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Abstract: The number of galaxies at a given flux as a function of the redshift, z, is derived
when the z-distance relation is non-standard. In order to compare different models, the same
formalism is also applied to the standard cosmology. The observed luminosity function for
galaxies of the zCOSMOS catalog at different redshifts is modeled by a new luminosity
function for galaxies, which is derived by the truncated beta probability density function.
Three astronomical tests, which are the photometric maximum as a function of the redshift
for a fixed flux, the mean value of the redshift for a fixed flux, and the luminosity function
for galaxies as a function of the redshift, compare the theoretical values of the standard
and non-standard model with the observed value. The tests are performed on the FORS
Deep Field (FDF) catalog up to redshift z = 1.5 and on the zCOSMOS catalog extending
beyond z = 4. These three tests show minimal differences between the standard and the
non-standard models.
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1. Introduction

The linear correlation between the expansion velocity, v, and dl, the distance in Mpc, is

v = H0dl = c z (1)
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where H0 is the Hubble constant H0 = 100h km s−1 Mpc−1, with h = 1 when h is not specified, c is the
velocity of light, c = 299792.458km

s
see Mohr et al. [1], and z is the redshift defined as

z =
λobs − λem

λem

(2)

with λobs and λem denoting respectively the wavelengths of the observed and emitted lines as determined
from the lab source, the so called Doppler effect. This linear relation can be derived from first
principles, namely general relativity (GR), and is only a low-z limit of a more general relation in standard
cosmology. The presence of a velocity in the previous equation has pointed the standard cosmology
towards an expanding universe. The previous equation also contains a linear relation between distance
and redshift, and this has pointed the experts in plasma physics towards an explanation of the redshift
in terms of the interaction of light with the electrons of the intergalactic medium (IGM). In terms of
plasma physics, the expansion velocity of the universe becomes a pseudo-velocity because the Universe
is supposed to be Euclidean and static. The conjecture here adopted is now outlined: the redshift should
be considered as a spectroscopic measure independent of the adopted cosmology. An example of this
conjecture can be found at the home page of the Supernova Cosmology Project (SCP) “All the analyses
were developed with cosmology hidden.” The main physical explanations for the redshift are: a Doppler
shift, which means an expanding universe, a general relativistic effect, see [2], a plasma effect, see [3],
and a tired light effect as suggested by [4,5]. More details on the various theories which explain the
cosmological redshift can be found in [6]. A point of discussion: The presence of physical effects which
explain the redshift allows us to speak of a Euclidean universe in which the distances are evaluated with
the Pythagorean theorem. In a Euclidean universe, the main parameters are H0, z, and the distance, d,
but the velocity of expansion is virtual rather than real. The aim of having a Euclidean universe is the
explanation of the astronomical variables such as the redshift and the absolute magnitude and count of
galaxies without GR.

Concerning the value of H0 and ΩM, we will adopt recent values as obtained by a mixed model which
uses the cosmic microwave background (CMB) measurements at high redshift and the baryon acoustic
oscillation (BAO), see [7],

H0 = (69.6± 0.7) km s−1 Mpc−1 (3)

ΩM = 0.286± 0.008 (4)

Hubble’s constant is explained in the dynamical relativistic models beginning with [8,9]. Recently,
research in the framework of modern theories on an accelerating universe has been focussed on
measuring cosmological parameters such as ΩM and Ωλ, see [10,11]. In the last years, the enormous
progress in astronomical observations has increased the available data for galaxies up to z = 3.36, see the
FORS Deep Field (FDF) catalog, which is made up of 300 galaxies with known spectroscopic redshift,
see [12,13]. Another high redshift catalog is zCOSMOS, which is made up of 9697 galaxies up to z = 4,
see [14]. These data demand a new formalism for the number of galaxies as a function of the redshift.
At the same time, Hubble’s law can be inserted into a more precise physical framework. In order to cover
these questions, Section 2 reviews some old and new derivations of Hubble’s law as well the magnitude
system, and Section 3 derives a new relation for the number of galaxies as a function of the redshift.
Section 5 introduces a relativistic model for the number of galaxies as a function of the redshift and
Section 6 deals with the luminosity function for galaxies at different redshifts.
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2. Basic Formulae

The change of frequency of light in a gravitational framework [15], a photo-absorption process
between the photon and the electron in the intergalactic medium, see Equation (3) in [4], or a plasma
effect, see Equation (50) in [3], all give

v = c [exp(H0 d)− 1] (5)

We can isolate the distance dl in Equation (1), obtaining the linear relation

dl =
cz

H0

(6)

In standard cosmology, one cannot use the previous approximation when inserting d into
Equation (10) for redshifts larger than ≈ 0.1. The previous equation needs to be generalised in standard
cosmology when z > 0.1 with the use of both the “Hubble function”, see Equation (58), and the
luminosity distance, see Equation (62). The expression for the distance, d, in the nonlinear Equation (5)
gives the relation

d =
ln (z + 1) c

H0

(7)

Figure 1. HgI 435.83 nm line shifts versus the electron density, data as extracted by the
author from Figure 7 in [16] (empty stars) and linear regime (full line).

