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Abstract: In the present work, it is shown that the problem of the cosmological constant (CC) is
practically the consequence of the inadequacy of general relativity to take into account the quantum
property of the space. The equations show that the cosmological constant naturally emerges in the
hydrodynamic formulation of quantum gravity and that it does not appear in the classical limit
because the quantum energy-impulse tensor gives an equal contribution with opposite sign. The
work shows that a very large local value of the CC comes from the space where the mass of a
quasi-punctual particle is present but that it can be as small as measured on cosmological scale. The
theory shows that the small dependence of the CC from the mean mass density of the universe is due
to the null contribution coming from the empty space. This fact gives some hints for the explanation
of the conundrum of the cosmic coincidence by making a high CC value of the initial instant of
universe compatible with the very small one of the present era.
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1. Introduction

General relativity is an example of a theory of impressive power and simplicity, but its ambit
is purely classical. The CC, on the other hand, is a typical example of a modification originally
introduced [1] by hand to help the fit of the physical data [2].

Even if unpleasant, it is the sign that a more general theory (i.e. quantum gravity (QG)) is necessary
for a complete understanding.

In fact, the quantum version of general relativity is in progress [3–9], and its contribution leads to
the emergence of the CC as a correction to the general relativity [10].

Its original role of allowing static homogeneous solutions in general relativity equations in the
presence of matter [11] (and then discharged by Einstein himself) turned out to be unnecessary
when the expansion of the universe was discovered [12]. Nevertheless, there have been a number
of subsequent episodes in which a non-zero CC was considered as an explanation of astronomical
observations [13–16].

Meanwhile, particle physicists have realized that the CC can be interpreted as a measure of the
energy density of the vacuum [10–18]. This energy density is the sum of a number of contributions,
each of magnitude much larger than the upper limits of the CC known today. The question of why the
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observed cosmological vacuum energy is so small compared to that deriving by the scales of particle
physics has become a celebrated puzzle.

By using the hydrodynamic model of quantum gravity [19], the present work shows that the CC
naturally appears in the theory. The outcome shows that the energy-impulse tensor density (QEITD)
introduces a quantum contribution that leads to a non-zero CC-value only in the place where the mass
of a particle is present, and globally to an observationally accessible CC.

The paper is organized as follows: In the first section, the hydrodynamic model of quantum
gravity is synthetically resumed, and the emergence of the CC in the gravitational equations is shown.
In the second part of the work, the theoretical structure of the CC is analyzed and discussed respect to
its large-scale value and time-dependence.

2. The Hydrodynamic Approach to Quantum Gravity

The author has shown [19] that the hydrodynamic model of quantum gravity leads to the equation

Rνµ ´
1
2

gνµRα
α “

8πG
c4

`

Tνµ `Λgνµ

˘

, (1)

where Tνµ is the covariant quantum energy-impulse tensor (QEITD) and where

Λ “ ´
8πG

c2
m|ψ|2

γ
(2)

is coupled to the quantum equations (defined in Section 2.2).

2.1. The QEITD Derived by the Hydrodynamic Quantum Model

In order to obtain the covariant QEITD, it is enough to calculate its contravariant form in the flat
Minkowski space-time.

In this case, the quantum hydrodynamic equations of motion (for scalar uncharged particles), as
shown by Guvenis [20], read

gµν
BSpq,tq

Bqµ

BSpq,tq

Bqν
´ }2 BµB

µ
ˇ

ˇψ
ˇ

ˇ

|ψ|
´m2c2 “ 0 (3)

and
B

Bqµ

ˆ

|ψ|2
BS
Bqµ

˙

“
B Jµ

Bqµ
“ 0, (4)

where
Jµ “

i}
2m
pψ ˚

Bψ

Bqµ ´ ψ
Bψ˚

Bqµ q (5)

is the 4-current, where

S “
}
2i

lnr
ψ

ψ˚
s, (6)

and where the connection between the standard quantum notations and the hydrodynamic ones is
given by the relation

ψ “ |ψ|expr
iS
} s. (7)

Equations (3) and (4), describing the (quantum) motion of the mass density µ “ m|ψ|2 (generalized
to the non-Euclidean space in Section 2.2), are coupled with Equation (1) through the QEITD [19]

Tµ
ν “

.
qµ

BL
B

.
qν

´ Lδµ
ν “ |ψ|2

˜

.
qµ

BL
B

.
qν

´ Lδµ
ν

¸

, (8)
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where
L “|ψ|2L (9)

is the Lagrangian density, and L is the hydrodynamic Lagrangian function that defines the quantum
hydrodynamic equations of motion as a function of the couple of real variables |ψ| and S [20–23] where
the momentum reads

pµ “ p
E
c

,´piq “ ´
BS
Bqµ . (10)

