relations of black holes with multi-horizons,
in order to further understand the origin of black hole entropy at the microscopic level. We obtain
some general entropy and temperature relations of multi-horizons, even the “virtual” horizon. We also
present how we get these relations in detail. These relations are related to the product, division and sum
of the entropy and temperature of multi-horizons. We consider the static and rotating black holes in
three and four dimensions. Some general thermodynamic relations are constructed and found to hold
for both AdS and dS black holes. Moreover, a new dimensionless and charge-independence relation(∑D

i=1 TiSi

)
×
(∑D

i=1
1

TiSi

)
is presented. It does not depend on the mass, electric charge, angular

momentum and cosmological constant, because it is a constant for both static and rotating black holes.
As it is the generalizing of the T+S+ = T−S− relations, this relation is expected to be helpful for
constructing the black hole/CFT (BH/CFT) correspondence for more than two horizons. Besides, this
dimensionless relation is invariant in an inverse transformation TS → 1

TS
. This is a symmetry, even if

the underlying physical picture is not clear.
On the other hand, the improvement of the topic of the thermodynamic relations is little, while some

attempts are shown in this work. Based on the thermodynamic relations presented in this paper, we obtain
some thermodynamic bounds of the thermodynamic quantities, including the entropy and temperature.
Especially for the upper area bound of the event horizon of black holes, one can find that it is actually
the exact Penrose inequality of a black hole, which is the first geometrical inequality of black holes.
We also get the Penrose-like inequality of the other horizons. The thermodynamic bounds can be seen
as an application of the thermodynamic relations, while how they link to the thermodynamics of black
holes seems to be still unclear. However, based on these thermodynamic relations, as well, we present the
thermodynamics law and Smarr relation of the event horizon and the Cauchy horizon of a Kerr black hole
as a detailed example. This discussion is generalized to Kerr–Newman black holes, as well. These appli-
cations of thermodynamic relations also indicate that the thermodynamics of the inner horizon is linked
closely with that of the event horizon. This is consistent with the black hole/CFT correspondence [15].

It is also interesting to generalize this discussion about the close relationships between the
thermodynamics of multi-horizons to that of three and higher dimensional black holes and other black
holes with multi-horizons, including the thermodynamic bound and the thermodynamics laws; especially
for black holes in (A)dS spacetime (e.g., Schwarzschild-(A)dS black holes), for which the first law of
thermodynamics and the Smarr relation are still open questions. An interesting idea is treating the
cosmological constant as a dynamic viable (see, e.g., [53–60]). This may be possibly checked in this
way. These are all left as future tasks.
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