A Taylor expansion around z = 0 of this equation gives

d =
cz

H0

− 1

2

cz2

H0

+
1

3

cz3

H0

(8)

In the limit z → 0, the linear distance, dl, and the nonlinear, d, are equal. The laboratory results of
the line shift in dense and hot plasmas can be found in [17–21]. As a first example, the experimental
verification of the redshift of the spectral line of mercury as due to the surrounding electrons can be
found in Figure 1, see also [22]. A second example is given by the Balmer series Hα line emitted by
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laser-produced hydrogen. A linear fit of the data in Table 1 in [23] gives the relation for the redshift of
the Hα line

z = 0.0042 + 0.00039Ne when 0.0042 < z < 0.0568 (9)

where Ne is the electron number density. This linear relation can be visualized in Figure 2. The previous
relation shows a laboratory redshift as a function of a growing density. In astrophysical plasma, we are
interested in the redshift as a function of the distance when the temperature of the medium is 3 K, as
known from the cosmic microwave background (CMB), and its mean density is extremely low.

Figure 2. Redshift of the Hα line versus the electron density, data as extracted by the author
from Table 1 in [23] (empty stars) and linear fit (full line).

Therefore the previous laboratory experiment is illustrative rather than quantitative.

2.1. Magnitude System

The absolute magnitude of a galaxy, M , is connected with the apparent magnitude m through
the relation

M = m− 5 log10(d)− 25 (10)

The nonlinear absolute magnitude as a function of the redshift as given by the nonlinear
Equation (7) is

M = m− 5 log10

(
ln (z + 1) c

H0

)
− 25 (11)

The previous formula predicts, from a theoretical point of view, an upper limit on the maximum
absolute magnitude which can be observed in a catalog of galaxies characterized by a given limiting
magnitude. The previous curve can be connected with the Malmquist bias, see [24,25], which was
originally applied to the stars and later on to the galaxies by [26]. We now define the Malmquist bias as
the systematic distortion in luminosity or absolute magnitude for the effective range of galaxies due to a
failure in detecting those galaxies with fainter luminosity or high absolute magnitude at large distances.
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Figure 3 shows such a curve, the Malmquist bias, for the FDF catalog. The well measured
spectroscopic redshift, the blue and red apparent magnitude of the FDF data, can be found at the
Strasbourg Astronomical Data Centre (CDS). Figure 4 shows the curve of the Malmquist bias for the
zCOSMOS catalog. A careful examination of Figures 3 and 4 allows to conclude that all the galaxies are
in the region over the border line of the Malmquist bias and the number of observed galaxies decreases
with increasing z as theoretically predicted.

Figure 3. The blue absolute magnitude MB computed with the nonlinear Equation (11) for
263 galaxies belonging to the FORS Deep Field (FDF) catalog versus the well measured
redshift. The lower theoretical curve as represented by the nonlinear Equation (11) is the red
thick line when mL = 30.33, which is the maximum apparent magnitude of the catalog,M�
= 5.48 and H0 = 69.6 km s−1 Mpc−1 (green points). The redshift covers the range [0, 4.5].

In a Euclidean, non-relativistic, and homogeneous universe, the flux of radiation without attenuation,
f , expressed in units of

L�
Mpc2 , where L� represents the luminosity of the sun, is

f =
L

4πd2
(12)

where d represents the nonlinear distance of the galaxy expressed in Mpc, see Equation (7). The relation
connecting the absolute magnitude, M , of a galaxy to its luminosity is

L

L�
= 10

0.4(M�−M) (13)

where M� is the reference magnitude of the sun in the considered bandpass.

The flux expressed in units of
L�
Mpc2 as a function of the apparent magnitude is

f = 7.957× 108 e
0.921M�−0.921m L�

Mpc2
(14)

and the inverse relation is

m = M� − 1.0857 ln
(
0.1256× 10−8f

)
(15)
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Once a band is fixed, we have a reference magnitude of the sun in that band. We give a few examples:
band u∗ in SDSS M� = 6.38, band B in FDF M� = 5.48 and band B in zCOSMOS M� = 4.08.

Figure 4. The B absolute magnitude M computed with the nonlinear Equation (11) for
9697 galaxies belonging to the zCOSMOS catalog versus the redshift. The lower theoretical
curve as represented by the nonlinear Equation (11) is the red thick line when mL = 23.2,
M� = 4.08 and H0 = 69.6 km s−1 Mpc−1 (green points). The redshift covers the
range [0, 1].