The quantum hydrodynamic equation of motion (3) that, in the Lagrangian form, reads [19]

pµ “ ´
BL
B

.
qµ . (11)

and
.
pµ “ ´

BL
Bqµ , (12)

where
L “

dS
dt
“
BS
Bt
`
BS
Bqi

.
qi “ ´pµ

.
qµ (13)

is coupled to the current conservation Equation (4) where the 4-current Jµ Equation (6), after simple
manipulation, reads [19]

Jµ “ pcρ,´Jiq “ ´|ψ|
2 pµ

m
“ ρ

.
qµ, (14)

where

ρ “ ´
|ψ|2

mc2
BS
Bt

. (15)

Moreover, by using Equations (14) and (15) it follows that

pµ “ ´m
ρ

|ψ|2
.
qµ “ ´

1
c2
BS
Bt

.
qµ, (16)

and, hence, that

L “ ´pµ
.
qµ
“ c2

´

BS
Bt

¯´1
pµ pµ “ ρ´1 Jµ pµ

“ ´ i}
2 c2

ˆ

Blnr ψ
ψ˚ s

Bt

˙´1
Blnr ψ

ψ˚ s

Bqµ

Blnr ψ
ψ˚ s

Bqµi

(17)

and
Tµ

ν “ |ψ|2c2
´

BS
Bt

¯´1
`

pµ pν ´ pα pαδµ
ν
˘

“ |ψ|2m2c4
´

BS
Bt

¯´1 ´ pµ pν

m2c2 ´

´

1´ Vqu
mc2

¯

δµ
ν
¯

“ m|ψ|2c2
´

1
mc2

BS
Bt

¯´1 ´
uµuν ´

´

1´ Vqu
mc2

¯

δµ
ν
¯

“ m|ψ|2c2
ˆ }

2im2c2 Blnr ψ
ψ˚ s

Bt

˙´1
¨

˝

´

}
2mc

¯2 Blnr ψ
ψ˚ s

Bqµ

Blnr ψ
ψ˚ s

Bqν

`

´

1´ Vqu
mc2

¯

δµ
ν

˛

‚

(18)

where uµ “
γ
c

.
qµ and where

BS
Bqµ

BS
Bqµ

“ pµ pµ “

ˆ

E2

c2 ´ p2
˙

“ m2c2
ˆ

1´
Vqu

mc2

˙

, (19)

has been used in [19], where the quantum potential reads Vqu “ ´}2

m
BµB

µ|ψ|
|ψ|

. As shown by
Bialiniki-Birula et al. and by the author himself [19–23], it is noteworthy to observe that, due to
the biunique relation between the quantum hydrodynamic approach (with the quantization bond) and
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the standard quantum equations [21–24], Equations (3) and (4) are equivalent to the Klein-Gordon
equation (KGE) [19–23]

gµνBνBµψ “ ´
m2c2

}2 ψ, (20)

and, hence, the QEITD (18) makes the quantum gravity Equation (1) independent by the hydrodynamic
approach used to derive it.

2.2. The Quantum Gravity System of Equations

Now we have all the equations of the system that define the quantum gravitational evolution.
The Einstein Equation (1) is coupled to the KGE that (for scalar uncharged particles) in a

non-Euclidean space-time reads

Bµψ;µ “
1

?
´g
Bµ
a

´g pgµνBνψq “ ´
m2c2

}2 ψ, (21)

with the covariant form of the QEITD (8) Tµν “ Tµ
αgαν that includes the quantum contribution, given

by the quantum potential, that reads

Vqu “ ´
}2

m
1

|ψ|
?
´g
Bµ
a

´g pgµνBν|ψ|q . (22)

3. The Cosmological Constant

In this section, we derive the cosmological constant Λ by requiring that the classical Einstein
equation and the minimum action principle (MAP) are recovered in the classical limit.

