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Abstract: Single-vertex Feynman diagrams represent the dominant contribution to physical
processes, but are frequently forbidden kinematically. This is changed when the particles
involved propagate in a gravitational background and acquire an effective mass. Procedures
are introduced that allow the calculation of lowest order diagrams, their corresponding
transition probabilities, emission powers and spectra to all orders in the metric deviation,
for particles of any spin propagating in gravitational fields described by any metric.
Physical properties of the “space-time medium” are also discussed. It is shown in
particular that a small dissipation term in the particle wave equations can trigger a strong
back-reaction that introduces resonances in the radiative process and affects the resulting
gravitational background.
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1. Introduction

The search for particle processes of astrophysical significance to which gravitation makes a
non-negligible contribution is in general difficult, though potentially rewarding. The entire field of
gravitational lensing is in fact based on the discovery of one such process in which light interacts with
gravity, see e.g. [1]. It is hoped that a number of additional processes will point out new directions
of investigation. The search is made more difficult, unfortunately, by the fact that the lowest order
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Feynman diagrams that represent the dominant contribution to a process are frequently forbidden by
kinematics. Consider, for instance, the process in which an incoming massive particle of momentum
pµ and dispersion relation pµpµ = m2

1 produces a photon of momentum `µ`
µ = 0, while the outgoing

particle has momentum p′µp
′µ = m2. Conservation of energy-momentum requires pµ = p′µ + `µ. In the

rest frame of p, we have 0 = ~p′+ ~̀, which gives ~̀= −~p′, p0 = m1 and again m1 =
√
`2 +m2 + `. Then,

(m1 − `)2 = `2 +m2 leads to ` = (m2
1 −m2)/2m1, which shows that for m1 = m, the case considered,

we get ` = 0, and the process becomes physically meaningless. There are processes, however, in which
massive particles emitting a photon are not kinematically forbidden. This is certainly the case when
gravitation alters the dispersion relations of at least one of the particles involved [2]. We stress here that
even the reduction of a Feynman diagram by a single vertex would result in a cross-section gain of a
factor (GM/R)2, where M and R are the mass and radius of the gravitational source (units h̄ = c = 1).

External gravitational fields have long been known to play the role of a medium, see e.g. [3,4] in
the propagation of particles, be these treated classically or according to quantum mechanics. In the
latter case, scattering by a Newtonian potential has been the subject of several investigations, [5–7],
but bremsstrahlung [8–11], the emission of Cêrenkov radiation [12] and other processes [13] have also
been studied in connection with various gravitational sources. As stated above, external gravitational
fields do alter the dispersion relations of a particle propagating in a gravitational background at least
to the extent that the particle is no longer on shell. It would therefore appear sufficient to somehow
solve a wave equation to obtain the desired result. This is done in quantum electrodynamics where
the electromagnetic field is however represented by a four-vector, of which only a single component is
usually taken into account [14]. The case of gravity, represented by a second rank tensor, is considerably
more complicated. Moreover, the theoretical prediction by Mashhoon [15–18], confirmed by other
authors [19–22], of the existence of a coupling of gravity to spin, requires that the effect of a gravitational
field be no longer limited to a single component of the metric. This has become even more pressing since
the experimental observation of spin-rotation coupling for photons [23] and neutrons [24] and of other
important spin-induced effects at the macroscopic level [25–27].

External gravitational fields contribute to the solution of covariant wave equations through a Berry
phase [28,29]. This should be expected, because in metric theories of gravitation [30], general relativity
in particular, the space parameter of Berry’s theory coincides with space-time. It has been shown that
the wave equations for fermions and bosons can be solved exactly to first order in the metric deviation
γµν = gµν − ηµν for any metric gµν and that the phases so calculated [20,31–34] give reliable results in
interferometry, gyroscopy [28] and optics [35,36], give the correct Einstein deflection, can be used in the
study of neutrino helicity and flavour oscillations [37] and of spin-gravity coupling in general [31,34].
They also reproduce a variety of known effects, as discussed in [32,33,38].

The dispersion relations of a particle propagating in a gravitational background can be derived from
the respective covariant wave equations. The gravitational phases mentioned above change, in effect, a
particle four-momentum by acting on the wave function of the field-free equations. This result applies
equally well to fermions and bosons and can be extended to all orders in γµν [30]. The calculation of even
the most elementary Feynman diagrams does require an appropriate treatment when gravitational fields
are present. The procedures developed in [2] fill in part of this gap and apply to linearised gravitational,
or inertial fields of any type up to intermediate intensities. The present paper focuses on the applications
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of the procedures outlined in [2] rather than on the individual reactions, though the aim still is to find
physical processes capable of leading to potentially observable results. Below, we give examples of
processes that can be treated in ways that are similar. Because of the intrinsic resemblance, gravitational
bremsstrahlung [39–43] will be added to this category in due time.