2.2. Tired Light

Assume that the photon loses energy, E, in a way proportional to its energy:

dE

dt
= −CostE (16)

The coefficient Cost is assumed to be proportional to the averaged number density of the IGM, n,

Cost = an (17)

and therefore
dE

dt
= −anE (18)

We now replace the energy E = hν where h is Planck’s constant,

dν

dt
= −anν (19)

and we convert the frequency to the wavelength,

dλ

λ
= −a n dt (20)

The speed of light, c, is assumed to be constant, ds
dt

= c

ln
λ

λ0

=
a

c

∫ d

0

n ds (21)
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where λ0 is the original wavelength. On introducing the redshift

z =
λ− λ0

λ0

(22)

We obtain
ln(1 + z) =

a

c
< n > d (23)

where < n > is the averaged number density. The Hubble constant can be introduced with the
following meaning,

H0 = a < n > (24)

obtaining

ln(1 + z) =
H0

c
d (25)

The distance d has the same dependence on the photo-absorption/plasma process as given by
Equation (7)

d =
ln (z + 1) c

H0

(26)

The observed flux without the absorption of our galaxy is

f =
L

4πd2
exp (−H0

c
d) =

L

4πd2

1

(1 + z)
(27)

and the distance modulus for tired light is

m−M = 25 + 5
1

ln (10)
ln

(
ln (1 + z) c

H0

)
+

5

2

ln (1 + z)

ln (10)
(28)

A generalization of the concept of tired light can be obtained by inserting a supplementary absorption
of the light, i.e., Compton scattering, see formula (51) in [3]:

f =
L

4πd2
exp (−H0

c
d− 2

H0

c
d) =

L

4πd2

1

(1 + z)β
(29)

where β is a variable parameter which is 1 when only tired light is considered and 3 when the Compton
scattering is added. Here we have invoked the Compton scattering as a possible source of absorption
but the parameter β can be considered a regulating parameter of an unknown scattering mechanism.
The distance modulus of generalized tired light without galactic extinction is

m−M = 25 + 5
1

ln (10)
ln

(
ln (1 + z) c

H0

)
+

5

2

β ln (1 + z)

ln (10)
(30)

Hubble’s constant can be extracted from this equation as a function of the distance modulus (m−M ):

H0 = 100000 ln (z + 1) ce
1
2
β ln(z+1)− 1

5
(m−M) ln(10) km s−1 Mpc−1 (31)

and, as a practical example, when m−M = 43.834 and z = 0.974, which is the case with SN C-001 in
the Union 2.1 compilation, we have H0 = 69.6 km s−1 Mpc−1 when β = 2.032, which is the same value
quoted in our Introduction.
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A first comparison can be done with the distance modulus in a plasma environment as given by
Equation (7) in [27] without galactic extinction:

m−M = 5
ln (ln (z + 1))

ln (10)
+

15

2

ln (z + 1)

ln (10)
+ 5

1

ln (10)
ln

(
c

H0

)
+ 25 (32)

see Equation (7) in [27]. A second comparison can be done with the historical equation (23) in [28],
which is the [m, z] relation for the steady-model

m−M = 5
ln (z)

ln (10)
+ 5

ln (1 + z)

ln (10)
+ 5

1

ln (10)
ln

(
c

H0

)
+ 25 (33)

We briefly recall that Sandage [28] used two explosive models, a Friedman model [8,9] and a steady
state model [29].

Figure 5 presents the behavior of the three distance moduli here considered as functions of the redshift.
We now outline how formula (26) dates back to the year 1929. The original formula for the change of
frequency of light in a gravitational framework is due to [15]:

δν

ν
=

1.4πGρDL

c2
(34)

Figure 5. Distance modulus for the generalized tired light as given by Equation (30)
(full line) with β = 2.7, for a plasma as given by Equation (32) (dashed line), and for the
steady-model as given by Equation (33) (dot-dash-dot-dash line).

Here, ν is the frequency, G is the Newtonian gravitational constant, ρ is the density in g/cm3, D is
the distance after which the perturbing effect begins to fade out, L is the distance, and c is the speed of
light. We make the change of variables 1.4πGρDL

c
= a < n > , L = ds, δν = −dE/h, and ν = E/h,

which means
dE

E
= −a

c
< n > ds (35)

On repeating the previous procedure, we obtain formula (26).
There is actually a debate on the existence of tired light in laboratory experiments. Here we use tired

light as a simple theory to model a more complex interaction between light and the intergalactic plasma.
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2.3. The Luminosity Function

The Schechter function, introduced by Schechter [30], provides a useful fit for the luminosity function
(LF) for galaxies:

Φ(
L

L∗
)dL = (

Φ∗

L∗
)(

L

L∗
)α exp

(
− L

L∗
)
dL (36)

Here, α sets the slope for low values of L, L∗ is the characteristic luminosity, and Φ∗ is a
normalization. The equivalent distribution in absolute magnitude is

Φ(M)dM = 0.921Φ∗100.4(α+1)(M∗−M) exp
(
−100.4(M∗−M)

)
dM (37)

where M∗ is the characteristic magnitude as derived from the data. The scaling with h is M∗− 5 log10 h

and Φ∗ h3 [Mpc−3].

3. N–z Relation

This section evaluates the number of galaxies as a function of the redshift, firstly assuming a linear
relation and secondly a nonlinear relation between redshift and distance. The evaluations are done on a
sphere of radius r which is identified with the chosen distance. The main statistical test is the χ2:

χ2 =
n∑

i=1

(
Ti −Oi

σi

)2

(38)

where n is the number of bins, Ti is the theoretical value, Oi is the experimental value represented in
terms of frequencies, and σi is the error computed as the square root of Oi.