By considering, for the sake of simplicity, states of matter (or antimatter), without mixed
superposition of them, we obtain the identity [19]

´

ˆ

1
c2
BS
Bt

˙

“
E
c2 “ ˘mγ

c

1´
Vqu

mc2 , (23)

where, according to the Dirac interpretation, the negative energy states apply to the antimatter. By
using Equation (23), the QEITD (18) reads

Tµ
ν “ |ψ|2c2

´

BS
Bt

¯´1
`

pµ pν ´ pα pαδµ
ν
˘

“ |ψ|2
ˆ

c2

γ2

´

1
c2
BS
Bt

¯

uµuν ´m2c2
´

1
c2
BS
Bt

¯´1 ´
1´ Vqu

mc2

¯

δµ
ν

˙

“ ´p˘q
m|ψ˘|2c2

γ

ˆ

b

1´ Vqu
mc2

˙

`

uµuν ´ δµ
ν
˘

,

(24)

where |ψ`|2 and |ψ´|2 are the matter and antimatter particle density, respectively, so that we can
explicitly write the hydrodynamic motion equation [19], which reads

c

1´
Vqu

mc2
duµ

ds
“ ´uµ

d
ds

˜

c

1´
Vqu

mc2

¸

`
B

Bqµ

˜

c

1´
Vqu

mc2

¸

“ ˘
γ

mc2
BTµ

ν

Bqν
, (25)

where the quantum energy-impulse tensor Tµ
ν “

Tµ
ν

|ψ|2
[19] reads

Tµ
ν “

Tµ
ν

|ψ˘|
2 “ p˘q´

mc2

γ

c

1´
Vqu

mc2

`

uµuν ´ δµ
ν
˘

. (26)
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Moreover, since, from the mechanical point of view,

BΛp .
q,tqδµ

ν

Bqν
“ 0, (27)

it follows that all QEITD tensors of the form

Tν
µ ” Tν

µ `Λp .
q,tqδν

µ (28)

are able to lead to the same motion equation (in Euclidean space). Nevertheless, from the point of view
of general relativity, since, in non-Euclidean space, the motion Equation (25)

duµ

ds ´
1
2
Bgλκ
Bqµ uλuκ

“ ´uµ
d
ds

ˆ

ln
b

1´ Vqu
mc2

˙

` B
Bqµ

ˆ

ln
b

1´ Vqu
mc2

˙ (29)

depends by the metric tensor gλκ , which, by Equation (1), is a function of Λp .
q,tq, only one form (that

minimizes the action) of Λp .
q, tq is possiblein Equation (28) .

In order to determine Λp .
q,tq, we require that the Einstein equation (which minimizes the action) is

recovered by Equation (1) in the classical limit (i.e. }Ñ 0, Vqu Ñ 0).
By imposing this condition on Equation (1), the explicit Expression (2) is obtained for the CC,

which leads to the quantum gravitational equation

Rνµ ´
1
2

gνµRα
α `

8πG
c2

µ

γ
gµν “

8πG
c4 Tνµ. (30)

Moreover, if we write the QEITD Tνµ as

Tνµ “

ˆ

1
γmc2

BS
Bt

˙´1 ˆ

Tνµ CL ´
µc2

γ

ˆ

1´
Vqu

mc2

˙

gµν

˙

, (31)

where

Tνµ CL “
µc2

γ
uµuν (32)

is the classical part of the QEITD (i.e. for dust matter [21]), Equation (30) reads

Rνµ ´
1
2

gνµRα
α ´ δΛgµν “

8πG
c4

ˆ

1
γmc2

BS
Bt

˙´1
Tνµ CL, (33)

where δΛ, the overall CC, reads

δΛ “

«

1`
ˆ

1
γmc2

BS
Bt

˙´1 ˆ

1´
Vqu

mc2

˙

ff

Λ “

«

1´

c

1´
Vqu

mc2

ff

Λ. (34)

In the classical limit (when Vqu “ 0,
b

1´ Vqu
mc2 “ 1), δΛ is equal to zero, and the general relativity

equation is recovered without the cosmological term.
As far as the vacuum is concerned, which is characterizd by the values ψ “ |ψ| “ 0, Vqu “ 0, it

follows that

δΛ “

«

1´

c

1´
Vqu

mc2

ff

Λ “ 0. (35)
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4. The Cosmological Constant in Presence of Matter

If, in the vacuum, the overall CC δΛ is null, in the regions of space where the matter is present

and localized in particles (i.e.
b

1´ Vqu
mc2 ‰ 1), the exact cancellation of the CC does not happen. Since

the quantum potential is larger wherethe mass concentration is higher, the CC becomes relevant in
places where the matter is localized in quasi-punctual particles.