Additional interesting possibilities do moreover arise when particles propagate in a gravitational
background. In the Conclusions, for instance, we briefly discuss properties of the “space-time medium”,
such as dispersion.

2. The Process P → p′ + γ

Let us assume, for simplicity, that P in Figure 1 is an incoming fermion and that the photon ` and
outgoing fermion p′ are produced on-shell. The solution of the covariant Dirac equation for P , exact to
O(γµν), is [37]:

Ψ(x) = − 1

2m
(−iγµ(x)Dµ −m) e−iΦT Ψ0(x) ≡ T̂Ψ0 , (1)

where Dµ = ∇µ + iΓµ(x), ∇µ is the covariant derivative, Γµ(x) the spin connection and the matrices
γµ(x) satisfy the relations {γµ(x), γν(x)} = 2gµν(x). Both Γµ(x) and γµ(x) can be obtained from the
usual constant Dirac matrices by using the tetrad fields eµα̂ and the relations:

γµ(x) = eµα̂(x)γα̂ = (δµα̂ + hµα̂(x)) γα̂ , Γµ(x) = −1

4
σα̂β̂eνα̂eνβ̂;µ , (2)

where σα̂β̂ = i
2
[γα̂, γβ̂]. A semicolon and a comma are also used as alternative ways to indicate covariant

and partial derivatives respectively. We use units h̄ = c = 1; the signature of ηµν is −2 ,ΦT = Φs + ΦG,

Φs(x) = P
∫ x

P

dzλΓλ(z) ,ΦG = −1

4

∫ x

P

dzλ [γαλ,β(z)− γβλ,α(z)]Lαβ(z) +
1

2

∫ x

P

dzλγαλk
α , (3)

Lαβ(z) = (xα − zα)kβ − (xβ − zβ)kα and Ψ0(x) satisfies the usual, flat space-time Dirac equation. It is
convenient to re-write Equation (1) in the form Ψ(x) = g(x)exp(−ipx)u0(~p), where:

g(x) =
1

2m

[(
γµ(pµ + hα̂µ(x)pα̂ + ΦG,µ(x)

)
+m

]
e−iΦT , (4)

and:
ΦG,µ = −1

2

∫ x

P

dzλ(γµλ,β − γβλ,µ)pβ +
1

2
γαµp

α . (5)

We claim that the transition amplitude for the process of Figure 1 can be calculated by introducing
the generalized four-momentum:

Pµ = pµ + h̃α̂µpα̂ + Φ̃G,µ ≡ pµ + P̃µ , (6)

for the incoming fermion, as Equation (4) itself suggests. The part that contains the gravitational field
is indicated by P̃µ. In Equation (6), h̃α̂µ, Φ̃G,µ and Φ̃G are quantities that must be calculated, once the
metric is known. They are related to the Fourier transforms of the corresponding expressions that appear
in Equations (2), (3) and (5). Pµ is not on-shell. In fact:

P µPµ ≡ m2
e = m2 + 2

[
pµhα̂µpα + pµΦG,µ

]
, (7)
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where pµp
µ = m2, because pµ is the momentum of the free fermion represented by Ψ0(x) in

Equation (1). The transition amplitude is then:

Mf→f ′γ = −iZeηµν ū0(~p′)εµ̂(λ)γν̂g(|~q|)u0(~p) , (8)

where ~q ≡ ~p− ~p′ − ~̀, εµ̂(λ) represents the polarization of the photon and Ze is the charge of the fermion.
It may be argued that a transition amplitude M ′

f→f ′γ must be added to Equation (8) at O(γµν), because
the contraction in Equation (8) is, in general, accomplished by means of gµν , and g(x) contains a part
that is independent of γµν . The transition amplitude M ′, estimated in [2], is given: by [6]

M ′
f→f ′γ = −iZeγµν(|~q|)ū0(~p′)εµ̂(λ)γν̂u0(~p) . (9)

However, M ′
f→f ′γ contains the part pµ of (6) that comes from Ψ0, but not the new part that contains

the gravitational contribution due to the propagation of the fermion in the field of the source. ToO(γµν),
this process is indistinguishable from bremsstrahlung and is dealt with, more properly, in that context. It
will not be discussed further in this work.

p'

P

{

Figure 1. p′ and ` are the outgoing fermion and photon, and P indicates the
incoming fermion.