3.1. The Linear Case

The joint distribution in z and f for galaxies, see formula (5.133) in [31] or formula (1.104) in [32] or
formula (1.117) in [33], is

dNl

dΩdzdf
= 4π

( c

H0

)5
z4Φ(

z2

z2
crit

) (39)

where dΩ, dz and df represent the differential of the solid angle, the redshift, and the flux, respectively,
and Φ is the Schechter LF. The critical value of z, zcrit, is

z2
l,crit =

H2
0L
∗

4πfc2
(40)

The number of galaxies in z and f as given by formula (39) has a maximum at z = zl,pos−max, where

zl,pos−max = zcrit
√
α + 2 (41)

which can be re-expressed as

zl,pos−max(f) =

√
2 + α

√
10

0.4M�−0.4M ∗
H0

2
√
π
√
fc

(42)
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or introducing the two observable variables, Msun and M∗,

zl,pos−max(m) =
1.772× 10−5

√
2 + α

√
10

0.4M�−0.4M ∗
H0

√
π
√

e
0.921M�−0.921m

c
(43)

These two formulas, which model the photometric maximum, are not reported in chapter 5 of [31].
The theoretical mean redshift of galaxies with flux f , see formula (1.105) in [32], is

〈z〉 = zl,crit
Γ(3 + α)

Γ(5/2 + α)
(44)

3.2. The Nonlinear Case

We assume that f = L
4πr2 and

z = e(H0 r/c) − 1 (45)

where r is the distance; in our case, d is as represented by the nonlinear Equation (7). The relation
between dr and dz is

dr =
cdz

(z + 1)H0

(46)

The joint distribution in z and f for the number of galaxies is

dN

dΩdzdf
=

1

4π

∫ ∞
0

4πr2drΦ(
L

L∗
)δ
(
z − (e(H0 r/c) − 1)

)
δ
(
f − L

4πr2

)
(47)

where δ is the Dirac delta function.
The evaluations of the integral over luminosity and distances gives

dN

dΩdzdf
= F (z; f,Ω) =

4 (ln (z + 1))4 c5Φ∗
(

(ln(z+1))2

zcrit2

)α
e
− (ln(z+1))2

zcrit
2 π

H0
5L∗ (z + 1)

(48)

The number of galaxies in z and f as given by formula (48) has a maximum at z = zpos−max, where

zpos−max(f) = e
−1/16

(
Lstar H0−

√
64 πα c2f+128 π c2f+L∗H0

2
√
L∗

)
H0

π c2f − 1 (49)

or introducing the two observable variables, Msun and M∗

zpos−max(m) =

e
−1/16

(
100.4 Msun−0.4 M∗H0−

√
64 πα c2f+128 π c2f+100.4Msun−0.4 M∗H0

2
√

100.4Msun−0.4 M∗
)
H0

π c2f − 1 (50)

The total number of galaxies comprised between a minimum value of flux, fmin, and a maximum
value of flux fmax, for the Schechter LF can be computed through the integral

dN

dΩdz
=

∫ fmax

fmin

F (z; f,Ω)df (51)

This integral does not have an analytical expression and we must perform a numerical integration.
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The theoretical mean redshift of galaxies with flux f can be deduced from Equation (48):

〈z〉 =

∫∞
0

z F (z; f,Ω)dz∫∞
0

F (z; f,Ω)dz
(52)

The above integral does not have an analytical expression, and should be numerically evaluated.
The differences between the formulas of this subsection and the formulas in Chapter 5 of [31] are that
our formalism is built to cover high values of the redshift, against the low values of the redshift of the
standard approach. Both models are built in the framework of a Euclidean universe.

4. Astrophysical Applications

We processed two catalogs in order to test the theoretical formulae: the FDF and the zCOSMOS.
These two catalogs differ for the number of galaxies and parameters of the Schechter luminosity function
(LF) for galaxies. We now review the three parameters of the Schechter LF: α is fixed, Φ∗ is not relevant
because we equalize the theoretical maximum in frequencies, and M∗ is allowed to vary in order to
match the observed frequencies. The observed mean redshift of galaxies with a flux f or m, 〈zobs〉, is
evaluated by the following algorithm.

(1) A window in apparent magnitude or flux is chosen around m or f .
(2) All the galaxies which fall in the window are selected.
(3) The mean value in redshift of N selected galaxies is 〈zobs〉 and the uncertainty in the mean, σµ, is

σµ = s/
√
N where s is the standard deviation, see formula (4.14) in [34].