The maximal contribution from the cosmological term comes from those regions of space where
the quantum potential is of order of the mass energy (as happens for the Plank mass black holes [19]).
In this case, we can set Vqu “ p1´ εqmc2 with ε ăă 1 so that the overall CC reads

δΛ “ Λp1´ γ´1
b

1´ Vqu
mc2 q “

8π Gm|ψ`|
2

γ c2 p1´ γ´1
b

1´ Vqu
mc2 q

“
8π m|ψ`|

2

γ c2 p1´ ε
γ q

(36)

which, since the contribution from low velocity matter is dominant (e.g., for neutrinos whose speed is
close to that of light, it follows that γ Ñ8 and Λ Ñ 0), leads to

δΛ «
8πG m|ψ`|2

c2 p1´ εq (37)

Since the system of Equations (1)–(4) and (18) only considers the gravitational interaction, the
only possible localized mass distribution is the black hole (BH) whose smallest mass has the value of
the Planck mass [19].

In this case, for a “particle” of a Planck mass localized in the sphere of its gravitational radius
rg “

2Gm
c2 « 0.8ˆ 10´35m [19], we have

ˇ

ˇψ`
ˇ

ˇ2 « 0.5ˆ 10105m´3 and Vqu “ mc2 [19] (so that ε “ 0),
that , introduced in Equation (37), gives the local value of

δΛ «
8πG m|ψ`|2

c2 – 4.9ˆ 1070. (38)

On the other hand, the mass density is practically null outside the BH radius so that

ψ`pxq “ 0, (39)

as well as
Vqu “ 0, (40)

so that
δΛ “ 0. (41)

Thence, if we consider the mean value of δΛ (which gives rise to the cosmological effect)

ă δΛ ą«
8πGΩ

c2 , (42)

where Ω represents the mean mass density of the nowadays universe [24], whose estimated value is

Ω « 9.66 ˆ 10´27kg{m3, (43)

it follows that the ratio ăδΛą
δΛ for a BH of Planck mass (given that the universe mean number of black

holes with the Planck mass, per cubic meter, is Ω
mP
« 2 ˆ 10´7 m´3) reads

ă δΛ ą

δΛ
“

ΩBH
mP

1

|ψ`|
2 « 2.5 ˆ 10´113, (44)
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which shows an enormous difference between the local values of the CC respect to its mean on
cosmological scale.

Given that the mass density of universe is 2ˆ 10´7 m´ 3 BH of Planck mass per cubic meter,
which own a density of |ψ` |2 « 0.5ˆ 10105 m´3 in a volume 4

3 πrg
3 « 2 ˆ 10´105 m, we obtain

Ω « mP ˆ 2ˆ 10´7 m´3 “ă mP|ψ` |
2 ą.

5. The Cosmological Constant of Particles with Mass Smaller than the Planck One

To evaluate the local value of the CC for a localized mass m (not due to gravitational force), we
have to include into the gravitational problem the other interactions of the nature (in fact, Equation (3)
is just for an uncharged scalar particle).

To introduce an external potential, in order to have the localization of a mass distribution, we
have to consider at least the electromagnetic (em) force.

In this case (for Euclidean space, for instance), the KGE

gµν

´

Bν ´
e
i}Aν

¯´

Bµ ´
e
i}Aµ

¯

ϕ`
m2c2

}2 ϕ “ 0 (45)

or the Dirac equation
ˆ

i}γµ

ˆ

Bµ `
ie
} Aµ

˙

`mc
˙

Ψ “
BLint
Bψ

(46)

(where BLint
Bφ “ 0 for the em field) are coupled to the Maxwell one

Fµν
;ν “ ´4π Jµ (47)

for the photon [25]. If we want to include the “strong” force of fermions (e.g., due to a scalar meson),
we must add the field equation of the meson (like the Maxwell one for the photon),

gµνB
νBµφ`

m2c2

}2 φ´ jpxq “
BLint
Bφ

(48)

(where, for instance, jpxq “ ´
BVpφq
Bφ , where Vpφq is the “self-interacting” field that, in renormalizable

quartic interaction, reads Vpφq “ λφ4 [26]) and the fermion-meson interaction term

Lint “ ´gψφψ (49)

All these equations are coupled each other and, through the QEITD, with the gravitational one
that defines the metric tensor and, thence, the covariant derivatives. However, the definition of the
QEITD through the hydrodynamic representation of quantum mechanics is still not available for the
strong and weak force. Thence, to evaluate the order of magnitude of the CC due to mass localization,
in the appendix, the CC is calculated for localized particles in quantum wells.

Moreover, if the localized mass is much smaller than that of the Planck mass, we can approximately
substitute the covariant derivatives in Equations (45)–(49) with the normal derivatives.