The calculation now requires that a metric be selected.
Let us consider the particular instance of a fermion that is propagating with momentum p3 ≡ p,

impact parameter b ≥ R and x2 = 0, from x3 = −∞ toward a gravitational source of mass M and
radius R placed at the origin and described by the metric γ00 = 2φ , γij = 2φδij , where φ = −GM

r
. This

metric is frequently used in lensing problems [36,44]. One finds Γ0 = −1/2φ,j σ
0j ,Γi = −1/2φ,j σ

ij

and e0
î

= 0 , e0
0̂

= 1 − φ , el
k̂

= (1 + φ) δlk. All spin matrices are now expressed in terms of ordinary,
constant Dirac matrices. We also assume that the on-shell conditions p′µp

′µ = m2 , `µ`
µ = 0 remain valid.

Extension of the calculation to include different particles or higher order gravitational contributions to
p′ , ` and Equation (1) can be derived to all orders in γµν [30]. The Fourier transforms of the quantities
that appear in Equation (4) must now be calculated. We obtain:

hα̂0 (q)pα = 8π2δ(q0)δ(qx)δ(qy)p0GMK0(bqz) , h
α̂
3 (q)pα = 8π2δ(q0)δ(qx)δ(qy)pGMK0(bqz) (10)

ΦG,2(q) = 0 ,ΦG,3(q) = −8π2δ(q0)δ(qx)δ(qy)

(
p2

0

p
+ p

)
GMK0(bqz) (11)
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Four-momentum conservation to zeroth order only is required because Equations (10) and (11) are
already of O(γµν). Though the gravitational field selected above is stationary, energy conservation must
be introduced, because the energy contribution of the field is contained in the generalized momentum
of P . We further approximate the Bessel function K0(bqz) '

√
π/2bqze

−bqz [1 − 1/8bqz + ...], itself a
distribution, by K0(bqz)/π ' 2πδ(bqz) and eliminate δ4(q) from Equations (10) and (11). Conservation
of energy-momentum will reappear as a factor (2π)4δ4(q) in the expression for the radiated power W
defined below. By removing (2π)4δ4(q) from hα̂µ and ΦG,µ(q), we obtain h̃α̂µ and Φ̃G,µ of Equation (6).
We find:

P0 ' p0+
GM

b
p0 = p0+P̃0 , P1 '

GM

b

(
p2

0

p
+ p

)
= P̃1 , P2 = 0 , P 3 ≡ P = p−GM

b
p = p+P̃ (12)

We calculate the power radiated as photons in the process of Figure 1 according to the formula, see
e.g. [45]:

W =
1

8(2π)2

∫
δ4(P − p′ − `) |M |

2

Pp′0
d3p′d3` (13)

There are two ways to calculate |Mf→f ′γ|2. In the first one, we replace pα with Pα in the field-free
(γµν = 0) expression given by Σ|M |2 = Z2e2[−4m2(p′αp

α)+8(pαp
α)]. The gravitational contribution to

M then appears in P̃µ exclusively. We also remove the terms −32m2(p′αp
α) + 64m2 that do not contain

gravitational contributions and therefore refer to the kinematically-forbidden transition. This yields, to
O(γµν), the expression:

Σ|Mf→f ′γ|2 = Z2e2
[
−4(p′αP̃

α) + 8(pαP̃
α)
]

(14)

In a second, alternate approach, we calculate |M |2 directly (γµν 6= 0) from Equation (8). By summing
over final spins and averaging over initial spins and polarizations, we obtain:

Σ|Mf→f ′γ |2 =
Z2e2

2(2m)2
Tr
{

(p′ +m)γβ

[(
p + P̃ +m

)(
(p +m)2 + (p +m)P̃∗ +H(p +m)

)]
γβ
}

(15)

where a ≡ γµ aµ and H = p0/p3φ(γ3p0 − γ0p3) + (p0/p3γ1p0 − γ1p3)4GMK1(bqz). On carrying out
the traces of the Dirac matrices, the contribution from H vanishes. By further eliminating from |M |2

the terms that refer to the kinematically-forbidden transition, we again find Equation (14). This supports
our claim that the generalized momentum Pµ introduced in Equation (6) leads to the correct value of the
transition probability by the substitution of pµ with Pµ in the field-free expression. The integration over
d3p′ in Equation (13) is performed by means of the identity:∫

d3p′

2p′0
=

∫
d4p′Θ(p′0)δ(p′2 −m2) (16)

while that over θ, the angle between ~P and ~̀, can be carried out by writing the on-shell condition for p′

in the form:
δ(2|~P ||~̀| cos θ − PαPα + 2P0`0 +m2) (17)