4.1. The FDF Catalog

The pencil beam catalog FDF has a solid angle of ≈ 5.6 sq arcmin, or 7′ × 7′ around the south
galactic pole, and covers the interval [0, 4] in redshift. In particular, we selected the 263 galaxies
with spectroscopical redshift and we processed the B band which has the range in apparent magnitude
[19.5, 30.2] mag. The reference magnitude for FDF in the B band isM� = 5.48. The Schechter LF for
galaxies has been widely used to parametrise the LF in FDF as a function of the redshift. As an example
in band B, α = −1.07 in the range 0.45 ≤ z ≤ 1.11 with−19.52 ≤M∗ ≤ −18.80, see Figure 5 in [12].
We have maintained α = −1.07 but we make M∗ variable and specify it in the captions of the figures.
The distribution of the spectroscopic redshifts in the FDF is presented in Figure 6 and a comparison
should be made with the distribution of photometric redshifts, see Figure 2 in [13].

Figure 7 presents the number of observed galaxies in the FDF catalog at a random apparent magnitude
and Figure 8 reports the theoretical number of galaxies as function of redshift and apparent magnitude.
Here we adopted the law of the rare events or Poisson distribution in which the variance is equal to the
mean, i.e., the error bar is given by the square root of the frequency. An enlarged discussion on the
validity of this approximation can be found in [35].
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Figure 6. The galaxies of the FDF catalog are organized in frequencies versus spectroscopic
redshift. The redshift covers the range [0, 4] and the histogram’s interval is 0.1.

Figure 7. The galaxies of the FDF catalog with 22.08 ≤ m ≤ 26.81 or
2.33

L�
Mpc2 ≤ f ≤ 181.39

L�
Mpc2 are organized in frequencies versus spectroscopic redshift.

The redshift covers the range [0, 1.5] and the histogram’s interval is 0.18. The maximum
frequency of observed galaxies is at z = 0.33, χ2 = 77.8, and the number of bins is 8.
The full line is the theoretical curve generated by dN

dΩdzdf
(z) as given by the application

of the Schechter luminosity function (LF) which is Equation (48) with Φ∗ = 0.01 /Mpc3,
M∗ = −17.78 and α = −1.07.

A careful examination of Figure 3 in [13] gives the maximum frequency of galaxies with well
measured spectroscopic redshift in the FDF at z ≈ 0.3. The mean redshift of galaxies as a function
of the apparent magnitude for the FDF catalog is presented in Figure 9, which shows an acceptable
agreement between the data (empty stars) and the theoretical values (full line).
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Figure 8. The theoretical number of galaxies of the FDF catalog as afunction of redshift and
apparent magnitude represented as a 3D surface, parameters as in Figure 7.

Figure 9. Average observed redshift, 〈zobs〉, as a function of the apparent magnitude for
the FDF catalog (empty stars) and theoretical full line for 〈z〉 as given by the numerical
integration of Equation (52). Theoretical parameters as in Figure 7.

4.2. The zCOSMOS Catalog

The zCOSMOS bright redshift 10k catalog, which covers a solid angle Ω = 1.7 deg2 or
Ω = 3.04617 × 10−4sr, consists of 9697 galaxies in the the interval [0, 4] in redshift and range in the
IB band [15, 23] mag, see [14]. The reference magnitude for zCOSMOS in the IB band isM� = 4.08,
see Table 2.1 in [36]. The number of galaxies as a function of the redshift does not have a continuous
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behavior: rather, we are in the presence of an alternating behavior of voids and relative maxima, see
Figure 10. This nonhomogeneous spatial distribution of galaxies can be made continuous by introducing
bigger intervals in the computation of the frequencies, e.g., a histogram interval equal to 0.1. Figure 11
presents the number of observed galaxies in the zCOSMOS catalog for a given apparent magnitude.

Figure 10. The galaxies of the zCOSMOS catalog are organized in frequencies versus
spectroscopic redshift. The redshift covers the range [0, 1.2] and the histogram’s interval
is 0.02.

Figure 11. The galaxies of the zCOSMOS catalog with 17.88 ≤ m ≤ 19.06 or
803.43

L�
Mpc2 ≤ f ≤ 2392.36

L�
Mpc2 are organized in frequencies versus spectroscopic redshift.

The redshift covers the range [0, 1] and the interval in the histogram is 0.1. The error bar is
given by the square root of the frequency (Poisson distribution) . The maximum frequency
of observed galaxies is at z = 0.213, χ2 = 147.3, and the number of bins is 10. The full line
is the theoretical curve generated by dN

dΩdzdf
(z) as given by the application of the Schechter

LF, which is Equation (48) with Φ∗ = 0.01 /Mpc3, M∗ = −20.88 and α = −1.07.
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The total number of galaxies, dN
dΩdz

, can be computed with the integral represented by Equation (51),
see Figure 12.

The mean redshift of galaxies as a function of the apparent magnitude for zCOSMOS is presented in
Figure 13.

Figure 12. All the galaxies of the zCOSMOS catalog, organized in frequencies versus
spectroscopic redshift. The redshift covers the range [0, 1] and the interval in the histogram
is 0.1. The error bar is given by the square root of the frequency (Poisson distribution) .
The maximum frequency of all observed galaxies is at z = 0.35, χ2 = 1864.65, and the
number of bins is 10. The full line is the theoretical curve generated by dN

dΩdz
(z) as given

by the numerical integration of Equation (51) with Φ∗ = 0.01 /Mpc3, M∗ = −18 and
α = −1.07.