By using this approximation, we do not need to solve the coupled gravitational system of motion
equations, but the local overall CC can be evaluated by using the Euclidean limit of quantum equations.
From Equation (44) and from the outputs given in the appendix (A.11–A.12), we can see that the mean

value 8πG Ω
c2 of the CC can differ by many orders of magnitude by the local one 8πG m|ψ`|

2

c2 . On the
other hand, the huge local value of the CC in the place where the mass of a particle is concentrated
(e.g., in a volume whose radius is of the order of the Compton length) can lead to a cosmological value
that agrees in order of magnitude with that astronomically measured as a consequence of the dilution
in a large vacuum space (see Appendix).
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6. Connection with the Quantum Field Theory

As for the quantum mechanics, the quantum field approach also has its own hydrodynamic
representation that, as shown by Bhom and colleagues [27], makes use of the “super-quantum
potential.”

More recently, Koide and Kodama [28] showed that the hydrodynamic quantum field model can
also be obtained by means of the stochastic variational method.

If in the “mechanical” approach we have in the vacuum |ψ|2 “ 0 in the quantum field approach,
assigned the probability distribution (PD) Ψpψpx, tqq, even if the mean value ψ in the vacuum is equal

to zero, the variance ψψ ˚ ´ψψ˚ “ |ψ|2 ‰ 0 is not null given that, generally speaking, the PD Ψpψ, x, tq
is not a delta-function. This leads to the description of the vacuum as a sea of virtual particles and
antiparticles (with zero mean real particles) but with an intrinsic zero-point energy density.

Thence, since for the quantum vacuum |ψ|2 ‰ 0, if we make the identification Λvacuum ” Λ, it
follows that

Λvacuum ” Λ “ ´
8πG

c2
m|ψ|2

γ
‰ 0 (50)

and, hence,
ă Λvacuum ą”ă Λ ą‰ 0 (51)

Nevertheless, by Equation (35) for the vacuum (i.e. Vqu “ 0), it follows that

ă δΛ ą“ă

«

1´

c

1´
Vqu

mc2

ff

Λ ą“ r1´ 1s ă Λ ą“ 0 (52)

so that, again, the overall CC ă δΛ ą has a null contribution from the zero-point vacuum fluctuations.
In order to establish an analytical link between the absence of the quantum vacuum singularity of

the hydrodynamic model and the quantum vacuum catastrophe within the standard QED and QCD,
the present work envisages that the hydrodynamic model of the quantum field [27] in non-Euclidean
space-time has to be investigated.

7. Critical Overview

The derivation of the QG equations show that CC Λp .
q, tq warrants that, in the classical limit, the

Einstein equation (which satisfies the MAP) is recovered.
Nevertheless, the recovery of the classical gravity equation is not exact so as to fully derive the

QG by the MAP.
The application of the MAP to the hydrodynamic equation poses some questions given

that, among the hydrodynamic solutions of Equation (25), only those that own the “irrotational”
property [19,21] (which warrants the quantization condition) describe the quantum mechanics. This
fact generates an interplay between the MAP and the quantization postulate.

The full evaluation of such problem goes beyond the purpose of the present paper and has been
left to be investigated in a future work.

Furthermore, it must be observed that, in the term

ă m|ψ`|2 ą«
c2

8πG
ă δΛ ą, (53)

represents the mean mass density of the nowaday universe based on some implicit assumptions that
deserve a comment. m|ψ`|2 represents the total matter density if we attribute the classical meaning to
it. In fact, the term |ψ`|

2 has quantum properties with a contribution from the quantum superposition
of states that can be disregarded just in the “macroscopic” classic universe, where the quantum
decoherence takes place [29–31].
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For the initial instant of the universe, especially before of the inflation, when both the gravity and
the quantum laws were all contemporaneously effective and strongly coupled, the value of ă|ψ`|2 ą
had to be very different from the one it owns today since the mass of the particles was concentrated in
a very small volume with an overall quantum coherence.

Finally, it is worth mentioning that, if the low curvature limit of Equation (1) in the classical case
(i.e. } “ 0 Vqu “ 0 ) leads to the Newtonian gravity, the quantum corrections (for Vqu ‰ 0) in the
Galilean limit of Equation (1) [32] can furnish a excellent experimental confirmation of the present
model.

8. Conclusions

In the present work it has been shown that the CC originates by the quantum property of the
vacuum where the particles are quasi-punctual and their mass is not smoothly distributed all around
the space.