We find:

W =
Z2e2

4π

(
GM

b

)
p2

0 + p2

p2
`2 (18)
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The radiation spectrum is given by:

dW

d`
=
Z2e2`

2π

(
GM

b

)
p2

0 + p2

p2
(19)

Equation (17) and the condition:

| cos θ| ≈ 1

2p`
√

1− 2GM
b

{
2GM

b

(
p2

0 + p2
)
− 2`2p0

(
1 +

GM

b

)}
≤ 1 (20)

lead, for p > m, to the inequality p(GM/b) < ` ≤ p. It then follows that the hardest photons are emitted
in the backward direction with energy ` ∼ p and power:

Wp>m ∼
2Z2e2p2

8π
(
GM

b
) (21)

which would obviously take its highest values in the neighbourhood of a very compact source.
For p < m, the inequality Equation (20) is satisfied for `(Gm/b) ≥ m(1− p/m), and we also find:

Wp<m ∼
Z2e2

4π

(
GM

b

)
m2`2

p2

(
1 +

2p2

m2

)
(22)

which diverges for small values of p. This infrared divergence is well known and arises as a consequence
of the finite energy resolution ∆ε of the outgoing fermion. The process, as calculated, is, in fact,
indistinguishable from that in which massless particles with energy ≤ ∆ε are also emitted and from
processes in which vertex corrections are present (virtual massless particles emitted and reabsorbed by
the external lines of Figure 1). When these additional diagrams are calculated, all infrared divergences
disappear [46]. In the particular case at hand, p in Equation (22) can be simply replaced by GMp0/b.
Below this value, the process is not kinematically allowed.

The process discussed in this section may be considered as the decay of a fermion of effective mass
PαP

α into a photon and a fermion of mass m with a lifetime τ = m/W , which is indeed small.
Quantitatively, for electrons with p ∼ 1GeV , ` ∼ p, in the neighbourhood of a canonical neutron
star, we find τ ∼ 3 · 10−19s.

3. The Process γ → f + f̄

Using the replacements ` → −L and P → −q in Figure 1, we can calculate the process by which a
photon produces a fermion f of momentum p′ and an anti-fermion f̄ of momentum q after propagating
in a gravitational field. In addition Z2e2 → −Z2e2, because of the presence of the antiparticle.
Conservation of energy-momentum now requires that Lµ = p′µ + qµ, while the dispersion relations
are p′µp

′µ = m2, qαq
α = m2 and the generalized photon momentum is Lσ = `σ + ΦG,σ. In the centre

of mass frame of the (f, f̄)-system, we now have ~p′ + ~q = ~L = 0 and also Li = `i + ΦG,i = 0.
This and `α`α = 0 again show that if the effect of the gravitational field vanished (ΦG = 0), we would
re-obtain the meaningless result `0 = ~̀ = 0. It is therefore the presence of the gravitational field that
enables the process. The effect of the gravitational field on the polarization of the photon is given by
Eσ = εσ + i

2
(γασ,β − γβσ,α)Sαβ + i

2
γαβ,σT

αβ , where the matrices Sαβ and Tαβ are given in [36] and
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act on the matrix aα. The contributions of these terms reduce to 1
2
(a+

1 a2 − a+
2 a1)(γ1σ,2 − γ2σ,1). In the

approximationK0(bκ)/π → (2π)δ(bκ) to be used below, the derivatives of γµν behave as (bκ)δ(bκ) = 0,
and the whole contribution of Sαβ and Tαβ to the photon polarization can be neglected. We assume that
`1 = `2 = 0, `3 ≡ ` and use the following result:

ΦG,1 =
1

2

∫ z

−∞
dz0γ00,1`+

1

2

∫ z

−∞
dz3γ33,1` = 2GM

`

b
(1 +

z√
b2 + z2

)

which, for r ∼ b, becomes ΦG,1 ∼ 2GM`/b. Similarly, we find:

ΦG,3 = − GM`√
b2 + z2

−GM`

∫ z

−∞
dz

z

(b2 + z2)3/2
= − 2GM`√

b2 + z2
∼ −2GM

b
`

in the same approximation. Factorizing (2π)δ(bκ), we find the generalized momenta L0 = ` , L1 ∼
2GM`/b , L2 = 0 , L3 = `(1 − 2GM/b). By applying the substitutions indicated above, we can derive
the transition amplitude for the process γ → f + f̄ :

Σ|M2
γ→ff̄ | = Z2e2 [4(p′αq

α) + 8(qαq
α)] (23)

and the rate at which energy is radiated as an anti-fermion:

W1 =
1

8(2π)2

∫
d3p′d3q

q0p′0L0

δ4(q + p′ − L)Σ|M2
γ→ff̄ |q0 (24)

The integration over d3p′ can be carried out by means of the identity Equation (16), and the on-shell
condition for p′ becomes:

δ ((Lα − qα) (Lα − qα)−m2) = δ(LαL
α − 2L0q

0 + 2|~L||~q| cos θ1) (25)

Integrating over θ1, the angle between ~q and ~L, we find:

W1 =
Z2e2

4π

∫
dq

q

L0|~L|

(
1

2
LαL

α +m2

)
(26)

We also find LαLα ' 2`αΦG,α ∼ −2GM`/b after replacing K0(bκ)/π with (2π)δ(bκ), factorizing
(2π)δ(bκ) and writing 1/|~L| ' (1 +GM/b)/`. We finally obtain:

W1 =
Z2e2

8π

(
GM

b

)
m2q2

`2

(
1− `2

m2

)
(27)

from which dW1

dq
can be immediately obtained. We also have Θ(L0−q0) = `−q0 > 0, while | cos θ1| ≤ 1

leads to 0 ≤ 4GM`
b

+ 2q0, which is always satisfied in the interval π/2 ≤ θ1 ≤ π.

4. The Process f + f̄ → γ

We now consider the process in which a fermion-antifermion couple in the initial state annihilates into
a photon. We assume that the fermion that propagates in the gravitational background has generalized
momentum P . By conservation of energy-momentum, we then have Pµ + qµ = `µ, and the generalized
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momentum is given by P0 = p0 +p0GM/b ≡ p0 + P̃0 , P1 = P2 = 0 , P3 = p3(1+GM/b)−p0GM/b ≡
p3 + P̃3. The transition amplitude becomes:

Σ|M |2ff̄→γ = Z2e2
[
4(qαP̃α) + 8(pαP̃α)

]
(28)

from which all terms referring to the kinematically-forbidden transition have been eliminated.
We also find:

W2 =
Z2e2

(2π)2

∫
d3qd3`

q0P0

δ4(P + q − `)
[
4(qαP̃α) + 8(pαP̃α)

]
(29)

The integration over d3q can be easily performed by using the identity
∫

d3q
2q0

=
∫
d4qΘ(q0)δ(q2−m2).

We find:

W2 =

(
Ze

2π

)2 ∫
d3`Θ(P0 − `0)

1

P0

δ
(
(Pα − `α)(Pα − `α)−m2

)
[pα(`α − Pα) + 2(pαP

α)] (30)

The on-shell condition for q becomes:

δ(q2 −m2) = δ
(
(Pα − `α)(Pα − `α)−m2

)
=

1

2`|~P |
δ

(
cos θ2 +

PαP
α − 2`0P0 −m2

2`|~P |

)
(31)

and the integration over θ2 then yields:

W2 =
Z2e2

4π

GM

b

∫
d`

`

P0|~P |
(
p3p0 +m2

)
(32)

In order to carry out the integration over `, we first calculate:

1

P0|~P |
' 1

p3p0

[
1− 1

2

(
2GM

b
− p0

p3

GM

b

)]
(33)

which must be substituted in Equation (32). The integration over ` gives:

W2 =
Z2e2

8π

(
GM

b

)[
1−m2

(
1

p3p0

− 1

p2
3

)]
`2 (34)

from which we obtain the radiation spectrum:

dW2

d`
=
Z2e2

4π

(
GM

b

)[
1−m2

(
1

p3p0

− 1

p2
3

)]
` (35)

The condition | cos θ2| ≤ 1 then requires that:

(m2 + p3p0)GM
b

p0 + p3 +
p20
p3
GM
b

≤ ` ≤
(m2 + p3p0)GM

b

p0 − p3 +
p20
p3
GM
b

(36)