Figure 13. Average observed redshift, 〈zobs〉, as a function of the apparent magnitude for
the zCOSMOS catalog (empty stars) and theoretical full line, 〈z〉, as given by the numerical
integration of Equation (52). Theoretical parameters as in Figure 11.
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5. The Relativistic Case

The possibility of deriving an analytical result for the number of galaxies as a function of the redshift
in the relativistic case is connected with the availability of an analytical expression for the luminosity
distance. We now use the same symbols as in [37] and we define the Hubble distance DH as

DH ≡
c

H0

(53)

We then introduce a first parameter ΩM

ΩM =
8πG ρ0

3H2
0

(54)

where G is the Newtonian gravitational constant and ρ0 is the mass density at the present time. A second
parameter is Ωλ

Ωλ ≡
λ c2

3H2
0

(55)

where λ is the cosmological constant, see [31]. The two previous parameters are connected with the
curvature ΩK by

ΩM + Ωλ + ΩK = 1 (56)

The comoving distance, DC, is

DC = DH

∫ z

0

dz′

E(z′)
(57)

where E(z) is the “Hubble function”

E(z) =
√

ΩM (1 + z)3 + ΩK (1 + z)2 + Ωλ (58)

The transverse comoving distance DM is

DM =


DH

1√
ΩK

sinh
[√

ΩK DC/DH

]
for ΩK > 0

DC for ΩK = 0

DH
1√
|ΩK |

sin
[√
|ΩK |DC/DH

]
for ΩK < 0

(59)

An analytic expression for DM can be obtained when Ωλ = 0:

DM = DH
2 [2− ΩM (1− z)− (2− ΩM)

√
1 + ΩM z]

Ω2
M (1 + z)

for Ωλ = 0 (60)

A new form for DM when Ωλ = 0 is

DM =
DH sinh

(
2 arctanh

(
1√

1−ΩM

)
− 2 arctanh

(√
zΩM+1√
1−ΩM

))
√

1− ΩM

(61)

The luminosity distance is
DL = (1 + z)DM (62)

which in the case of Ωλ = 0 becomes

DL = (1 + z)
DH sinh

(
2 arctanh

(
1√

1−ΩM

)
− 2 arctanh

(√
zΩM+1√
1−ΩM

))
√

1− ΩM

(63)
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and the distance modulus

m−M = 25 + 5
1

ln (10)
ln

(
2
c
(
2− ΩM (1− z)− (2− ΩM)

√
zΩM + 1

)
H0ΩM

2

)
(64)

We now return to DL = r: the ration between the differential of the luminosity distance and the
differential of the redshift is

dr =
cΩM

(
2
√

ΩM z + 1 + ΩM − 2
)

dz

H0

√
ΩM z + 1ΩM

2 (65)

This means that we have an analytical expression for the differential dr = f(z)dz when Ωλ = 0.
This analytical differential will be inserted later on in Equation (67). The inverse relation between
distance and redshift, now denoted by zM , is

zM =
rH0ΩM

2 + cΩM
2 −

√
cΩM

2 (2 rH0 + c)ΩM − 2 cΩM + 2
√

cΩM
2 (2 rH0 + c)

2 cΩM

(66)

The joint distribution in z and f for the number of galaxies in the relativistic case is

dN

dΩdzdf
=

1

4π

∫ ∞
0

4πr2drΦ(
L

L∗
)δ
(
z − zM

)
δ
(
f − L

4πr2

)
(67)

and its explicit value is
dN

dΩdzdf
=

DNN

DND
(68)

where

DNN = 64 Φ
(√

ΩM + 1ΩM + ΩM − 2
√

ΩM + 1− ΩM + 2
)4

× (69)(
4

(√
ΩM + 1ΩM + ΩM − 2

√
ΩM + 1− ΩM + 2

)2

ΩM
4zcrit2

)α

× (70)

e
−4

(
√

ΩM +1ΩM+ΩM −2
√

ΩM +1−ΩM+2)2

ΩM
4zcrit

2

(
2
√

ΩM + 1 + ΩM − 2
)
c5π (71)

and
DND = ΩM

9
√

ΩMz + 1H0
5L∗ (72)

Figure 14 presents the number of observed galaxies in the zCOSMOS catalog for a given apparent
magnitude in the relativistic case; we adopted the value of ΩM = 0.286 because it is the concordance
value, see [7].

The mean numerical redshift of galaxies as a function of the apparent magnitude for zCOSMOS is
presented in Figure 15 for the relativistic case.

The observed galaxy number over-density on cosmological scales up to second order in perturbation
theory with all relativistic effects that arise by observing on the past lightcone are discussed in [38,39].
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Figure 14. The galaxies of the zCOSMOS catalog with the same parameters of Figure 11 are
organized in frequencies versus spectroscopic redshift. The full line is the theoretical curve
generated by dN

dΩdzdf
(z) as given by the application of the Schechter LF in the relativistic case,

which is Equation (68) with Φ∗ = 0.01 /Mpc3, M∗ = −20.7, α = −1.07 and ΩM = 0.286;
χ2 =95.68 when the number of bin is 10.