The equations show that the cosmological constant emerges in the hydrodynamic formulation of
quantum gravity in order to obtain the Einstein equation in the classical limit that satisfies the MAP.

This work shows that the CC does not appear in the classical limit since it is deleted by an equal
contribution, with opposite sign, coming from the quantum energy-impulse tensor.

This paper also shows that the contribution to the CC of the vacuum in the absence of matter is
null as a consequence of the subtraction of an equal amount coming from the QEITD.

The outputs of the theory show that the overall CC can own a very large local value only in the
place where the mass distribution of a quasi-punctual particle is present and that its effect can be as
small as measured on cosmological scale. The theory shows that the CC owns a time dependence
coming from the state of the universe. This fact makes possible a high CC value, at the initial instant of
universe, compatibly with the very small one of the nowaday universe.

Appendix

The local cosmological constant value of a particle in a quantum well.
For a particle in a quantum well of infinite height whose side is equal to a “

?
3 h

2mc (i.e. of the
order of the Compton length so that the modulus of its momentum in the fundamental state is equal to
mc), the relativistic wave function

ψ˘pxq “
1

a3{2
expr˘i

p
}xsexpr˘i

E
} ts (A.1)

where
E2 “ p2c2 `m2c4 (A.2)

undergoes the quantum restriction ψpx“˘ a
2 q
“ 0 to the edge of the well

a “ p˘
a
2

,˘
a
2

,˘
a
2
q, (A.3)

which, for ´ a
2 ď xi ď

a
2 , leads to the wave function

ψn˘pxq “
ψ`pxq ` ψ´pxq

?
2

“
1

?
2a3{2

cosr˘i
pn
} xsexpr˘i

En

} ts (A.4)

with
pn “

p2n` 1q
?

3
mcp1, 1, 1q; (A.5)
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hence, the quantum potential value for the fundamental state reads

Vqu “ ´
}2

m
BµB

µ
ˇ

ˇψ
ˇ

ˇ

|ψ|
“

}2

m

ÿ

i

´ pi
}

¯2
“ mc2. (A.6)

On the other hand, outside the potential well, we have that

ψ˘pxq “ 0, (A.7)

which leads to
Vqu “ 0. (A.8)

Therefore, inside the volume where the particle is localized, the net CC reads

δΛ «
8πG m|ψ`|2

c2 , (A.9)

while, outside,
δΛ “ 0. (A.10)

Thence, as a function of mass particle and potential well wideness, the local ratio ăδΛą
δΛ reads:

(i) Particle of a proton mass and potential well of side a « 10´15m.
In this case, we have

ˇ

ˇψ`
ˇ

ˇ2 « 1045m´3 , and, since the mean mass density of he universe is
about 5.5 hydrogen atoms per m3 (including the dark matter and the dark energy) leading to a value

Ω
m` « 5.5 m´ 3, it follows that

ă δΛ ą

δΛ
“

Ω
m`

1

|ψ`|
2 « 5.5ˆ 10´45. (A.11)

Given that Ω
m` « 5.5 m´ 3 protons per cubic meter with a proton density

ˇ

ˇψ`
ˇ

ˇ2 « 1045m´3 in a volume a3 “ 10´45, it follows that ă
ˇ

ˇψ`
ˇ

ˇ2 ą« 5.5m´3 and, hence, that
Ω « m`5.5 m´3 “ă m`

ˇ

ˇψ`
ˇ

ˇ2 ą .
(ii) Particle of electron mass and potential well of side a « 1.2 ˆ 10´13m.
In this case, we have

ˇ

ˇψe´
ˇ

ˇ2 « 0.7 ˆ 1039m´3 . On the other hand, given that, if the electron mass
is about 10´ 3 times of that of the proton , it follows that the universe mean number of electrons per
cubic meter is equal to Ω

me´
« 5.5ˆ 103 m´3, it follows that

ă δΛ ą

δΛ
“

Ω
me´

1

|ψe´|
2 « 0.7 ˆ 10´35. (A.12)

Given the universe matter density of Ω
me´

« 5.5ˆ 103 m´3 electrons per cubic meter, with an electron

density
ˇ

ˇψ`e
ˇ

ˇ2 « 0.7ˆ 1039m´3 in a volume a3 “ 10´39, it follows that ă
ˇ

ˇψ`e
ˇ

ˇ2 ą« 3.85ˆ 103m´3

and, hence, that the universe mass density Ω « 6.43ˆ 10´27 Kgm´3 that is still satisfactory close to
the cosmologically observed value.
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