Notice that the process calculated in this section is not the time-reverse of γ → f + f̄ , because in
the latter process, gravitation is assumed to act on the incoming photon line and not on the outgoing
fermion line.
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5. Conclusions

External gravitational fields in radiative processes can be included in the calculation of a transition
probability by simply replacing the momentum pµ of a particle with its generalized version Pµ in
the corresponding expression for the zero-field process. The examples given involve spin-1

2
and

spin-1 particles, but the procedure can be extended to any spin. An essential point here is that
the dispersion relations are altered by the external gravitational field and can be calculated if the
corresponding wave equations can be solved to O(γµν) or higher [20,34–37]. It follows, in particular,
that kinematically-forbidden processes similar to that of Figure 1 become physical, and their transition
probabilities can be determined. The calculation of the gravitational contributions are greatly simplified
and can be extended to higher order in γµν . The applications are not confined to fields of a Newtonian
type, but extend to any gravitational field. In this respect, the procedure presented goes beyond the
results that apply to external electromagnetic potentials [14], not only because the metric has in general
ten components rather than just four, but also because time-independence is not a requirement.

The transition amplitudes derived are O(γµν) to leading order and can therefore be considerably
larger than those normally studied in the literature. The examples given are limited to a single type of
physically-relevant metric, and we cannot conclude that the resulting spectra are general and can be used
to identify the processes. The actual determination of the spectra requires the use of metrics specific
to the problems studied. However, the results suggest that particle processes, like bremsstrahlung,
Čerenkov radiation, or positron production in the neighbourhood of compact astrophysical objects, or in
cosmology, need to be reconsidered.

Space-time has so far been treated as a linear optical medium, though it is by no means clear what its
ultimate properties will be as a result of quantum gravity. It is not in particular known whether its index
of refraction will remain unaltered in response to high intensity fluxes of particles. There is scope for
research on this and other properties of space-time.

Our final considerations regard the back-reaction that physical processes may have on the gravitational
background. We show below that the back reaction is not always negligible and provide an example
of how a very small disturbance in the wave equation can grow rapidly and alter the background
gravitational field.

Equation (1) requires that Ψ0(x) be a solution of the field-free Dirac equation and, of course, of the
equation (ηµν∂µ∂ν + m2)Ψ0(x) = 0. The approximation procedure still holds true, however, when
Ψ0(x) satisfies more general equations [28,32]. With the addition of a dissipation term, the equation for
Ψ0 becomes: (

ηµν∂µ∂ν +m2 − 2mσ∂0

)
Ψ0 = 0 (37)

where we take σ = α|〈Ψ0|T̂ |Ψ0〉|2 = α(m
p0
GM
2b

)2 [37] and α is a dimensionless, arbitrary parameter,
0 ≤ α ≤ 1, that reflects the coupling strength of the dissipation term. When we substitute Ψ0(x) =

exp(mσx0)φ0(x) into Equation (37), we obtain:[
∂2

0 − ∂2
z +m2(1− σ2)

]
φ0(x) = 0 (38)

An example of a problem with a similar behaviour is offered by a fluid heated from below. For
small temperature gradients, the fluid conducts the heat, but as the gradient increases, conduction is not
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sufficient to lead the heat away, so the fluid starts to convect. In realistic problems, the exponential
growth of Ψ0 does not continue indefinitely, but is restricted at times x0 > τ ≡ 1/mσ by nonlinearities
or dispersive effects that may have been initially neglected.

The effect of the new solution Ψ0 on W can be found as follows. We first neglect the change m →
m
√

1− σ2 in W because, in general, σ < 1. Settingm = 1 for simplicity, the effect of the exponentially
increasing term on Equation (13) then amounts to the transformations δ(P0 − p′0 − `0) → δ(−2iσ +

P0 − p′0 − `0) and 1
p2
→ 1

β2(p0−2iσ)2
' p20

β2[(p20−4σ2)2+4p20σ
2]

, where we have used the relation β = p/p0. W
has therefore a resonance at p0 = 2σ of width 4σ2. Over times x0 > τ = (αm)−1(m/p0)−2(GM/2b)−2

GeV−1, Ψ = T̂Ψ0 increases exponentially until the compensating mechanisms mentioned above kick
in; for a proton of energy p0 ∼ 10 GeV in the field of a canonical neutron star τ ∼ 3.5 × 10−21α−1 s.
Considerably higher values of τ can, of course, be obtained for the lighter fermions. As Ψ grows, so
does the energy momentum tensor associated with it and the gravitational field it generates, altering, in
the process, the gravitational background.
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