Figure 15. Average observed redshift, 〈zobs〉, as function of the apparent magnitude for
the zCOSMOS catalog (empty stars) and theoretical full line, 〈z〉, as given by a numerical
integration. Theoretical parameters as in Figure 14.
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6. Evolutionary Effects

The main problem in modeling the LF as a function of the redshift is that the low luminosity galaxies
progessively disappear. This observational fact can be solved by adopting a truncated probability density
function (PDF). The beta distribution is defined in [0, 1] and the beta with scale PDF is defined in [0, b].
On introducing a truncation in the beta PDF at low values, we can model the observed LF as a function
of the redshift, see formula (34) in [40]. Once the random variable X is substituted with the luminosity
L, we obtain a new LF for galaxies, Ψ,

Ψ(L)dL = KL Ψ∗Lα−1 (Lb − L)β−1 dL (73)

where Ψ∗ is a normalization factor which defines the overall density of galaxies, a number per cubic
Mpc. The constant KL is

KL =
A

B
(74)

A = −αΓ (α + β)

B = Lb
β−1

2F1(α,−β + 1; 1 + α; La

Lb
)La

αΓ (α + β)

−Lb
β+α−1Γ (1 + α) Γ (β)

and La, Lb are the lower, upper values in luminosity and 2F1(a, b; c; z) is the regularized hypergeometric
function [41,42]. The averaged luminosity, 〈L〉, is

〈L〉 = KL Ψ∗
AN

BD

(75)

where

AN = −Lb
β−1La

1+α
2F1(−β + 1, 1 + α; 2 + α; La

Lb
)Γ (1 + α + β)

+Lb
α+βΓ (2 + α) Γ (β)

BD = (1 + α) Γ (1 + α + β)

The relations connecting the absolute magnitude M , Ma and Mb of a galaxy to the respective
luminosities are

L

L�
= 10

0.4(M�−M)
,
La

L�
= 10

0.4(M�−Ma)
,
Lb

L�
= 10

0.4(M�−Mb) (76)

where M� is the absolute magnitude of the sun in the considered band. The beta truncated LF in
magnitude is

Ψ(M)dM = −KM Ψ∗ 0.4
(

10
−0.4 am+0.4M�

)α−1

×(
10
−0.4Mb+0.4M� − 10

−0.4 am+0.4M�
)β−1

×

10
−0.4 am+0.4M� ln (10) dM (77)
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where

KM =
AM

BM

(78)

AM = αΓ(α + β)

BM = −
(

10
−0.4Mb+0.4M�

)β−1

×

2F1(α,−β + 1; 1 + α;
10
−0.4Ma+0.4M�

10
−0.4Mb+0.4M�

)×(
10
−0.4Ma+0.4M�

)α
Γ (α + β)

+
(

10
−0.4Mb+0.4M�

)β+α−1

Γ (1 + α) Γ (β)

This LF contains the five parameters α, β, Ma, Mb, Ψ∗ which can be derived from the operation of
fitting the observational data and M� which characterize the considered band, see [43]. The number of
variables can be reduced to three once Ma and Mb are identified with the maximum and the minimum
absolute magnitude of the considered sample. A further reduction of parameters can be realized in the
case of a well defined catalog of galaxies, e.g., zCOSMOS, where Ma = −23.47 mag, α = 0.01, β = 5

and M� = 4.08. The low luminosity bound (high magnitude) can be modeled in the classic case by
extracting the absolute magnitude from Equation (28) which represents the distance modulus for tired
light by

Mb = mL −
5

2

ln (1 + z)

ln (10)
− 25− 5

1

ln (10)
ln

(
ln (1 + z) c

H0

)
(79)

where mL is the limiting apparent magnitude, which for zCOSMOS is mL = 23.2 mag. With the
above choice of parameters, the observed LF for zCOSMOS as a function of the redshift has only one
free parameter, Ψ∗, which can be easily derived from the fit of the histograms. The observed LF for
zCOSMOS can be built by adopting the following algorithm.

(1) A value for the redshift is fixed, z, as well as the thickness of the layer, δz.
(2) All the galaxies comprised between z and δz are selected.
(3) The absolute magnitude can be computed from Equation (28) which represents the distance

modulus for tired light.
(4) The distribution in magnitude is organized in frequencies versus absolute magnitude.
(5) The frequencies are divided by the volume, which is V = Ωπr2δr, where r is the considered

radius, δr is the thickness of the radius, and Ω is the solid angle of ZCOSMOS.
(6) The error in the observed LF is obtained as the square root of the frequencies divided by

the volume.

Figures 16–18 present the LF of zCOOSMOS as well the fit with the truncated beta LF at z = 0.2, z =

0.5, andz = 0.7, respectively.
In the relativistic case, we can extract the absolute magnitude from Equation (64), which represents

the distance modulus when Ωλ = 0:

Mb = ml − 5
ln (2)

ln (10)
− 5

1

ln (10)
ln

(
c
(
2− ΩM (1− z)− (2− ΩM)

√
zΩM + 1

)
H0ΩM

2

)
− 25 (80)
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Figure 16. The luminosity function data of zCOSMOS are represented with error bars.
The continuous line fit represents our beta LF (77), the parameters are z = 0.2, δz = 0.05
and NDIV = 8, which means χ2 = 5.35.

Figure 17. The luminosity function data of zCOSMOS are represented with error bars.
The continuous line fit represents our beta LF (77), the parameters are z = 0.5, δz = 0.05,
and NDIV = 8, which means χ2 = 16.71.
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Figure 18. The luminosity function data of zCOSMOS are represented with error bars.
The continuous line fit represents our beta LF (77), the parameters are z = 0.7, δz = 0.03,
and NDIV = 4, which means χ2 = 8.76.

Figure 19 presents the LF of zCOOSMOS as well as the fit with the truncated beta LF when z = 0.7

in the relativistic case.

Figure 19. The luminosity function data of zCOSMOS are represented with error bars.
The continuous line fit represents our beta LF (77) in the relativistic case. The input
parameters are Ωλ = 0, ΩM = 0.286, z = 0.7, δz = 0.03 and NDIV = 4, which means
χ2 = 8.78.
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7. Conclusions

7.1. Results

A nonlinear formulation of Hubble’s law allows determinaing an old/new relation for the distance as
a function of the redshift, see Equation (7). This distance, when inserted in the definition of the joint
distribution in z and f for the number of galaxies, allows the determination of a new N − z relation,
see Equation (48). Two photometric tests were done for 263 galaxies belonging to the FDF catalog and
for 9697 galaxies belonging to the zCOSMOS catalog. The first test is dedicated to the photometric
maximum in redshift, for which it is possible to derive an analytical expression as a function of the flux,
see Equation (49), or the apparent magnitude, see Equation (49); this results in Figures 7 and 11.

A second test is dedicated to the average redshift, for which a numerical integration of Equation (52)
should be done; it results in Figures 9 and 13.

The same formalism can also be applied to the relativistic case once the relativistic luminosity distance
is given, see Equation (63). In the standard cosmology or relativistic case the the joint distribution in
z and f for the number of galaxies is given by Equation (68). A comparison between the Euclidean
and relativistic model can be made on the photometric maximum as represented by Figures 11 and 14.
The χ2 test gives χ2 = 147.3 for the Euclidean case, as represented by Equation (47) and χ2 = 94.27

for the relativistic case as represented by Equation (68), but large oscillations are present in the observed
frequencies and therefore the definitive answer is remanded to future efforts.

The observed LF for galaxies can be modeled by a truncated beta LF, see Equation (77). This new LF
with an appropriate choice of parameters has only one free parameter, which is the number of galaxies
per cubic Mpc, Ψ∗, and this parameter decreases with the redshift. The high magnitude bound, Mb, can
be modeled both by a Euclidean model as given by Equation (79) and by a relativistic model, Ωλ = 0, as
given by Equation (80). As an example, the third test for the observed LF for galaxies at z = 0.7 gives
χ2 = 8.76 for the Euclidean case and χ2 = 8.78 for the relativistic case when Ωλ = 0 and ΩM = 0.286.

7.2. Generalizated Tired Light

The presence of the factor β for adjustable tired light, see Equations (29) and (30), poses the problem
of its determination. Equation (30), which represents the distance modulus, can be calibrated on the
database of supernova (SN) of type Ia. A careful determination of β and H0 can provide a better
determination of the Malmquist bias, as represented by Figures 3 and 4, which present a lack of galaxies
just above the red lines.

7.3. Tired Light versus GR

The new distance modulus as represented by Equation (30) requires a careful comparison with the
standard LCDM. In the case of LCDM with Ωλ = 0, an analytical solution for the luminosity distance
exists and allows the determination of the relation between the differential of the distance and the
differential of the redshift, see Equation (65).
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In the case of Ωλ 6= 0, an analytical expression for the luminosity distance does not exist, and as a
consequence we do not have at the moment of writing a relation between the differential of the distance
and the differential of the redshift. The use of the Padé approximant can produce analytical results for
the luminosity distance, see [44,45]; this approximation will be the subject of future research.

7.4. The Cells

The cellular structure of our universe, see as an example Figure 10, is now the greatest inconvenience
to the application of the continuous models for the number of galaxies as a function of the redshift, and
perhaps an explanation for why the theoretical lines do not fit the data, as an example see Figure 12.
We briefly recall that there is an actual debate on the dimension of the universe which is modeled
by N ∝ RD, where N is the number of galaxies, R the radius of the considered sphere, and D

the dimension. An homogeneous universe means D = 3. In the concordance model, D makes a
transition to D = 3 at scales between 40 and 100 Mpc, see [46]. An accurate analysis of 2MASS
Photometric Redshift catalogue (2MPZ), shows an agreement with the standard cosmological model;
the homogeneous regime is reached faster than a class of fractal models with D < 2.75, see [47]. As an
example of non-homogeneity the value D = 1.87 has been reported in [48] where the 2MASS Redshift
Survey catalog was analysed.
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